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Abstract

This article presents an iterative minimum mean square error- (MMSE-) based method for the joint estimation of
signal-to-noise ratio (SNR) and frequency-selective channel in an orthogonal frequency division multiplexing (OFDM)
context. We estimate the SNR thanks to the MMSE criterion and the channel frequency response by means of the
linear MMSE (LMMSE). As each estimation requires the other one to be performed, the proposed algorithm is iterative.
In this article, a realistic case is considered; i.e., the channel covariance matrix used in LMMSE is supposed to be totally
unknown at the receiver and must be estimated. We will theoretically prove that the algorithm converges for a
relevantly chosen initialization value. Furthermore simulations show that the algorithm quickly converges to a solution
that is close to the one in which the covariance matrix is perfectly known. Compared to existing SNR estimation
methods, the algorithm improves the trade-off between the number of required pilots and the SNR estimation quality.

Keywords: OFDM; Estimation; Signal-to-noise ratio; Frequency-selective fading channels; Iterative algorithms

1 Introduction

The multipath channel and the additive noise are two
important sources of distortion in wireless communica-
tion systems. Firstly, the channel impulse or frequency
response provides information about the selectivity of the
channel. Secondly, the noise is usually characterized by
means of its comparison with the signal level by the signal-
to-noise ratio (SNR). The knowledge of these parameters
(channel and noise) allows to design more accurately both
transmitter and receiver. For instance, at the transmitter
side, the constellation type and its size can be adapted
according to the SNR level [1]. Yet, at the transmitter,
the time-reversal method [2] can be performed, thanks to
the channel impulse response. At the receiver side, many
algorithms such as the LMMSE channel estimation [3] or
the turbo-decoder [4] require the knowledge of the SNR,
and an accurate channel state information (CSI) allows
to perform a simple one-tap equalization in orthogonal
frequency division multiplexing (OFDM) systems.
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Some SNR estimation methods are proposed in [5-7]
for single carrier systems that are being used in additive
white Gaussian noise (AWGN) channels. The second-
and fourth-order moment (M2My) estimator, firstly men-
tioned in [8], does not require any channel estimation.
In addition, MaM, has a low complexity. However, its
efficiency is degraded in frequency-selective channels.
The maximum likelihood (ML) estimator, whose devel-
opments are given in [9], offers a good efficiency, but
has a prohibitive complexity in the case of frequency-
selective channels. The minimum mean square error
(MMSE) estimator, from which we derive our proposed
method, requires the estimation of the transmission chan-
nel. In references [5,10,11] only a theoretical expression
of the MMSE can be found, but the authors do not pro-
pose any practical solution to reach it. Reference [10]
covers the usual MaMy, ML, and MMSE estimators in
an OFDM case, and presents a method so as to esti-
mate the SNR in frequency-selective channels. This latter
method is based on the autocorrelation function given by
the model of the channel (Rayleigh or Rice models). The
authors of [11-13] also present SNR estimation methods
for OFDM transmissions in frequency-selective channels.
In order to avoid the need for the channel estimation,
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author in [11] proposes a method for a 2 x 2 multi-input
and multi-output (MIMO) configuration which features a
two pilot-symbols preamble and assumes that the channel
coefficients are invariant over two consecutive carriers.
Author in [12] also proposes a preamble-based method
featuring two pilot symbols for the estimation of the noise
variance. The SNR’s estimation is performed, thanks to
the combination of this noise estimation with the second
moment order (M3) of the received signal. The methods of
[11] and [12] require a two pilot-symbols preamble, which
reduces the useful data rate of the transmission, espe-
cially if the preamble is regularly repeated. The authors
of [13] present a SNR estimation based on the proper-
ties of the channel covariance matrix, estimated thanks
to a one pilot-symbol preamble. This method is limited
by the channel’s insufficient statistics, which degrades the
estimation performance.

The literature is very extensive concerning channel esti-
mation. A wide range of usual channel estimation meth-
ods is based on ML [9], least square (LS) [14,15], or MMSE
[16,17]. Here we focus on recursive and iterative methods.
The recursive least square algorithm (RLS), described in
[18] or [19], uses the estimations of the previous channel
frequency response to perform the estimation of the cur-
rent one. Similarly to the RLS principle, authors in [20,21]
propose a recursive MMSE method that does not require
an a priori need for channel statistics. In [22], the chan-
nel variations are tracked by employing the Kalman filter
estimator. As presented in [23-26], the iterative channel
estimation methods are combined with equalization, data
detection, decoding, or even interference cancellation. In
this case, a soft or hard feedback from the detection block
to the estimator block performs an iterative channel and
data estimation. The iterative expectation maximization
(EM) algorithm [27,28] has been developed so that the
ML estimator is an appropriate tool in frequency-selective
channels when the observed data are not complete, i.e.,
when the size of the observation is smaller than the vector
to be estimated. An adaptation of this algorithm for both
channel and noise estimation is presented in [29,30], and
joint iterative EM data detection and recursive channel
tracking are proposed in [31]. However, when a preamble
is used, the sizes of the observation and that of the vec-
tor of the channel frequency response to be estimated are
the same, so the EM algorithm is not necessary. Further-
more, under this condition and considering a Gaussian
channel, the ML estimator is equivalent to the usual LS
estimator [32,33]. In [34], we proposed an MMSE-based
iterative algorithm for both SNR and channel estimations.
However, it was a theoretical approach, in which the chan-
nel covariance matrix was supposed to be known at the
receiver.

In the present article, we propose an approach in which
the channel covariance matrix is estimated at the receiver.
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As a consequence, this paper is considered as an appli-
cation of the theoretical approach developed in [34]. We
estimate the SNR thanks to the MMSE criterion, which
requires an estimation of the frequency-selective channel.
Since we use the LMMSE method for the channel esti-
mation, the noise variance is required. We clearly notice
that one estimation feeds the other one. Then, it seems
natural to propose an iterative algorithm. We show that it
converges, thanks to a relevant choice of the initialization.
Since we suppose no a priori CSI at the receiver, this algo-
rithm is also valid for communications systems such as
WiFi or LTE, broadcast systems featuring standards such
as Digital Radio Mondiale DRM/DRM+ [35], or digital
video broadcasting-terrestrial DVB-T [36]. Although we
use the term iterative to describe our method, it differs
from the usual iterative methods such as [25,26,31] since it
does not require a feedback from the data detection block.

The rest of this paper is organized as follows: Section 2
presents the used OFDM system model, the noise vari-
ance, and the SNR and channel estimations. The proposed
algorithm is developed in Section 3, and we prove in
Section 4 that it converges for a relevant choice of ini-
tialization. Simulations presented in Section 5 verify the
convergence of the method. As for the SNR estimation,
we compare our method to two others presented in the
literature [12,13], the well-known MMy [10], and to the
estimation performed in the perfect case [34]. The chan-
nel estimation performance is compared to the perfect
one and to the usual LS. We draw our conclusions in
Section 6.

2 Background and system model

2.1 Notations

In the following, the normal font x is used for scalar
variables, the bold font x is used for vectors, and the
underlined bold font x for matrices. Furthermore, small
letter x refers to the variables in the time domain and
capital letter X to the variables in the frequency domain.

2.2 System model

We consider the transmission of OFDM symbols over a
multipath channel. After the removal of the cyclic prefix
(CP) and the discrete Fourier transform (DFT), we give
the expression of the nth-received OFDM symbol in the
frequency domain as

U,=C,H,+W,, (1)

where U, = [Uoy, . - ., UM—l,n]T; H,=[Hoyu, ... y]_[M—l,n]]yw
and W, =[Wo, ..., War_1,,]7 denote the M x 1 complex
vectors of the received signal, the multipath channel, and
the Gaussian white noise on the nth time slot, respectively.
M is the size of the DFT, which also tallies with the num-
ber of carriers per symbol in our model. The matrix C,, is
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the M xM diagonal matrix of the transmitted signal con-
taining the vector [Coy, . .., Car—1,4]. Each G, is either
a data element or a pilot, whose gain, phase, and posi-
tion are perfectly known at both transmitter and receiver
sides. In this article, the pilots are dedicated to channel
estimation and noise variance estimation. We consider a
pilot-preamble scheme with a sole OFDM pilot symbol
and assume that the channel existing between two con-
secutive preambles is constant. In the rest of the paper,
the pilot symbols are noted with the subscript p. Each
component H,, , of the vector H,, is given by

-1
. m
Hypp = IZ(; hy, exp (—2/71Mtl> , 2)

where m denotes the subcarrier subscript, L the length
of the impulse response, and /4, the zero-mean complex
process of the /th path of the channel. Each 7; is the dis-
crete expression of the delay. All L paths are considered
to be independent. We also assume a quasi-static chan-
nel, i.e., the coefficients H,, , are supposed to be invariant
over a frame including a one pilot-symbol preamble and
OFDM data symbols.

2.3 Noise variance estimation
We note o2 as the noise variance (or noise power) equal to
02 = E{|W,,,|?} in its scalar form or 62 = ]345{||Wn||2}
in the vectorial form. The matrix Frobenius norm noted
||| is defined for a matrix A as ||A||2 = tr(AA), with
tr(.) the trace and ()" the Hermitian transpose. In this
article, we use the MMSE criterion to estimate the noise
variance (see [9]) noted by 62 and given by
62:A1/[E{||UP—CPHP||2}, (3)
where I:[p denotes the channel estimation performed on
the pilot symbols. The index p refers to the pilot preamble
of a given frame. In practice, the expectation can only be
approximated by the mean over a sufficiently large num-

. s ~2 1 M—1
ber of subcarriers, leading to 6° =, >~ |Upnp —
2
ConpHpmpl™.

2.4 SNRestimation

The SNR noted p is basically obtained from the second-
order moment M of the received signal and the noise
variance. Thus, My = Al/[E{||Un||2} = Ps + 02, with Pg
being the power of the useful transmitted signal. We then
get the SNR, thanksto p = 1(\;122 —1. In practice, we estimate
the SNR p similarly:

. M
p=", -1 (4)
o

where 62 is defined in (3) and A, by My =
Ym0 [ Ul

1
M
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2.5 Channel estimation

The two basic channel estimation methods are the LS
and LMMSE presented in [14,16]. Equation 5 gives the LS
channel estimation

LS -1 -1
A, =C,'U, =H, +C,'W,. (5)

The LS estimation is very simple but sensitive to the
noise. Furthermore, this estimation cannot be used for the
noise variance estimation in (3) since we obtain 6% = 0 for

~ ~LS
H, = H,, . Equation 6 gives the efficient LMMSE channel
estimation as follows:

~ LMMSE

_1.—1ALS
H, " =Ry[R,+0*C,CcH™7H,, (6)

where R;; denotes the channel covariance matrix. The
LMMSE channel estimation is more efficient than that of
the LS but requires a matrix inversion. Without loss of
generality, we assume in the rest of the paper that Vi =
0,...,M —1,Cyp = 1 on a given preamble position p.
Consequently, the pilot matrix C,, is equal to the iden-

~ LMMSE
tity matrix noted I, which leads to H,, =RyRy +

~ LS
o’D7'H,". As Ry and o are usually unknown at the
receiver, we propose an iterative algorithm for both noise
variance and channel estimation.

3 Proposed algorithm

In this section, we present an iterative algorithm for the
joint estimation of both the SNR and the frequency-
selective channel. The algorithm is based on the MMSE
criterion for both channel and SNR estimations. Indeed,
we perform the noise variance estimation in (3), thanks
to the efficient MMSE channel estimation, and the noise
variance is used in Equation 6 for the LMMSE chan-
nel estimation. As each estimation feeds the other one,
we propose an iterative algorithm, described in Figure 1.
Since the channel covariance matrix used in the LMMSE
estimation in Equation 6 is unknown, it must be esti-
mated. We note this estimated covariance matrix R,.
Thus, the difficulty to overcome thereafter is the compu-
tation of a relevant channel covariance matrix. At the first
iteration i = 1, we only dispose of the LS channel estima-

. oals . .
tion Hp , with which we compute the channel covariance

. ~LS
matrix R}, thanks to

Ry =H, (H, (7)

For the first step of the algorithm, pointed out by
the index (i = 1), the LMMSE channel estimation is
performed as

A~LMMSE  =LS /=LS ., -1 .15

~LS ALS <ALS>H

where &(21':0) is the initialization value of the algorithm.
The noise variance is estimated as indicated in (3), with
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Figure 1 Block diagram of the proposed iterative algorithm.

~  ~LMMSE
H=H,,_,) . Remembering that C,

1dent1ty matrix I, we have

is equal to the

1 ~ LMMSE
6%y = E {10y — €, ey 112 ©)
1 ~ LS ~ LMMSE
E{I,” — Ayl 1P (10)

~LS
If the algorithm keeps on computing with R;;, we prove
in Appendix that (&(zi)) converges to 0. Under this condi-
tion, the algorithm enters into an endless loop. The reason

is that f{LHS is built thanks to one sole pilot symbol, and this

makes it sensitive to the noise. The proposed solution is,

LMMSE
for i > 2, to use the estimated covariance matrix R,

given by

~ ~ LMMSE / A
RLMMSE ( (11)

LMMSE\ H
H = =1 ) )

p(i=1)
~LS
instead of R, in the following iterations. In Figure 1, the

feedback from I:I;MMSE is then valid only for i = 1. For
i > 2, the algorithm then follows these two steps:

~LMMSE ~ ~LMMSE /~LMMSE .9 S
by =Ry ( H + 01y ) H,”, (12)
1 N
~2 LS LMMSE
5% = \/E {||Hp — FILMVSE| } (13)
The characterization of the initialization & a( —0) will be

discussed in Section 4. However, it is already obvious that
65.:0) must be strictly positive. Indeed, if its value is equal

to 0, then l:[IL,Z[:NII)SE is equal to I:I;S in (8).

Expressions (12) and (13) are obtained, thanks to a pilot
matrix C, which is equal to the identity matrix L In a
general case, the pilot matrix C,, (respectively, the pilot
total energy) has to be taken into account in (12) and (13)
respectively. A strictly positive threshold e, is set and can
be as small as needed; this entails that the algorithm pro-
ceeds iterations as long as |6(2i) — 85_1)| > ey. At last, if
the final iteration is noted (i), and if we use (4), the SNR
is estimated from the noise variance thanks to

(14)

The algorithm given in the realistic case (considering
an unknown channel covariance matrix) is summarized in
Algorithm 1.

Algorithm 1 MMSE-based joint estimation of both channel
and SNR

1.1 begin

12 Initialization: RH , e >0, ‘7(1 0)

13 1+ 1;

1.4 while ‘(5'(22) — (3'(21_1)‘ > e, do

15 if i = [ then

1.6 Perform LMMSE channel estimation (8) ;
17 Perform the noise variance estimation (9) ;

~ LMMSE

1.8 Calculate the matrix RH (10);

1.9 else
1.10 Perform a LMMSE channel estimation (11) ;
111 Perform the noise variance estimation (12) ;
112 end
113 1414+ 1;
1.14 end
115 Estimate the SNR p (4) with 6 0(7 )
116 end

Figure 2 depicts the way our algorithm works. From
the initialization O'( _o0)’ the noise variance and channel
estimations alternatively feed each other until the algo-
rithm reaches its limit. Thus, step by step, the estimation
(I:IL n,c}z) comes closer to the limit characterized by the
couple (H,O,,,, o} ) We also notice that this couple is dif-
ferent from the couple (H,,, %), which characterizes the
perfect estimation. This very low bias of estimation will be
more precisely measured in Section 5.

chanmel

frequency
Tespomnse
1

(Flig oy 52,)
H, F--

nolkse

: 5
(*_D:' variance

Figure 2 Principle of the proposed iterative algorithm.
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4 Convergence of the algorithm in realistic case
This section aims at proving that the algorithm converges
in the realistic case (i.e., using an a priori unknown chan-
nel covariance matrix) if a relevant initialization 02 —0) is
chosen. Thanks to the expressions (12) and (14), it is obv1—
ous that the channel estimation and the SNR converge,
since the convergence of (85)) is established.

4.1 Scalar expression of the sequence (&(zi))
As seen in (8) and (10) in Section 3, a first channel

. . . . . . ~LS
and noise variance estimation is performed usmg Ry.

MMSE
Indeed, the estimation of the covariance matrix R} H =

~LMMSE A~ LMMSE

Hy =1y (Hpi=) )H requires beforehand a LMMSE chan-

nel estimation. We prove in Appendix that if the algorithm
~LS
is performed exclusively with Ry, this leads to a noise

variance estimation which is equal to 0. This justifies the

~ LMMSE
substitution of R’ o b R, for i > 2. The noise vari-

ance estimation at the ith iteration (13) can be expressed
as

ALMMSE“Z}

1 A LS
~2
82,1, = ME{||Hp — Hy41) (15)

1 LMMSE .9 \ ! 2
= (a(,) (R +621) Ry +0™1)

LMMSE . -1
x (R +621) ) (16)

~LMMSE . .
We express R, , computed after the first iteration

(11), as
~ LMMSE 1 ~LMMSE /A LMMSE\
Ry =y Hp=1) ( p(i:l)) (17)
-1 .18
(RH (R +621) 1, )
-1 .15\
(RH (RH +62, ) f, ) (18)
LS /[~ -1 15 s ALS\H
=Ry (R +o21) #, (A1)
CINH
(RH (RH +62 0)I> ) . (19)

For a sufficiently large value of M, we consider that

~LS
Al,Itr(RH) = Al,Itr(RH + o2I). Since the estimation of the
noise variance is calculated thanks to the trace in (16), we
~LS ALS
make the assumption that RH = H (H, H =Ry +0%1

as a first approximation in (19). Remembering that Ry +
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021 is an Hermitian matrix leads us to consider that its
inverse is also Hermitian, we get

) -1
Ry = Ry +0%1) (Ryy + (0 + 620)1)

2 2, A2 -1
x Ry + 1) (Ryy + (02 +620)) 1)

x (Ry + 021) .
(20)

As shown in [34], it is possible to obtain the diagonal-
ized form of the expression (20). If we insert (20) into (16),
we then get the scalar expression of the noise variance
estimation:

65 (mto’+6 m)am+a%

&2 %) Z
MG ¢ (o +02)% + 6, (xm +02+62_)2)>
(21)
"4 M-1 )\m+012

~2 %)
< Oi+1) = Z ( (omto2)3
M=0 % Ot o2 +6%_))

sy (22)
+05)

where 1, are the eigenvalues of the matrix R . From (22)
we remark that the choice of the initialization &(21':0) plays
a key role in the convergence of the algorithm. Indeed,

mto?)?
mt+024+67_g))?

roughly equal to (A,, + 02). It is therefore equivalent to

if 6 cr i=0) is close to 0, the term is then

use the covariance matrix f{LHS and the noise estimation
then converges towards 0. The solution is then to choose
a value of 8520) that is arbitrarily large. Nevertheless, it
is possible to characterize the initialization, thanks to the
necessary condition given below. We define the function
fo as O'(L+1) —fz((f(l)) We set x = 0(2) > 0 so that the
function f;(x) is

xz M-1
pw =" )
m=0 ()\m+‘72)3 +x
()‘m+02+6(2i:0))2

4.2 Necessary condition for the convergence of the
sequence (&(Zi))
The limits of f, are f(0) = 0 and lim fo(x) = M>. The
X—> 00

derivative f; of f (24) is positive,

A 2
mto (23)

Gom+o2)3

2
M-1 Ay + 0 .
(B )(Am+a2+a(2i:0))2

2x
OEINDD ”
m=0 (Am+02)3 +x
om0 24872
so fp is growing in [0,+oo[ and we can make the
inclusion f>([0,M3]) C[0,M;]. Thus f, has at least a

fixed point in the interval [0, M2]. From (23), we know
that 0 is an obvious fixed point of f;. A necessary

(24)
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(but not sufficient) condition for f, to have other fixed
points can be expressed as follows: there exists xg > 0
such as max,(f; (x)) = f;(x0) > 1, i.e., fo is above the first
bisector. Then, 6(21.:0) can be adjusted in order to ensure
this condition. If we note fz/ (x) as the function extracted

from f; (x) such as f; (x) = Zm 0 2 (%), we have

Oem+o?)3
m+024+63_4))?

3
M ()\m+(72)3 + X
(02462 )2
Let us note that fz/min (x) as the function whose maxi-
mum that reached for x = X min is less important than any
other maxima of the functions fz’ among the set {f; },
m=0,...,M—1.Ifwe ad)ust i) SO thatf2 (X0min) =

1, then we fulfil the necessary condltlon, f2(xo min) > 1.
Indeed, if f2 (%0 min) > 1, then

12me—%a%

fo, ) = (25)

1 E-lemin (%0 min) <

M—-1
M Zfz/m (%0 min) =f2/(x0min)'
m=0

(26)

In order to find xg min, we calculate the second derivative

f/:nin Of.fzmin :

2(hm+02)

2 _2x>
1 _ 1
S, =

(m +0?) (
2 2
(xm +02 +‘}<21:0)) (Am +02 +&(2,.:0))
2)3 ¢
( ()Lm +o ) ) +x>
(Am +02 +&<2i:0))

The second derivative f;'

1 (mtod?
2 umto?+67_

(27)
is equal to O for xomin =

R so we get the maximum value of f;

2
8 ()\,m +0'2 +8(2L:0)>

28
27 ()\m + 0-2)2 ( )

/
fzmin (X0 min) =

2 A2 ! .
Whatever the values of o anfi 0 i=0)’ So X0 mlI:1) are
minimum for A, = Amax, With Agna.x the maximum
eigenvalue of R, we can then minimize &(21':0):

2
g (Amaxt 0?4600
27 ()&max + (72)2

R 27
oin > (/4 1) ot o).

The necessary condition max,( fz/ (%)) > 1 is fulfilled for

6520) > (\/287 — D) (Amax + 02). Since Amax and o2 are
unknown, the condition is necessary but not sufficient so
as to assess that f» has a fixed point that is different from 0.

(29)

(30)
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However, Amax is, by definition, the maximum eigenvalue
. . 1 —M-1
of the channel covariance matrix, s0 Amax > 4, > o A

M Z/y\nté Am + 02, so thanks to
(30), we can minimize 6(%:0) and get

27
O'(l —0) = ( — 1DMa,.

4.3 Sufficient condition for the convergence of the
sequence (&(Zl.))

The lower bound (31) satisfies the necessary condition

fo = 1. Thus, this entails that f, has a fixed point which

is different from 0. In order to give a sufficient condi-

tion, the initialization value o a 0 has to be set equal to

AM,;, with A >> 1. Indeed, for all x €[0, Mz] we have

lim f(x) = Moy, so it is possible to find 6 G(L 0) such
0)—>+oo

Furthermore, as My =

(31)

(l

as f(x) > x. Given that = My, we deduce

lim f(x)
x—>+00
that a fixed point different from 0 exists for a well-chosen
initialization 8(%:0) = AM,. However, the previous devel-
opment only proves the existence of a sufficient condition
on cr i=0) for the convergence of (o( L)) to a non-null limit

but 1t does not give a precise characterization of 6 U(i:o)‘ In

order to get a suitable value of &(21.:0), the receiver should
test some initialization values (e.g., thanks to an abacus)
until it finds the expected one, as depicted on Figure 3.
The latter illustrates the shape of two examples of f>: one
with a relevant initialization 0(2 _o) = 10 M, (we see a
fixed point that is different from 0) and one with an ini-
tialization which does not match the necessary condition
(0 is the sole fixed point). We actually observe that if &(21.:0)
is not chosen as being large enough, then 85) converges
to 0.

However, the choice of a relevant value A is not obvi-
ous. Indeed, since the channel frequency response and the

3 :
25} -7 g
.- -
N ,’ -7
S L . -7 |
° 2 L.
C ’ P
o 4 -
= . -
[ 4 -7
3 / -
§ 150 = g
o) XY //
% /' - AN GZ(OD_M
& I , o ——f(x) Sl = 10M, |
,/ , — y=x
, ,
1
1 d
05F +/ 7 i
1
1 s
,
,
O 4 L L L L L L
0 1 2 3 4 5 6 7
X
Figure 3 Shape of £, in two different cases compared with y = x.




Savaux et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:128

http://asp.eurasipjournals.com/content/2013/1/128

noise variance can take an infinite number of values, the
design of an abacus of f, is computationally prohibitive.
Furthermore, we assume that the receiver has no a priori
knowledge of the set of the parameters {A,, 02}, which
makes the choice of the optimal initialization impossi-
ble. In order to overcome the issue of the complexity of
the choice of 8520), we propose in Section 4.4 a simple
characterization which does not require any abacus.

4.4 Optimal choice of the initialization &(21':0)

The conditions on &(21.:0) given in previous Section 4.3 are
either not relevant enough (6(%,:0) = AM, with A >> 1),
or too complex (use of abacus of f;). Here, we propose a
simple characterization of 6520) made thanks to the noise

variance estimation 2, which was performed on the last
frame. If we note F the index of the current frame, the
proposed method is as follows:

e For the first frame F = 1, perform the algorithm
thanks to the arbitrary initialization 65,:0) =AM,
chosen with the sufficient condition A >> 1.

e For F > 1, get the noise variance 6% and the

; . . s LMMSE
eigenvalues of the channel covariance matrix R,

(11), estimated at the previous frame F — 1.
e Considering the expression of f, given in (23), look
for &(2i=0),opt so that

4 M—1

A A~ 2
M 2 2 N
m=0 (Am+62) a9
52 52 2t o
()‘m+” +”(f=0).opt)

(32)

The direct solving of (32) is very complex, but in prac-
tice, the receiver can use a simple binary search algorithm
to approach the optimal solution. This optimal solution
&(zi:O),opt can then be found at the frame F.

For a relevant choice of the initialization 8%:0), we have
given a sufficient condition so that the algorithm con-
verges to a non-null solution. Additionally, an optimal
value of &(21.:0) can be found, which allows the convergence
to take place at the expected noise and channel values.
Section 5 depicts the performance of our algorithm and
finally shows that the estimated couple (62, I:In) is close to
the perfect estimation one (o2, H,,).

5 Simulations results

This section aims at confirming, by means of simula-
tions, the theoretical results developed in the previous
sections. Furthermore, it characterizes the algorithm per-
formance, such as the speed of convergence, the bias of
the noise variance estimation, or the bit error rate (BER),
thanks to the proposed channel estimation compared to
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the perfect one. The simulation parameters are based
on the Digital Radio Mondiale (DRM/DRM+) standard
[35], designed for the digital audio broadcasting over the
current AM/FM frequency bands. We consider a 201-
subcarrier OFDM modulation with a sampling frequency
equal to 12 kHz. Each OFDM frame is composed of
20 symbols, each symbol being filled with data symbols
from a 16-QAM constellation. The added CP featuring a
Tcp duration of 2.66 ms is supposed to avoid the inter-
symbol interferences, i.e,, it is longer than the maximum
delay of the channel. Although the DRM standard rec-
ommends a distribution of the pilot tones in staggered
rows in the OFDM frame, we considered a preamble dis-
tribution for the purpose for our method. As previously
mentioned, each preamble is composed of one pilot sym-
bol only. We consider the US Consortium channel model,
also described in the DRM standard. It is a four-path chan-
nel in which the maximum delay is Tmax = 2.2 ms and
the maximum Doppler spread is equal to 2 Hz. Here,
the channel is supposed to be quasi-static, which means
that it varies very slowly during a frame duration. In the
following, the term ‘perfect case’ refers to the algorithm
proposed in [34], in which the channel covariance matrix
is supposed to be known at the receiver, whereas ‘practical
case’ refers to the proposed algorithm.

5.1 Convergence of the noise variance estimation

Figure 4 depicts the noise variance estimation as a func-
tion of the iteration number i. The estimation in the
practical case is compared to that of the perfect case and
the real value of the noise variance. Furthermore, two val-
ues of SNR are considered: p = 0 dB for the upper curves
and p = 10 dB for the lower curves. The initialization
value 6(21.:0) in the perfect case is equal to 2. In the practical

T T T
| — 6% (SNR=0dB)

5~ estimated 62, perfect case
—&- estimated o7, practical case
| - - o* (SNR=10dB)

\ -O- estimated o?, perfect case

1 —0- estimated 62, practical case

o’h 4

noise variance estimation

W\
|
LIS
[ —O === 8= 8 =8 =0 =00~ 0= B~ 8 =8 =5 =0~ =0~ 0= B8~

10 2 4 6 8 10 12 14 16 18 20

iteration number (i)

Figure 4 Noise variance estimation in function of the number of

iterations and comparison with the perfect case.
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case, it is equal to &(21':0) = 20M5. The curves are obtained

by means of an average made over 4,000 simulation runs.
For iterations i{ > 1, we remark that the sequence
(6(20) is monotonous and converges to a single non-null
value, which verifies the theoretical developments given in
Section 4. We also observe a fast convergence to the sin-
gle limit, which will be confirmed in Section 5.2. Figure 4
characterizes the noise variance estimation thanks to the
normalized bias 8 calculated by 8 = |(6(2i)) —o?|/o?%, B
being averaged over 4,000 runs. Expressed in percentage,
the bias of the proposed estimation is equal to 5.9% for
p = 0dB and 1.2% for p = 10 dB. These results are very
close to the estimation performed in the perfect case.

5.2 Speed of convergence of the algorithm

Figure 5 shows the values of the difference |6(2t) — 6(2#1)|
versus the number of iterations for i > 2, for both the
perfect and the practical cases. Simulations are performed
with p = 10 dB and the initialization value &(21':0) =2
in the perfect case and 8(%:0) = 20M; in the practical
case. These curves characterize the required number of
iterations to get an expected value of threshold e, .

For example, in order to reach a fixed value e, = 0.01,
three iterations are required in the practical case and two
in the perfect case. For e, = 0.0001, seven iterations are
required in the practical case and three in the perfect case.
These results confirm the high-speed convergence of the
algorithm.

5.3 Comparison of SNR estimation with other methods

Figures 6 and 7 display the normalized MSE (NMSE)
of the SNR estimation of the proposed method com-
pared to the perfect case and three existing methods:
Ren’s method [12], Xu’s method [13], and the usual MMy
[10]. Ren’s method requires a two pilot-symbols preamble

—— perfect case
10-1 L —©— practical case

2
)

2

0%

error|

7| L L L L

2 3 4 5 6 7 8 9
iteration number (i)

Figure 5 Error |33 — 63_, | in function of the iteration number i.
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- perfect case[30]
—o- practical case
¢ Ren’s method [12]
—g- Xu's method [13]
- MM, [10]

NMSE of the estimated SNR

SNR (in dB)

Figure 6 Comparison of NMSE of SNR estimation of the
proposed method with existing methods at condition
&(zi=0) = 20M. NMSE of the SNR estimation of the proposed
method compared to the two existing methods; 85.:0) is chosen
thanks to the sufficient condition &(2,=o) = 20M>.

in order to avoid the effect of the frequency-selective
channel. The noise variance estimation is then given by
62 = 05|[Ups1 — Uyl = 0.5|[Wpi1 — W, and
the SNR is computed thanks to (4). Xu’s method requires
a one pilot-symbol preamble in order to compute the
covariance matrix of the channel. The noise variance
estimation is made thanks to the subspace of the eigen-
values which includes only the noise samples. The MaMy
method directly computes the SNR estimation, thanks to
the second moment order My and the fourth moment

10°

100

102

NMSE of the estimated SNR

— perfect case [30]

10731 —o— practical case
—> Ren’s method [12]
—a— Xu’s method [13]
o M2M4 10;
10— , I | | L I L L L
-4 -2 0 2 4 6 8 10 12 14 16

SNR (in dB)

Figure 7 Comparison of NMSE of SNR estimation of the
proposed method with existing methods choosing &(20). NMSE of
the SNR estimation of the proposed method compared to two
existing methods; &(20) is chosen thanks to the proposed
characterization of Section 4.4.
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order My of the received signal. For a 16-QAM constella-
tion in Rayleigh fading channels, authors in [10] give the

estimation of the SNR as p = (\/M4 — 2M3)/(0.8M3 —

\/M4 — 2M3). Figures 6 and 7 also compare the SNR esti-
mation performed with two different initializations. In
Figure 6, we use the sufficient condition 85:0) = 20M,

for each frame. In Figure 7, the initialization step 8520) =

20M5 is used for the first frame 7 = 1, and then &(21.:0)
is updated thanks to the proposed method presented in
Section 4.4. When Figure 6 or 7 is considered, we now
consider ig = 7 iterations. In the perfect case, the initial-
ization value is &(21.:0) = 0.1, and the number of iterations
is ip = 3. The NMSE given by NMSE = E{|p — p|?/p?} is
approximated and simulated, thanks to an average made
over 200,000 samples.

As mentioned in [10], we remark that the performance
of the MpM, method is degraded in Rayleigh channels,
which is the case here. Whatever the SNR is, the pro-
posed method outperforms the one from Xu'’s. In Figure 6,
the performance of the algorithm is degraded compared
to that obtained with the Ren’s method for low SNR val-
ues (<3 dB). It confirms that for low values of SNR, 6(21.:0)
is not large enough compared to the value of the noise
variance 2. However, when the algorithm is used with
an updated initialization (Figure 7), the method outper-
forms Ren’s one whatever the SNR is, and the SNR gap
with the perfect case is less than 1 dB from SNR = 0 dB.
This proves the efficiency of the proposed algorithm and
the validity of the improvement with regard to the choice
of &(21.:0), when performed with an update in each frame.
Furthermore, our method requires only one pilot-symbol
preamble while Ren’s requires two. We conclude that we
can improve both the rate of the required pilots and the
efficiency of the estimation.

5.4 Channel estimation
Figure 8 illustrates the BER of the proposed method as a
function of the SNR over a relevant span (from 0 to 32
dB). The estimation is compared to the ones performed in
the perfect case, perfect estimation, and the usual LS. We
remind that the channel is the four-path US Consortium
from the DRM standard [35] and the constellation is a
16-QAM. The initialization is chosen as previously, i.e.,
&(21':0) = 0.1 in the perfect case and 8520) = 20M;
with an update in the practical case. The BER curves
are performed by the means of simulating a 2.5 x 10°
bits transmission. As mentioned in Section 2, the chan-
nel is quasi-static, so it is considered as being invariant on
each frame of 20 OFDM symbols, where the first one is a
pilot-symbol preamble.

We observe on Figure 8 that the channel estimation con-
verges to a value that is close to the perfect estimation.
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10 T T

— perfect etimation

—+— perfect case, i>1

—O- practical case, i=1
—»— practical case, i=2
—&— practical case, i=4
—— practical case, i=7
— LS estimation

BER

235 24 245 25 255 26 265

0 5 10 15 20 25 30
SNR (in dB)

Figure 8 Proposed method BER versus SNR and comparison with
the perfect estimation, perfect case, and LS.

Indeed, zooming around SNR = 25 dB, we can see that
the gap between the perfect channel estimation and our
method is less than 0.2 dB after seven iterations. It con-
firms the high speed of convergence and illustrates the
efficiency of the channel estimation algorithm.

6 Conclusions

In this article, we presented a practical algorithm for a
joint and iterative MMSE-based estimation of the SNR
and the frequency-selective channel in an OFDM con-
text. The SNR is estimated, thanks to the MMSE noise
variance estimation combined with the second moment
order of the signal, and the channel, thanks to the LMMSE
method. Since each estimation requires the other one, the
algorithm is iterative, as proposed in [34] for a theoretical
case in which the channel covariance matrix is supposed
to be known at the receiver. However, we considered in
this paper a practical case which assumes that the chan-
nel covariance matrix is a priori unknown at the receiver
side. We theoretically proved that for a well-chosen ini-
tialization value, the algorithm converges. Furthermore,
simulations showed that the proposed method has a very
good quality of estimation for both the SNR and the chan-
nel frequency response. Compared to existing methods,
the algorithm improves the ratio between the required
number of pilots and the efficiency of the SNR estima-
tion. Further works will concern the application of the
proposed algorithm to the domain of the cognitive radio,
in particular, for free bands detection.

Appendix
We prove the convergence towards 0 of the algorithm

when it is performed with the channel covariance matrix

SLS L _— . . ~ LMMSE
R, . It justifies the substitution of this matrix by R,
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for i > 2. We give the expression of the noise variance (13)
using the developments made for the theoretical case [34]:

1 ~ LS LMMSE
~2
G(H»l) - E{”Hp p(H—l) Il } (33)
1 -1 9
= (o (R +631) (R +0™1)
_1\NH
(@H+%Q )). (34)

~LS
We remind that for a large value M, we have 1\1/1 tr(Ry) =
&tr(R y+ 021), so we will consider, in a first approxi-

mation, that f{L; = Ry + o2l in order to develop (34)
~2 1 ~d A2 2\ 1) 2
O(iy1) = Mtr o) (RH + (G(i) +o )I) (RH +o I)

N
< (Rt (3 +02)1) ) ).
(35)

With Ry being an Hermitian matrix, we use the same
diagonalization property as in [34] for the expression (35),
and we finally find the scalar form of (35):

&4 M-1
~2 %) Am + 0
o . , (36)
(i+1) = Z (}\m +o24+ 05))2
where A, are the elgenvalues of the covariance matrix R .
If we note x = 6(%), the sequence (6(21. +1)) is built from a
function f; so that

2M1

Am + o2
fkx) = ,
rg (n + 0% +2)°

with x €[0, +o0o[. The proof of the convergence towards

zero of the sequence (65 +1)) in (36) is based on the fixed

point theorem, i.e., we show that the only solution to the

equation fj (x) = «x is 0. The limits of f are f;(0) = 0 and
. 1 —M-1

lerI;Ofl ) = 3 2o m + 02) = M. Furthermore, the

derivative of f;

37)

& o+ 02

po 2%
S = MmX:;) G + 02 + x)3

is positive for x €[0, +o0[, so f1 is growing on this interval.
We then deduce the inclusion fi ([0, +o00[) C[0, M;] and
so f1([0, M3] ) C[0, M3]. Thus fi has at least one fixed point
on [0, My]. As fi is growing on [0, M;], we conclude that
the sequence (65 1)) converges to one of the fixed point
of fi. An obvious fixed point of f; is 0, since f;(0) = 0. We
now prove that 0 is the sole fixed point of fj on [0, M3]. To
this end, we show that fl’ (x) < 1, which is equivalent to

(38)
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(fi(x) — x) < 0. We define the functions fj,, (x) extracted
from fi (x) so that fi(x) = AI/I an/[*lflm (%):

x% (A +02)

S, (%) = (o + 02 +x)2'

(39)

Since fi is defined by a sum, we also have for the
derivative f] (x) = (%), with:

2%(hy + 02)2

(o + 02 +2)% (#0

fi,x) =

For any valueof m = 0,1,...,M—1andx > O,fl/m(x) >

0, so we can apply the following triangle inequality on the
derivate of f1:

M-1
1
! !
max(f{() < Y max(f], ). (41)
m=0
Form =0,1,...,M—1, we find the maximum offl/m ),
thanks to a second derivation so that

20 22 2.9
fl/;()=( +0°) (A + 0 X)

(A + 02 + x)% (42)

The second derivative of fi,,(x) in (42) is null for x =
é(km + 02), so we find, thanks to expression (40)

max(fi, (0) = fi,, (x = ;(Am + 02)> = (43)

27

Equation 43 shows that for any value of m = 0,
1,...,M — 1, the maximum offl’m is equal to 287, so the
triangle inequality is simplified:

max(fl ) < (44)

- 27

which then proves that f{(x) < 1, i.e., f has only one fixed
point equal to 0. Figure 9 displays an example of fj (x) and

0.9r - ¥(x

0.8} T e

0.7r -7

1

0.6} -7

1

0.5r e
0.4r //

Representation offandf’

02r /-

0.1t I

Figure 9 Shape of f; (x), f{ (x) compared with y = x and y = 8/27.
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fl’ (x). We conclude that if the algorithm is performed with

. . ~LS ~
the covariance matrix Ry, then the sequence (a(zi)) con-
verges to 0 and the algorithm enters into a endless loop,
whatever the value of the initialization &(20) is.
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