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Abstract

This paper investigates the transmit (Tx) beamforming design to maximize the throughput of a multiple-input
multiple-output multicast channel, where common information is sent from the base station to K users
simultaneously. This so-called max-min fair beamforming problem is known to be NP-hard. When the base station is
equipped with two Tx antennas, we prove that the original complex-valued beamforming problem can be
transformed into a real-valued problem and the globally optimal solution can be found by exhausting at most
C1K + C2K + C3K hypothesis tests. Moreover, a prune and search algorithm (PASA) is proposed for searching the optimal
beamformer with computational complexityO(K3) in the worst case. When the base station has more than two Tx
antennas, we develop an efficient algorithm named iterative two-dimensional optimization which converts the
original beamforming problem into a series of two-antenna subproblems by iterations and hence, the beamformer is
improved using PASA iteratively. Simulations results are presented to demonstrate the superior performance of the
proposed algorithms.

Keywords: Physical layer multicasting; Multiple-input multiple-output; Transmit beamforming; Semidefinite
relaxation (SDR)

1 Introduction
In the next generation of wireless networks, spectrally
efficient multicasting techniques are required to support
applications such as web TV, online gaming, and software
updates, where common messages are sent to a group
of users simultaneously. Under the assumption that the
channel state information of all users is available at the
multi-antenna base station (BS), transmit (Tx) beamform-
ing can be used to improve the performance of multicast-
ing. Consequently, the problem of multicast beamforming
has received significant attentions recently[1-5].
In [1], Lopez formulated the multicast beamforming

problem as maximizing the average signal-to-noise ratio
(SNR) of all users, for which the optimal beamformer
can be obtained by an eigendecomposition. However, this
approach does not guarantee satisfactory performance for
all users. In general, the performance of multicasting is
determined by the user(s) with the lowest SNR. From
this point of view, a practical criterion is to maximize the
minimal SNR of all users. This optimization problem is
referred to as max-min fair beamforming and is known
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to be NP-hard. The seminal work of max-min fair beam-
forming is proposed in [2], where semidefinite relaxation
(SDR) is used to yield approximate solutions. In order to
achieve higher throughput or reduce the implementation
complexity, various iterative schemes are proposed subse-
quently. In [3], the closed-form expression of the optimal
beamformer is deduced for the two-user case. For the
case of more than two users, a group of beamformers are
calculated through different pairs of users by the closed-
form expression. Then, the best one among these beam-
formers is used to be an initialization for the proposed
iterative algorithm, whose main idea is to improve the
lowest SNR at each iteration. Furthermore, it is showed
that this method is computationally much simpler while
the performance is comparable to that of the SDR-based
scheme. In [4], another iterative approach based on chan-
nel orthogonalization and local refinement is developed,
and it provides attractive performance compared to the
methods in [2] and [3]. Similar to [3], the authors in [5]
also develop a closed-form solution for the beamformer
design, wherein two users are assumed. Then, a succes-
sive greedy algorithm based on the two-user case are
proposed to tackle the general cases. Recently in [6], the
authors consider the robust design for unicast downlink
beamforming and conclude that the optimal beamforming
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vectors can be obtained by the semidefinite relaxation
when the base station is equipped with two antennas.
Yet, it cannot be applied to the multicast scenario we
investigate here.
For the max-min fair beamforming problem, to the best

of our knowledge, previousmethods are not guaranteed to
obtain the globally optimal beamforming vector when the
base station serves arbitrary number of users. In addition,
most of the methods are only applicable to the scenario of
single-antenna users. In this paper, we intend to address
the general case for max-min fair beamforming where the
users are equipped with one or multiple receive antennas.
The main contributions of this paper are listed below:

(1) For the case that the BS has two Tx antennas, we
derive that the feasible set of the SNR vector of all
users is a two-dimensional ellipsoid in
K-dimensional Euclidean space, where K is the
number of users. With this geometrical property, we
prove that the original complex-valued optimization
problem can be simplified as a real-valued problem
and the optimal beamforming vector can be found by
exhausting C1

K + C2
K + C3

K hypothesis tests of the
bottleneck users, which are defined as the users with
the lowest SNR.

(2) In order to reduce the complexity of exhausting, we
propose a prune and search algorithm (PASA) which
is guaranteed to find the globally optimal
beamformer. By analyzing the probabilities for three
cases of bottleneck users, we prove that the
worst-case computational complexity of PASA is
O(K3). It is showed that PASA is computationally
more efficient than most of the existing schemes.

(3) For the general case that the BS is equipped with
more than two Tx antennas, we propose an iterative
two-dimensional optimization (I2DO) algorithm
which iteratively transforms the problem of
beamformer design into a sequence of two-antenna
subproblems and then PASA can be used to improve
the beamformer at each iteration. When the number
of users is large, the throughput achieved by the
proposed beamformer has considerable improvement
over the state-of-the-art multicasting techniques.

The remainder of this paper is organized as follows.
In Section 2, we introduce the multiple-input multiple-
output (MIMO) multicast channel and formulate the
transmit beamforming problem. In Section 3, we ana-
lyze the special case of two Tx antennas and deduce a
new formulation for the beamformer design. Based on the
new formulation, the PASA is proposed to obtain a glob-
ally optimal beamforming vector. For the case of more
than two Tx antennas, we propose the I2DO algorithm in
Section 4. Section 5 presents simulation results to verify

the effectiveness of the proposed approaches. Finally,
conclusions are drawn in Section 6.
Notations: We use uppercase and lowercase bold let-

ters to denote matrices and vectors. The superscripts (·)T ,
(·)∗, and (·)† stand for transpose, conjugate transpose,
and pseudo-inverse, respectively. Re(·) and Im(·) mean
the real part and imaginary part, respectively. ‖ · ‖ and
‖ ·‖F denote the vector Euclidean norm and the Frobenius
norm. In represents an n × n identity matrix and 1n is an
all-one column vector with length n, while 0n is an all-zero
column vector with length n.

2 Systemmodel and problem statement
We consider a MIMO system consisting of one base sta-
tion and K users, where the base station is equipped with
M transmit antennas and the k-th user has Nk receive
antennas. The multicast scenario is investigated, that is,
the base station broadcasts common messages to K users.
Then, the received signal of the k-th user, i.e., yk ∈ C

Nk is

yk = H̃ks + nk , k = 1, . . . ,K , (1)

where H̃k ∈ C
Nk×M is the channel between the base sta-

tion and the k-th user, s ∈ C
M is the transmit signal, and

nk ∈ C
Nk is the additive complex Gaussian noise vec-

tor at the k-th user. We assume that H̃k , k = 1, . . . ,K
are known to the base station by exploiting channel reci-
procity or through a feedback channel. Moreover, we
consider the block fading channelmodel, i.e., themulticast
channel remains constant during the transmission block
and changes from one block to another. Without loss of
generality (w.l.o.g), we also assume that the additive noise
follows the distribution: nk ∼ CN (0, INk )

a.
Let w ∈ C

M, ‖w‖2 = 1 denote the beamforming vec-
tor. Then, the transmit signal is s = √

Pws, where s is the
information symbol with zero mean and unit variance and
P denotes the transmit power. Hence, the received signal
at the k-th user can be rewritten as

yk = √
PH̃kws + nk = Hkws + nk . (2)

For the sake of clarity,Hk = √
PH̃k can be referred to as

the equivalent channel throughout this paper.
With transmit beamforming, the achievable rate of the

k-th user isb

Rk = log2
(
w∗H∗

kHkw + 1
)
bps/Hz. (3)

To maximize the throughput of the multicast channel,
which is the minimum achievable rate of all users, we have
an optimization problem with respect to w

max
w∈CM

min
k=1,...,K

log2
(
w∗H∗

kHkw + 1
)

subject to ‖w‖2 ≤ 1. (4)
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Since the ‘logarithm’ function is monotonically increas-
ing and the optimal beamforming vector wopt in Eq. (4)
must satisfy ‖wopt‖2 = 1, Eq. (4) is equivalent to

max
w∈CM

min
k=1,...,K

w∗H∗
kHkw

subject to ‖w‖2 = 1.
(5)

It is proven in [2] that the max-min fair beamforming
problem (5) is non-convex and NP-hard in general. To
solve this problem, we first analyze the special case of two
transmit antennas before addressing the general cases.

3 Case of two Tx antennas
In this section, the special case that the base station
has two Tx antennas is investigated, i.e., M = 2. The
results obtained here will be used for the general case
in Section 4. It is worth mentioning that the early forms
of some lemmas in this section are formerly established
in the conference version of this paper. For the sake of
completeness, we recall the refined lemmas here.

3.1 Feasible set of the SNR vector
Defining γ (w) as the SNR vector of K users

γ (w) �
[
w∗H∗

1H1w, . . . ,w∗H∗
KHKw

]T , (6)

we have the following theorem.

Theorem 1 ([7]). For the case of M = 2, the feasible set
of the SNR vector

Z �
{
γ (w) : ‖w‖ = 1,w ∈ C

2} (7)

can be equivalently expressed as

Z = {
zc + Gx : ‖x‖ = 1, x ∈ R

3} , (8)

where

zc =
[

‖H1‖2F
2

, . . . ,
‖HK‖2F

2

]T

(9)

and

G =
⎡
⎢⎣

a1−b1
2 Re(c1) −Im(c1)
...

...
...

aK−bK
2 Re(cK ) −Im(cK )

⎤
⎥⎦
K×3

(10)

with ak, bk, and ck from the matrix

H∗
kHk =

[
ak ck
c∗k bk

]
. (11)

Proof. The proof is omitted. Please see [7] for details.

For a given real matrix A, a hyper-ellipsoid is defined by
{Ax : ‖x‖2 = 1} [8]. From Eq. (8), we can see that the fea-
sible set of the SNR vector is a two-dimensional ellipsoid
embedded in K-dimensional space with center zc.
Let hk = ‖Hk‖2F

2 and gk ∈ R
3 be the k-th column

of matrix GT . With Theorem 1, problem (5) can be
reformulated as

max
x∈R3,λ

λ

s.t. hk + gTk x ≥ λ, k = 1, . . . ,K
‖x‖ = 1.

(12)

As stated in the proof of Theorem 1, vector x in Eq. (12)
has an one-to-one relationship with the beamforming
vector w in Eq. (5)

x = [cos 2θ , sin 2θ cosφ, sin 2θ sinφ]T , (13a)
w =[ cos θ , sin θejφ]T , (13b)

where θ ∈[0,π/2),φ ∈[0, 2π). Let (xopt, λopt) denote the
optimal solution to Eq. (12). If (xopt, λopt) is given, then we
can calculate θopt and φopt from Eq. (13a) and henceforth
the optimal beamforming vector wopt follows in Eq. (13b).
Due to the constraint ‖x‖ = 1, Eq. (12) is a non-convex

problem [9]. Nevertheless, it is easier than problem (5)
since Eq. (12) is an optimization problem in the real space.
In the following, we develop a so-called prune and search
algorithm (PASA) to find a globally optimal solution to
Eq. (12).

3.2 Prune and search algorithm
To gainmore insights of problem (12), firstly we derive the
Fritz John necessary conditions (FJ conditions). Let f (λ) =
−λ, gk(x, λ) = λ − hk − gTk x, k = 1, . . . ,K , and h(x) =
xTx−1. Now, problem (12) can be written in the standard
form

min
x∈R3,λ

f (λ)

s.t. gk(x, λ) ≤ 0, k = 1, . . . ,K
h(x) = 0.

(14)

According to the Fritz John necessary conditions [10],
we have

μ0∇xf (λ) +
K∑

k=1
μk∇xgk(x, λ) + ν∇xh(x) = 0 (15a)

μkgk(x, λ) = 0, ∀k (15b)
μ0 ≥ 0,μk ≥ 0, k = 1, . . . ,K , (15c)

whereμ0, ν,μk ,∀k are scalars and they cannot be all equal
to zero.
For a feasible solution x, by condition (15a), we have x =

1
2ν

∑K
k=1 μkgk . LetK ⊆ {1, · · · ,K} denote the set of active
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constraints, i.e., gk(x, λ) = 0, k ∈ K. With Eq. (15b), we
know that μk = 0 for k /∈ K. Hence, we can see that

x =
∑
k∈K

ωkgk , (16)

where ωk = μk
2ν , k ∈ K are of the same sign.

For the sake of clarity, we refer to the user(s) with the
lowest SNR as bottleneck user(s). With this definition and
the FJ conditions, we can see that the optimal solution to
Eq. (12) must have form as x = ∑

k∈K ωkgk where {ωk} are
of the same sign and K also denotes the set of bottleneck
users.
In the lemma below, we show that the globally optimal

solution to Eq. (12) can be found by a series of hypothesis
tests.

Lemma 1 ([7]). The globally optimal solution to Eq. (12)
can be found through exhausting C1

K +C2
K +C3

K hypothesis
tests of the bottleneck users.

Proof. Defining {1, 2, . . . , L} as the indexes of the
bottleneck users, we have

hl + gTl x = λ, l = 1, . . . , L
‖x‖ = 1.

(17)

To facilitate the analysis, we write Eq. (17) into the
matrix form

Gaxa = ha (18a)
‖x‖ = 1, (18b)

where

Ga =

⎡
⎢⎢⎢⎣
1 −gT1
1 −gT2
...

...
1 −gTL

⎤
⎥⎥⎥⎦ , xa =

[
λ

x

]
, ha =

⎡
⎢⎢⎢⎣
h1
h2
...
hL

⎤
⎥⎥⎥⎦ . (19)

Note that Ga ∈ R
L×4, xa ∈ R

4×1, and ha ∈ R
L×1.

Since Hk , k = 1, . . . ,K are independent random fading
channels, elements of gl and hl are random variables, and
Ga is full-rank with probability 1c. For L > = 5, Eq. (18a)
has no solutions in general; for L = 4, there is a single
solution xa = G−1

a ha to Eq. (18a); however, Eq. (18b) is
not fulfilled in general. If L ≤ 3, by letting the orthogonal
basis in the null space ofGa beNGa = [η1, η2, · · · ] ,NGa ∈
C
4×(4−L), we can write the general form of solutions to

Eq. (18a) as

xa = G†
aha + NGaρ,

where ρ ∈ C
(4−L)×1 is an arbitrary vector.With the degree

of freedom introduced by ρ, it is possible to find a solution
which satisfies Eq. (18b)d. Since the number of bottleneck

users is at most three, therefore, the globally optimal solu-
tion to Eq. (12) can be found by exhausting C1

K +C2
K +C3

K
hypothesis tests of the bottleneck users.

Remark 1. Even if the number of bottleneck users hap-
pens to be more than three, i.e., L > 3, albeit with zero
probability, the optimal solution can still be calculated by
hypothesis tests of three bottleneck users, since the solu-
tion to Eq. (17) is uniquely determined by any three of the
L bottleneck users.
Although the optimal solution can be obtained by

exhausting all possible combinations of bottleneck users,
the computational complexity can be rather high espe-
cially when the number of users is large. In the follow-
ing, we develop several lemmas to dramatically reduce
the number of hypothesis tests before identifying the
optimal solution.

Lemma 2 (Sufficient condition for optimality [7]).
Given a set of L ≤ min(3,K) constraints with indexes
i1, . . . , iL, we denote (x0, λ0) as an optimal solution to

max
x∈R3,λ

λ

s.t. hl + gTl x ≥ λ, l = i1, . . . , iL
‖x‖ = 1.

(20)

Then, we have

λ0 ≥ λopt, (21)

where λopt is an optimum solution to Eq. (12). Further-
more, if x0 satisfies hk + gTk x0 ≥ λ0 for k = 1, . . . ,K,
then λ0 = λopt, and (x0, λ0) is also an optimum solution to
Eq. (12).

Proof. The proof is omitted. Please refer to [7] for
details.

From Lemma 2, we can see that the optimal solution to
Eq. (20) always yields an upper bound to problem (12).
Letting UB denote the upper bound to problem (12), we
have

λopt ≤ UB = λ0.

Besides, in the process of verifying the hypothesis tests,
assuming we have tested N candidate solutions denoted
as: {xn, ‖xn‖2 = 1, n = 1, . . . ,N}, then we also have a
lower bound of λopt

LB = max
xn

min
k

(hk + gTk xn) ≤ λopt.

The lower bound LB and upper bound UB can be
updated and become more and more tight as the search
proceeds. With these bounds, most hypothesis tests can
be pruned, and hence, the complexity of exhausting is
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reduced drastically. This is also the meaning of the prune
and search algorithm.
In PASA, the hypothesis tests of one bottleneck user are

checked firstly, then two bottleneck users and so on.

Lemma 3 (Case of one bottleneck user [7]). If there is
only one bottleneck user in Eq. (12), then the bottleneck user
must be the one with index

i = arg min
1≤l≤K

(hl + ‖gl‖) (22)

and the optimum solution to Eq. (12) is (gi/‖gi‖, hi+‖gi‖).

Proof. Please see Appendix 1.

If we have found a globally optimum solution to Eq. (12)
in the hypothesis tests of one bottleneck user, obviously
there is no need to check the rest of hypothesis tests, and
the PASA routine terminates. Otherwise, we turn to check
the case of two bottleneck users.
If there are two bottleneck users in Eq. (12) with indexes

i, j, then the optimum solution to Eq. (12) must be of form
x = αgi+βgj with α,β being of the same sign according to
the FJ conditions. Note that α = ωi,β = ωj [cf. Eq. (16)].
In the next, we show the process of calculating the candi-
date solutions. Denote Gij = [ gi gj] and hij = [ hi hj]T .
From the assumption of bottleneck users

λ = hi + gTi x = hj + gTj x, x = αgi + βgj, (23)

we have

GT
ij x = GT

ijGij[α β]T = λ12 − hij. (24)

With Eq. (24), α,β can be calculated by

[α β]T = (GT
ijGij)

−1(λ12 − hij). (25)

Hence, x is

x = Gij(GT
ijGij)

−1(λ12 − hij).

Recalling the norm constraint ‖x‖ = 1, we have a
quadratic equation with regard to λ

‖λGij(GT
ijGij)

−112 − Gij(GT
ijGij)

−1hij‖2 = 1. (26)

Denote

a = 1T2 (GT
ijGij)

−112, b = 1T2 (GT
ijGij)

−1hij (27)

and

c = hTij (GT
ijGij)

−1hij − 1. (28)

If b2 − ac ≥ 0, from Eqs. (26), (27), and (28), the SNR of
bottleneck users is

λ =
{
b − √

b2 − ac
a

,
b + √

b2 − ac
a

}
. (29)

Note that there are two solutions to λ, hence we need to
verify both of them. With α,β in Eq. (25), the candidate
solution is x = αgi + βgj.

Lemma 4 (Case of two bottleneck users [7]). For the
candidate solution derived above, if α > 0, β > 0, and
λ ∈ [ LB,UB], then the upper bound can be tightened as
UB = λ with λ given in Eq. (29). In particular, if this solu-
tion satisfies hl + gTl x ≥ λ, l ∈ {1, · · · ,K}, then the pair
(x, λ) is an optimal solution to Eq. (12).

Proof. Please see Appendix 2.

Remark 2. When b2 − ac < 0, it means the equation
hi + gTi x = hj + gTj x, ‖x‖ = 1 cannot be true. If hi +
gTi x > hj+gTj x always holds true for all unit-length vector
x, then the i-th user must not be a bottleneck user since
the SNR of the j-th user is always lower. Consequently, the
i-th user can be eliminated from problem (12) without loss
of optimality.
If there are three bottleneck users in Eq. (12) with

indexes i, j, k, then the optimum solution to Eq. (12) must
be of form x = αgi + βgj + γ gk with α,β , γ being of
the same sign according to the FJ conditions. Note that
α = ωi,β = ωj, γ = ωk [cf. Eq. (16)]. Similarly from
the assumption of three bottleneck users i, j, k, we have
equations as below

GT
ijkx = λ13 − hijk , (30)

where

Gijk = [
gi, gj, gk

]
,

hijk = [
hi, hj, hk

]T .

With the norm constraint ‖x‖ = 1, we have

‖λG−T
ijk 13 − G−T

ijk hijk‖2 = 1. (31)

Defining

p = G−T
ijk 13, q = G−T

ijk hijk (32)

and (by a slight abuse of notation)

a = pTp, b = pTq, c = qTq − 1, (33)

we can rewrite Eq. (31) as

aλ2 − 2bλ + c = 0.

If b2−ac < 0, it means that the SNR of user i, j, k cannot
be equal, and the three users are surely not the real bot-
tleneck users. If b2 − ac ≥ 0, the solutions to Eq. (31) are

λ =
{
b − √

b2 − ac
a

,
b + √

b2 − ac
a

}
(34)
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and α, β , γ are given by

[α, β , γ ]T = G−1
ijk x = G−1

ijk G
−T
ijk (λ13 − hijk). (35)

Finally, the candidate solution is x = αgi + βgj + γ gk .

Lemma 5 (Case of three bottleneck users [7]). For the
candidate solution derived above, if α > 0,β > 0, γ > 0
and λ ∈ [LB,UB], then a tighter upper bound is obtained
as UB = λ with λ given in Eq. (34). In particular, if this
solution satisfies hl + gTl x ≥ λ, l ∈ {1, · · · ,K}, then (x, λ)

is an optimal solution to Eq. (12).

Proof. Please see Appendix 3.

Combining the calculation of candidate solutions with
above lemmas and remarks, the full procedure of PASA
follows straightforwardly and it is formerly proposed in
[7]. To make this paper self-contained and facilitate the
complexity evaluation of PASA, we include an improved
version of PASA in Appendix 5e. As we can see in
the pseudo-code, the algorithm constantly updates the
bounds UB and LB to prune the hypothetical combinations
of bottleneck users and henceforth the name PASA.

Remark 3. The users with weak channels are more
likely to be bottleneck users in general. So before the
hypothesis tests, the users can be sorted by the strength
of their channels, i.e., the Frobenius norm of channels
(see Eq. (9)) and the users with weaker channels should be
tested first.

Remark 4. In the process of searching, the lower bound
and upper bound are recorded in LB and UB. For a random
generated multicast channel with K = 32 single-antenna
users, we display the process of updating for LB,UB in
Figure 1. We can see that the upper bound and lower
bound are getting tighter along with the hypothesis tests.
When the gap between LB and UB is less than a given
threshold: UB − LB ≤ δ, we can conclude that the gap
between the best solution we have found and the opti-
mal solution to Eq. (12) is no greater than δ. If δ is small,
we can early terminate the PASA searching procedure.
This scheme, which can be referred to as the truncated
PASA, offers a desirable tradeoff between performance
and complexity.

3.3 Complexity evaluation of PASA
Let P1,P2,P3 denote the probability for case of one bot-
tleneck user, case of two bottleneck users, and case of
three bottleneck users, respectively. W.l.o.g, we assume

1 2 3 4 5 6 7 8
−20

−18

−16

−14

−12

−10

−8

Process of updating for UB and LB

U
B

 a
nd

 L
B

 (
dB

)

LB
UB

λopt

Figure 1 The lower bound and upper bound.

independent and identically distributed Rayleigh fading
between the BS and users. When the BS is equipped with
two antennas while all users are single-antenna users, we
have derived the bounds for P1,P2,P3.

Theorem 2. For this multicast system, the probability
for case of one bottleneck user is P1 = 1

K ; the lower
bound of P2 is PL2 = 2(K−1)

K2 and the upper bound of P2
is PU2 = 16K(K−1)

(K+2)3 ; consequently, P3 can be bounded as
(1 − P1 − PU2 ) ≤ P3 ≤ (1 − P1 − PL2).

Proof. Please see Appendix 4.

From Theorem 2, we can see that P3 tends to be 1
as K increases. Therefore, the computational complexity
of PASA depends only on the third case for asymptoti-
cally large K. Based on this observation, we can obtain a
first-order estimation of the computational complexity of
PASA.
With knowledge of bounds and form of feasible solu-

tion, most of combinations are pruned in PASA. In other
words, most of hypothesis tests will be terminated before
the division line marked in part III of PASA (Please see
Appendix 5). Let Ps denote the probability of combina-
tions which survive after the division line. For a large scale
of users, we count the probability Ps in Table 1. It shows
that Ps ≈ 0 when K is large. For the hypothesis tests which
are terminated before the division line (with probability
close to 1), the complexity involves a constant number of
vector multiplications. There are at most C3

K hypothesis
tests in the third part of PASA; therefore, the worst-case
complexity of PASA isO(K3).
Furthermore, when users are equipped with multiple

receive antennas, some of the users can be dropped out
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Table 1 Probability of survival combinations

K 8 16 24 32 40 48

Ps 0.0341 0.0226 0.0193 0.0148 0.0147 0.0121

K 56 64 72 80 88 96

Ps 0.0114 0.0103 0.0101 0.0091 0.0086 0.0082

K 104 112 120 128 136 144

Ps 0.0074 0.0071 0.0070 0.0067 0.0065 0.0054

of the hypothesis tests as they cannot be bottleneck
users according to Remark 2. Figure 2 shows the average
number of dropped users when the users are equipped
with multiple antennas. We can see that about half of
users can be excluded; therefore, the complexity of PASA
is substantially reduced.

4 Iterative two-dimension optimization forM > 2
When the base station is equipped with more than two
transmit antennas, the max-min fair beamforming prob-
lem (5) becomes much more complicated due to the NP-
hardness. In this section, an I2DO algorithm is developed
for the general case, i.e.,M > 2.

4.1 The I2DO algorithm
For a problem that cannot be solved directly, a well-known
approach is decomposing it into solvable subproblems.
The main idea of I2DO is transforming the problem (5)
into subproblems of M = 2. Considering the beam-
forming vector w is in the column space of matrix P ∈
C
M×2,P∗P = I2, we can write w as

w = Pu, (36)

where u = [u1,u2]T ,u21 + u22 = 1. Substituting Eq. (36)
into problem (5), we have an optimization problem with
respect to u
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Figure 2 Average number of dropped users.

max
u∈C2

min
k=1,...,K

u∗ (P∗H∗
kHkP

)
u

subject to ‖u‖2 = 1.
(37)

We can see that Eq. (37) is exactly the max-min fair
beamforming problem of two Tx antennas. As showed in
Section 3, the optimal solution to Eq. (37) can be obtained
efficiently by PASA.
Based on above discussions, an iterative strategy can be

adopted to handle the original problem (5). Let wn ∈ C
M,

‖wn‖ = 1 denote the beamforming vector at the n-th
iteration. The beamforming vector at the n + 1-th step is
updated as

wn+1 = u1wn + u2vn, u21 + u22 = 1, (38)

where vn ∈ C
M denotes the direction of updating which

is orthogonal to wn and of unit-length. Note that u1,u2
can be referred to as the complex-valued step size. After
defining P = [wn, vn] and u = [u1,u2]T , we can obtain
the optimal step size by solving Eq. (37). In other words,
we find the optimal beamforming vector on the plane
spanned bywn and vn. With this scheme,wn+1 always out-
performs wn, except that u2 = 0. Hence, the objective
function of Eq. (5) is monotonically increasing across iter-
ations, and it shall converge to a stationary point. In the
iterations, if mink γk(wn+1) − mink γk(wn) is less than a
preset threshold ε, then the I2DO algorithm can be termi-
nated. Here, γk(w) = w∗H∗

kHkw denotes the SNR of the
k-th user.
To accelerate the convergence of I2DO, the direction of

updating vn should be carefully chosen. Firstly, we con-
sider a rotation from wn to vn, thus the SNR of the k-th
user can be expressed as a function of vn and the angle of
rotation θ

γk(θ , vn) = (cos θwn + sin θvn)∗H∗
kHk(cos θwn + sin θvn).

After differentiating γk(θ , vn) with respect to θ , we have
∂γk(θ , vn)

∂θ

∣∣∣∣
θ=0

= 2Re
{
w∗
nH∗

kHkvn
}
. (39)

If Re
{
w∗
nH∗

kHkvn
}

> 0, then a tiny rotation from wn to
vn will increase the SNR of the k-th user.
Let Bn ⊆ {1, · · · ,K} denote the indexes of users whose

SNRs are the lowest at the n-th iteration. To improve the
SNR of these users, we can rotate wn to vn which satisfies

Re
{
w∗
nH∗

kHkvn
}

> 0, ∀k ∈ Bn,
w∗
nvn = 0, ‖vn‖2 = 1.

(40)

For convenience, we turn it into real-valued form.
Construct matricesW ∈ C

2M×2 and R ∈ R
2M×(|Bn|) as

W =
[
Re{wT

n } Im{wT
n }

−Im{wT
n } Re{wT

n }
]T

R = [ r1, r2, · · · ] ,
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where

rk =
[
Re{H∗

kHkwn}
Im{H∗

kHkwn}
]
.

With above definitions and Eq. (40), we have[
RT

WT

] [
Re{ṽn}
Im{ṽn}

]
=

[
1|Bn|
02

]
, (41)

where the vector ṽn is a length-relaxed version of vn. Note
that we choose Re{w∗

nH∗
kHk ṽn} = 1,∀k ∈ Bn, w.l.o.g. It is

clear that Eq. (41) are linear equations. Therefore, if |Bn| ≤
2M − 2, ṽn can be obtained by pseudo-inverse, while the
unit-length vector vn is vn = ṽn/‖ṽn‖. With this scheme,
the convergence rate of I2DO is satisfactory.
In summary, the full procedure of the I2DO algorithm is

summarized in Algorithm 1.

Algorithm 1: The I2DO algorithm
1 Initiate vector w0, threshold ε, n = 0;
2 while |�| ≥ ε do
3 choose set Bn;
4 construct vector vn by Eq. (41) and normalization;
5 P =[wn, vn]; calculate u in Eq. (37);
6 wn+1 = Pu;
7 � = mink γk(wn+1) − mink γk(wn);
8 n = n + 1;
9 end

Remark 5. In general, there is no need to choose the
step size (u1,u2) optimally [3,8]. Suboptimal algorithms
such as the truncated PASA can be used here to obtain an
approximate step size in Eq. (37).

4.2 Initialization of I2DO
In the iterations of I2DO, the minimum SNR is non-
decreasing, and it will converge to a stable point. How-
ever, I2DO is not guaranteed to find the globally optimal
beamformer, and it may get trapped into a local opti-
mum. As a result, proper initialization of I2DO is of great
significance [9].
In [11], Lozano’s alternating gradient method is pro-

posed which is quite simple and easily for implementation.
It is further improved by choosing Lopez’s initializa-
tion and adaptive step size in [12]. Hence, this modified
Lozano’s algorithm is called damped Lozano with Lopez’s
initialization (dLLI). Considering its low complexity and
feasibility, dLLI can be employed to yield initialization
points for I2DO. In order to obtain good performance,
dLLI can be executed M times in parallel. Similar to
Lopez’s initialization, the M eigenvectors of

∑
k H∗

kHk
can be used as the initialization points of dLLI. For each

eigenvector of
∑

k H∗
kHk , we invoke dLLI and obtain an

improved vector ŵm. Finally, the best one is simply chosen
to be the initialization point of I2DO

w0 = argmax
ŵm

min
k

ŵ∗
mH∗

kHkŵm. (42)

4.3 Implementation complexity of I2DO
The I2DO algorithm is comprised of the I2DO iterations
and computation of initialization vector which requires
calling dLLI M times. Let J1, J2 denote the numbers of
iterations in I2DO and dLLI. The worst-case computa-
tional complexity of the I2DO iterations isO(J1K3), while
the complexity involved in the generation of initialization
vector is O(J2KM2). So the entire complexity of I2DO is
O(J1K3 + J2KM2). It is worthy to note that the actual
complexity of I2DO can be further reduced if the trun-
cated PASA is used instead of PASA. The worst-case
complexity of the SDR-based scheme is O((K + M2)3.5),
excluding the additional process of randomization [2].
The overall complexity of the GS-DL method proposed in
[4] is O(K(M3 + IKM)), where I denotes the number of
iterations in local refinement. Therefore, the SDR-based
scheme is less efficient than I2DO and GS-DL.

5 Simulation results
In this section, simulation results are presented to demon-
strate the effectiveness of the proposed approaches: PASA
and I2DO. The following results are based on 2, 000
Monte-Carlo trials, where independent and identically
distributed Rayleigh fading channels between the base sta-
tion and users are assumed. Besides, the transmit power is
set as P = 1.

5.1 Performance of PASA
We consider that the base station is equipped with two
transmit antennas and all users are single-antenna users,
i.e., Nk = 1,∀k, since the GS-DL technique in [4] and
the RCC2-SOR method proposed in [3] cannot han-
dle the case of multi-antenna users. Figure 3 displays
the achievable rates of different approaches with respect
to the number of users. In the SDR-based scheme, the
CVX [13] is used to solve the semidefinite program-
ming problem. In the subsequent process of random-
ization, three randomization techniques: RandA, RandB,
and RandC are used to generate 300 candidate vectors
where 100 vectors are generated for each (see also [2]).
We can see that both the SDR-based scheme and GS-
DL perform quite close to PASA which yields the optimal
beamformer. While for the RCC2-SOR method, it has
about 0.05 bps/Hz performance loss compared to PASA.
In Figure 4, the number of users is set to be K = 16, and

an in-depth comparison between these methods is pro-
vided. The SNR loss of the SDR-based scheme and GS-DL
compared to PASA is displayed in the form of cumulative



Du et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:121 Page 9 of 15
http://asp.eurasipjournals.com/content/2013/1/121

4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of users

A
ve

ra
ge

 r
at

e 
(b

ps
/H

z)

GS−DL
RCC2−SOR
SDR
PASA (Optimum BF)

Figure 3 Average achievable rate versus number of users.

distribution function (CDF). It is showed that the SNR loss
of the SDR-based scheme and GS-DL are more than 1.5
dB in the worst case, even though their average achievable
rates are close to the optimal value.
Figure 5 gives a comparison of average runtime for dif-

ferent approaches, where all of them are implemented
based on MATLAB. When the number of users is rela-
tively small, for instance, K ≤ 12, the average runtime of
PASA is less than those of the other three methods, and
therefore, PASA is computationally more efficient. For the
case of K > 12, RCC2-SOR is computationally faster
than PASA; however, it is a suboptimal algorithm andmay
suffer from severe performance loss.

5.2 Performance of I2DO
Figure 6 shows the average rates achieved by the I2DO
algorithm, the SDR-based scheme and GS-DL for M = 8.
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Figure 5 Average runtime of Matlab codes.

For the SDR-based scheme, 3, 000 candidate vectors are
generated by randomization, and the best one is cho-
sen as an approximate solution. In the I2DO algorithm,
numbers of iterations in I2DO and dLLI are J1 = 20,
J2 = 100, respectively. When all users are equipped
with single antenna (Nk = 1), both I2DO and GS-DL
have superior performance over the SDR-based scheme,
and the gap between them is more than 0.25 bps/Hz
for K ≥ 16. Moreover, I2DO also outperforms GS-DL
especially when the number of users is large. In multiple-
antenna user scenario (Nk = 2), GS-DL is not applicable
anymore. Hence, we only compare the performance of
I2DO and the SDR-based scheme. Similarly, we can
see that I2DO has about 0.3 bps/Hz improvement over
the latter.
In the following scenario, the number of users is set

as K = 36, where all of them are single-antenna users.
The average achievable rates of different methods are
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Figure 6 Comparison of average rates forM = 8.
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compared in Figure 7. Note that 30MK candidate vectors
are generated in the randomization process of SDR, since
the dimensionality of beamforming problem gets larger
as the number of transmit antennas increases [2]. Here,
the multicast capacity is achieved by a multi-rank pre-
coder [14]. Obviously, the multicast capacity is an upper
bound of all achievable rates. From Figure 7, we can see
that I2DO is superior to the SDR-based scheme and GS-
DL. Moreover, the beamformer designed by I2DO can
achieve a large majority of the multicast capacity, while
the complexity of encoding and decoding is significantly
reduced.
We further provide a detailed comparison for the sce-

nario of M = 24,K = 36,Nk = 1. The cumulative
distribution functions of the multicast rate achieved by
above three methods are displayed in Figure 8. Again,
I2DO has the best performance and it can achieve almost
twice the multicast rate of the SDR-based scheme. As
shown in [15], the approximation accuracy of semidefinite
relaxation is a decreasing function of the number of users.
In other words, the performance of the SDR-based scheme
degrades when the number of users increases.

6 Conclusions
For the well-known max-min fair beamforming prob-
lem, two efficient algorithms, PASA and I2DO, are pro-
posed to handle the case of two Tx antennas and the
general case of more than two Tx antennas, respec-
tively. In the two-antenna case, PASA is guaranteed
to obtain a globally optimal beamformer with worst-
case complexity O(K3). While in the general cases,
I2DO can decompose the original beamforming prob-
lem into a series of two-antenna subproblems and iter-
atively improve the solution by PASA. The superior
performance of the proposed algorithms is demonstrated
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Figure 7 Average rate versus number of transmit antennas.
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by comparing them with the state-of-the-art multicasting
schemes.

Endnotes
aIf nk is colored noise and the covariance matrix is

known, it can be pre-whitened at the receiver side.
bThe formula w∗H∗

kHkw in Eq. (3) can be interpreted as
the received SNR of the k-th user.
cIt also means that every three of {gk}Kk=1 are linearly

independent.
dThe detailed process of computing these solutions is

demonstrated in the following three cases of bottleneck
users.
eThere are some slight modifications in part II of PASA

and the division line marked in part III of PASA is to be
used for the complexity analysis.

Appendices
Appendix 1 Proof of Lemma 3
In the case of one bottleneck user, w.l.o.g, we assume the
i-th user is the bottleneck user. Hence, we have γi(x) <

γl(x), l ∈ {1, · · · ,K}\{i}, where γi(x) = hi+gTi x is the SNR
of the i-th user. To maximize the SNR of the bottleneck
user, the optimal solution to Eq. (12) must be x = gi/‖gi‖
according to the Cauchy-Schwarz inequality. Besides, it
yields an upper bound of λopt: λopt ≤ hi+‖gi‖ byLemma 2.
There are K possible cases of the bottleneck user, so we

obtain K upper bounds of λopt: hk + ‖gk‖, k = 1, . . . ,K .
We can see that only the index corresponding to the low-
est upper bound is possible to be the bottleneck user.
Therefore, instead of exhausting K hypothesis tests, we
need only to verify if user i = argmink hk + ‖gk‖ is the
bottleneck user.

�
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Appendix 2 Proof of Lemma 4
In the case of two bottleneck users, w.l.o.g, we assume
the i-th and j-th users are the bottleneck users. Then, we
have γi(x) = γj(x) < γl(x), l ∈ {1, · · · ,K}\{i, j}, where
γi(x) = hi + gTi x and γj(x) = hj + gTj x denote SNRs of
the i-th and j-th users, respectively. According to the FJ
necessary conditions, an optimal solution to Eq. (12) must
have form as x = αgi + βgj, where α,β have the same
sign. In particular, if α > 0,β > 0, it can be proven that
x = αgi + βgj is the optimal solution to problem

max
x∈R3,λ

λ

s.t. hl + gTl x ≥ λ, l = i, j
‖x‖ = 1.

(43)

From geometrical perspective, we can see that the opti-
mal solution to Eq. (43) must be a vector which is in the
cone generated by gi and gj.
Assuming v is an arbitrary unit-length vector which is

orthogonal to x, we define a rotation from x to v

γl(θ) = hl + gTl (x cos θ + v sin θ), l = i, j. (44)

Taking the first derivative of γi(θ), γj(θ) with respect to
θ , we have

∂γi(θ)

∂θ

∣∣∣∣
θ=0

= gTi v = ξi

∂γj(θ)

∂θ

∣∣∣∣
θ=0

= gTj v = ξj.
(45)

Then, v and x can be denoted as

v = (GT
ij )

†
[
ξi
ξj

]
+ ρn, x = Gij

[
α

β

]
,

where Gij = [ gi, gj], ρ is a scalar, and n is an unit-length
vector in the null space of GT

ij . Recalling that v and x are
orthogonal to each other, we have xTv = αξi + βξj = 0. It
can be divided in two cases:

{
case 1 : ξi > 0, ξj < 0 or ξi < 0, ξj > 0;
case 2 : ξi = ξj = 0.

For case 1, it is impossible to improve the solution x as
the rotation always decreases the SNR of bottleneck users.
For case 2, we need to consider the second derivative of
γi(θ), γj(θ) with respect to θ

∂2γi(θ)

∂2θ

∣∣∣∣
θ=0

= −gTi x = σi

∂2γj(θ)

∂2θ

∣∣∣∣∣
θ=0

= −gTj x = σj.
(46)

Consider the weighted sum of the second derivative

ασi + βσj = −
(
αgTi (αgi + βgj) + βgTj (αgi + βgj)

)
= −‖αgi + βgj‖2 < 0.

We conclude that at least one of σi, σj is negative, w.l.o.g,
we assume σi < 0. Then, γi(θ) is a concave function about
θ and rotating x to vwill decrease the SNR of the i-th user.
Therefore, it is impossible to improve the solution x by
rotating to v.
From analysis of both cases, we can see that solution

x = αgi + βgj,α > 0,β > 0 is the optimal solution to
Eq. (43). According to Lemma 2, we know the correspond-
ing SNR λ = hi + gTi x = hj + gTj x is an upper bound
of λopt. If λ < UB, then λ is a tighter upper bound and
we can update UB = λ. Besides, if the solution x satisfies
hk + gTk x ≥ λ, k = 1, . . . ,K , then from Lemma 2, it is also
an optimal solution to Eq. (12).

�

Appendix 3 Proof of Lemma 5
In case of three bottleneck users, w.l.o.g, we assume the
i-th user, j-th user, and k-th user are the bottleneck
users. That is, γi(x) = γj(x) = γk(x) < γl(x), l ∈
{1, . . . ,K}\{i, j, k}. According to the FJ necessary condi-
tions, an optimal solution to Eq. (12) must have form as
x = αgi + βgj + γ gk , where α,β , γ have the same sign. In
particular, if α > 0,β > 0, γ > 0, then x = αgi+βgj+γ gk
is the optimum solution to problem

max
x∈R3,λ

λ

s.t. hl + gTl x ≥ λ, l = i, j, k
‖x‖ = 1.

(47)

From geometrical perspective, it is easy to see that the
optimal solution to Eq. (47) must be a vector in the cone
generated by gi, gj, and gk .
Defining v as an arbitrary unit-length vector which is

orthogonal to x, we consider the rotation from x to v and
obtain γi(θ), γj(θ), γk(θ) as defined in Eq. (44). Taking the
first derivative of them with respect to θ , we have

∂γi(θ)

∂θ

∣∣∣∣
θ=0

= gTi v = ξi

∂γj(θ)

∂θ

∣∣∣∣
θ=0

= gTj v = ξj

∂γk(θ)

∂θ

∣∣∣∣
θ=0

= gTk v = ξk .
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Then, v and x can be denoted as

v = (GT
ijk)

−1

⎡
⎣ξi

ξj
ξk

⎤
⎦ , x = Gijk

⎡
⎣α

β

γ

⎤
⎦ ,

whereGijk = [ gi, gj, gk]. Recalling that v and x are orthog-
onal to each other, we have xTv = αξi + βξj + γ ξk = 0.
Note that ξi, ξj, ξk cannot all equal to zero since gi, gj, gk
are linearly independent. Consequently, at least one of
ξi, ξj, ξk is negative, and it is impossible to improve one
of the SNRs without reducing another one. Now, we con-
clude that solution x = αgi + βgj + γ gk ,α > 0,β > 0,
γ > 0 is the optimal solution to Eq. (47).
According to Lemma 2, the corresponding SNR λ = hi+

gTi x = hj + gTj x = hk + gTk x is an upper bound of λopt
which is the optimal solution of the original problem (12).
If λ < UB, then we obtain a tighter upper bound UB = λ.
Also, if this solution x satisfies hk + gTk x ≥ λ,∀k, then it is
an optimal solution to Eq. (12) by Lemma 2.

�

Appendix 4 Proof of Theorem 2
When all users are single-antenna users, the channels can
be denoted by

Hk = h∗
k , k = 1, . . . ,K ,

where hk ∈ C
2. In one bottleneck user case, w.l.o.g, we

assume the i-th user is the bottleneck user. Then, the opti-
mal beamforming vector should be wopt = hi/‖hi‖ [3,5].
Hence, the SNR of the i-th user is γi = ‖hi‖2 which
is a chi-squared distributed random variable with four
degrees of freedom [16], while the SNRs of other users are
γl = |h∗

l wopt|2, l ∈ {1, . . . ,K}\{i}. Since the beamform-
ing vector wopt is of unit length and is independent of hl;
therefore, h∗

l wopt is a complex Gaussian variable with zero
mean and unit variance. Consequently, γl is a chi-squared
distributed random variable with two degrees of freedom.
The probability density functions (pdf) of γi, γl are given
by [16]

fγi(x) = xe−x

fγl (x) = e−x, l ∈ {1, . . . ,K}\{i}.
Finally, the probability of one bottleneck user case P1 can
be calculated by

P1 =
∑
i
P(γi < min

l 
=i
γl)

= K
∫ +∞

0

(∫ +∞

x
fγl (y)dy

)K−1
fγi(x)dx

= K
∫ +∞

0
xe−Kxdx

= 1
K
.

(48)

In two bottleneck user case, we assume that the i-th
and j-th users are bottleneck users. Let γij denote the
SNR of bottleneck users and γl, l ∈ {1, . . . ,K}\{i, j} denote
the SNRs of other users. Similarly, the probability of two
bottleneck user case P2 can be expressed as

P2 =
∑
i,j

P(γij < min
l 
=i,j

γl). (49)

To calculate P2, firstly we have to derive the closed form
of γij and analyze its pdf.
Assuming ‖hi‖ < ‖hj‖, then from the fact that both of

them are bottleneck users, we have (see also [5])

‖hj‖2 > ‖hi‖2 > |h∗
i hj|2/‖hi‖2. (50)

DefineHij as

Hij = [hi,hj]∈ C
2×2,

and consider the QR decomposition ofHij

Hij = QR, Q = [q1,q2] , R =
[
r11 r12
0 r22

]
.

Then, hi,hj can also be expressed as

hi = r11q1,hj = r12q1 + r22q2. (51)

Note that r11 > 0, r22 > 0. With Eq. (50), we also obtain
the relationship of r11, r12, r22

|r12|2 < r211 < |r12|2 + r222. (52)

As proved in [5], the optimal beamforming vector
should be on the plane spanned by hi and hj, so wopt can
be expressed as the linear combination of q1,q2

wopt = cos θq1 + sin θejφq2, θ ∈[0, π
2

), φ ∈[0, 2π).

(53)

Noting that the SNRs of bottleneck users are equal, we
have

|h∗
i wopt|2 = |h∗

j wopt|2.
Combining it with Eqs. (51) and (53), we obtain

r211 cos2 θ = |r∗12 cos θ + r22 sin θejφ |2. (54)

To maximize the SNRs, φ must be

φ = −∠r12.
Hence, Eq. (54) turns to

r11 cos θ = |r12| cos θ + r22 sin θ

and

cos2 θ = r222
(r11 − |r12|)2 + r222

.

Finally, the SNR of bottleneck users can be expressed as

γij = r211r
2
22

(r11 − |r12|)2 + r222
. (55)
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However, it is too complicate to derive the pdf of γij
due to its complex expression. Instead of computing the
precise expression of P2, we try to provide the bounds of
P2. From the expression of γij, we can see that γij ≤ r211.
Moreover, with Eq. (52), we have

γij ≥ r211r
2
22

(

√
|r12|2 + r222 − |r12|)2 + r222

≥ r211r
2
22

(

√
|r12|2 + r222 + 2|r12|r22 − |r12|)2 + r222

= r211
2
.

With above results, P2 can be bounded as
∑
i,j

P(r211 < min
l 
=i,j

γl)

︸ ︷︷ ︸
PL2

≤ P2 ≤
∑
i,j

P(
r211
2

< min
l 
=i,j

γl)

︸ ︷︷ ︸
PU2

, (56)

where PL2 ,P
U
2 denote the lower bound and upper bound of

P2, respectively.
As mentioned before, the beamforming vector wopt is

only determined by the channels of bottleneck users and
hence is independent of hl, l 
= i, j. Therefore, the SNRs
of other users γl = |h∗

l wopt|2 still follow chi-squared
distribution with two degrees of freedom and its pdf is

fγl (x) = e−x, l ∈ {1, . . . ,K}\{i, j}.

To derive the lower bound and upper bound of P2, we
turn to analyze the pdf of r211 = ‖hi‖2. Let υ denote the
squared normalized inner product of hi and hj

υ = |h∗
i hj|2

‖hi‖2‖hj‖2 , υ ∈ [ 0, 1] .

Then, Eq. (50) can also be expressed as

‖hi‖2 < ‖hj‖2 <
‖hi‖2

υ
.

Noting that υ follows uniform distribution [17,18], that
is,

f (υ) = 1, υ ∈[0, 1] .
Hence, the cumulative distribution function (cdf) of

‖hi‖2 is

Fr211(a) = 2
∫ 1

0
f (υ)

∫ a

0
xe−x

∫ x/υ

x
ye−ydydxdυ,

where factor 2 before the integral denotes that there
are two possible case of orders. After differentiation, we
obtain the pdf of r211 in the following

fr211(x) = 2x2e−2x.

Consequently, the pdf of r211
2 is

f r211
2

(x) = 16x2e−4x.

Now, the upper bound and lower bound of P2 can be
calculated by

PL2 = K(K − 1)
2

∫ +∞

0

(∫ +∞

x
fγl (y)dy

)K−2
fr211(x)dx

= 2(K − 1)
K2

PU2 = K(K − 1)
2

∫ +∞

0

(∫ +∞

x
fγl (y)dy

)K−2
f r211

2

(x)dx

= 16K(K − 1)
(K + 2)3

.

Since there are only three cases, we have P1 + P2 +
P3 = 1. From above results, it is straightforward to
get the bounds corresponding to the probability of three
bottleneck user case

PL3 ≤ P3 ≤ PU3 ,

where PL3 = 1 − P1 − PU2 ,P
U
3 = 1 − P1 − PL2 are the lower

bound and upper bound of P3, respectively.
�

Appendix 5 The PseudoMatlabTM Code of PASA
PART I of PASA: Check if L = 1

LB = ∞,UB = ∞;%initialization of bounds
i = argmin1≤l≤K (hl + ‖gl‖);%by Lemma 3
x = gi/‖gi‖;
λ = hi + ‖gi‖;
snr = min1≤l≤K (hl + gTl x);
LB = snr; UB = λ;
if λ ≤ snr

%by Lemma 2, a globally optimal solution
%has been found
return xopt = x, λopt = λ;

end
PART II of PASA: Check if L = 2

S = {1, 2, . . . ,K};
for user pair (i, j) drawn from S

compute a, b, c by Eqs. (27) and (28);
if b2 − ac < 0

identify i (or j) as the stronger user;
S = S \ {i} (or S \ {j}); %by Remark 2
continue; %try another pair

end
for λ =

{
b−√

b2−ac
a , b+

√
b2−ac
a

}
∩[LB ,UB]

compute α,β from Eq. (25);
if α,β have different signs



Du et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:121 Page 14 of 15
http://asp.eurasipjournals.com/content/2013/1/121

%by FJ conditions,
%it is not a valid candidate
continue;

end
x = αgi + βgj;
snr = min1≤l≤K (hl + gTl x);
if λ ≤ snr& (α > 0&β > 0)

%by Lemma 4, a globally optimal
%solution has been found
return xopt = x, λopt = λ;

elseif λ > snr& (α > 0&β > 0)
%by Lemma 4, we obtain a tighter
%upper bound
UB = λ;

elseif λ ≤ snr& (α < 0&β < 0)
%xLB can potentially be an
%optimal solution
LB = λ; xLB = x;

elseif λ > snr& (α < 0&β < 0)
LB = max(LB, snr);%update the lower bound

end
end %for λ

end %for (i, j)

PART III of PASA: Check if L = 3
for user combination (i, j, k) drawn from S

compute a, b, c from Eq. (33);
if b2 − ac < 0

%(i, j, k) is not a valid combination,
%go on to try another combination
continue;

end
for λ =

{
b−√

b2−ac
a , b+

√
b2−ac
a

}
∩[ LB ,UB]

compute α,β , γ from Eq. (35);
if α,β , γ have different signs

%by FJ conditions,
%it is not a valid candidate
continue;

end
− − − − − − − − − − division line − − − − − − − −−

x = αgi + βgj + γ gk ;
snr = min1≤l≤K (hl + gTl x);
if λ ≤ snr& (α > 0&β > 0& γ > 0)

%by Lemma 5, a globally optimal
%solution has been found
return xopt = x, λopt = λ;

elseif λ > snr& (α > 0&β > 0& γ > 0)
%by Lemma 5, we obtain a tighter
%upper bound
UB = λ;

elseif λ ≤ snr& (α < 0&β < 0& γ < 0)
%xLB can potentially be an
%optimal solution

LB = λ; xLB = x;
elseif λ > snr& (α < 0&β < 0& γ < 0)

LB = max(LB, snr);%update the lower bound
end

end %for λ

end %for (i, j, k)
return xopt = xLB, λopt = LB;

Endnotes
aIf nk is colored noise and the covariance matrix is

known, it can be pre-whitened at the receiver side.
bThe formula w∗H∗

kHkw in (3) can be interpreted as
the received SNR of the k-th user.

cIt also means that every three of {gk}Kk=1 are linearly
independent.

dThe detailed process of computing these solutions is
demonstrated in the following three cases of bottleneck
users.

eThere are some slight modifications in part II of PASA
and the division line marked in part III of PASA is to
used for the complexity analysis.
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