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Abstract

Object localization using active sensor network exploiting the scattering of the emitted waves by a transmitter has
been drawing a lot of research interest in the last years. For most applications, the environment leads to the arrival of
multiple signals corresponding to emitted signal, signals which are scattered by the objects, and noise. In practical
systems, the signals impinging on an array are frequently correlated, and the object number rapidly exceeds the
number of sensors, making unsuitable most high-resolution methods used in array processing. We propose a solution
to overcome these two experimental constraints. Firstly, frequential smoothing is used to decorrelate the scattered
signals, enabling the estimation of their time delays of arrival (TDOA), using subspace-based methods. Secondly, an
efficient algorithm for source localization using the TDOA is proposed. The advantage of the developed method is its
efficiency even if the number of sources is larger than the number of sensors, in the presence of correlated signals.
The performances of the proposed method are assessed on simulated signals. The results on real-world data are also
presented and analyzed.
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Introduction
Detection and localization of scattering objects located
entirely above or below a surface, which has many applica-
tions in a number of fields, turn out to be very important
today. In the Earth sciences, it is used to study bedrock,
soils, groundwater and ice. In archaeology, it is used in
law enforcement, for locating wreckage, mapping archae-
ological ruins, clandestine graves and buried evidences.
The civil applications include detecting buried services
under city streets (pipes, cables. . . ), continuous inspec-
tion of layers in road pavements and airport runways,
mapping cavities or voids beneath road pavements, run-
ways or behind tunnel linings, monitor the condition of
railway ballast, and detect zones of clay fouling leading
to track instability. Over the past few decades, a signif-
icant amount of research effort has been spent towards
developing a viable buried object detection scheme. Sev-
eral electromagnetic wave methods, for example, ground-
penetrating radar (GPR, sometimes called georadar or
subsurface radar), have proved that EM can give a good
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performance in buried object detection [1,2], particularly
using high-resolution methods [3]. However, the depth
range of GPR suffers from many limitation.
Recently, it was performed using both acoustical waves

and array processing algorithms in order to improve depth
range and spatial resolution. Usually, the parameters of
interest are the directions of arrival (DOA) of the radiat-
ing objects and their range from the array. Conventional
beamforming offers a limited spatial resolution, and this
has led to the development and successful application of
more advanced techniques. Examples are Capon’s mini-
mum variance method [4], and a variety of methods based
on eigendecomposition, such as multiple signal classifica-
tion (MUSIC) [5].
These high-resolution subspace-based methods for

DOA estimation, essentially based on the spatial diver-
sity induced by a great number of sensors, giving enough
information to address the DOA estimation issue, are
well adapted to narrowband signals. High-resolution
subspace-based methods have also been extended to
the wideband signals. Many methods have been pro-
posed to estimate the DOA problem of wideband sources
[6-13]. Among these methods, incoherent subspace meth-
ods [7,8] were proposed firstly. They estimate the DOAs
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of wideband sources separately at each frequency bin and
then combine the results obtained at each frequency to get
a final estimate. High-resolution methods simply need to
meet the following assumptions: a linear equispaced array
including at least one more sensor than radiating sources,
white and Gaussian background noise spatially uncorre-
lated and uncorrelated signals of the different sources. It is
important to note that in practice, these assumptions are
obviously rarely all fulfilled [14-16], especially the last one.
To overcome this drawback, Wang and Kaveh [8] pro-

posed a coherent signal-subspace method. In this method,
the covariance matrices of different frequency bins are
focused by proper transformation matrices and averaged
to create a universal matrix. Then, a high-resolution nar-
rowband method, such as MUSIC, could be applied to
estimate the DOAs. Subsequently, many improved meth-
ods have been proposed to design a new focusing matrix
without focusing loss or with smaller bias, such as rota-
tional signal-subspace [9], two-sided correlation transfor-
mation [10] and so on.
Although these focusing methods decrease the reso-

lution threshold and reduce the estimation bias, their
performance greatly depends on the accuracy of the initial
angles. Another wideband DOA algorithm named test of
orthogonality of projected subspaces was proposed [11].
It does not need initial angles and can show better per-
formance at mid-signal-to-noise ratio (SNR). However, it
cannot avoid false peaks in the spatial spectrum.
All the signal-subspace methods mentioned above have

a common constraint that the number of sources should
be less than the number of sensors. Lately, a Khatri-
Rao subspace approach [13] was proposed, whose major
advantage is that it can perform well even if the number
of sensors is about half of the number of sources. How-
ever, it depends on quasi-stationary sources and needs
a large amount of snapshots to obtain a satisfying per-
formance. Moreover, needing always more sensors than
sources raises several problems in buried objects local-
ization. For instance, the cost and length of the antenna
needed to support a great number of sensors.
In this paper, we propose to overcome the problem of

the number of sensors in the case of wideband signals,
addressing the problem for all the frequency band at each
sensor. The spatial diversity induced by the great num-
ber of sensors (used in classical methods) will be here
replaced for each sensor by the frequential diversity of
the broadband signals. It is proposed to divide the fre-
quency band of each data recorded on each sensor into
frequency sub-bands. After applying a smoothing algo-
rithm [3,17-20] on these sub-bands, it is possible to apply
a subspace-based method that will give information about
the different TDOA of the signals recorded on each sen-
sor. Identifying as many sets of TDOA as sources enables
us to estimate their range and DOA.

The remainder of the paper is as follows. The ‘Overview
of localization methods’ section briefly presents some
classical array processing methods. The ‘High-resolution
algorithm for wideband signals in time domain’ section
proposes an adaptation of the high-resolution algorithm
for wideband signal using frequency diversity on each
sensor instead of the array spatial diversity, a frequential
smoothing method is described and a whitening pro-
cedure of the signals is also proposed to improve the
method. The ‘Source localization’ section deals with the
source localization issue. Finally, the ‘Main algorithm’ and
‘Numerical results’ sections present the main algorithm
and some results obtained on simulated and real data.
In this paper, the superscript ‘T ’ represents transpose

operator, superscript ‘+’ denotes conjugate transpose
operator, superscript ‘∗’ represents conjugate operator
and E [.] denotes the mathematical expectation.

Overview of localizationmethods
Signal model
Consider an array of N sensors which receive the signals
in one wave field generated by the scattering of one emit-
ted signal by P, (P < N) objects, which further will be
called sources, in the presence of an additive noise [21],
see Figure 1. The received signal vector is sampled and the
fast Fourier transform algorithm (FFT) is used to compute
the discrete Fourier transform (DFT). The array outputs
are represented by:

r(f ) = A(f , θ)s(f ) + n(f ), (1)

where r(f ), s(f ) and n(f ) are, respectively, the DFT of
the array outputs, the source signals and the noise vec-
tors. Matrix A(f , θ), of dimensions (N × P), is the trans-
fer matrix of the source-sensor array system, and θ =[
θ1, y · · · , θP

]T is a vector containing the DOA of the
sources.
A(f , θ) =[ a(f , θ1) · · · a(f , θP)], where

a(f , θ) =
[
1, e−iφθ , · · · , e−i(N−1)φθ

]T
(2)

and φθ = −2π fd sin(θ)

v . v is the velocity of the wave, and d
the distance between two consecutive sensors. The sensor
noises are assumed to be independent of the source signals
and spatially correlated. The covariance matrix of the data
can be defined by the (N × N) matrix:

�(f ) = E
[
r(f )r+(f )

] = A(f )�s(f )A+(f ) + �n(f ), (3)

where �n(f ) = E
[
n(f )n+(f )

]
is the (N ×N) noise covari-

ance matrix, and �s(f ) = E
[
s(f )s+(f )

]
is the (P × P)

source signals covariance matrix.
In the following, we present a high-resolution source

localization method exploiting algebraic properties of the
covariance matrix �(f ).
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Figure 1 A linear equispaced array with several sources. The first sensor of the array is used as a reference for the sources’ ranges and DOAs.

High-resolution methods
The high-resolution methods exploit the statistics of the
recorded signals [21-23]. The principle is to exploit
the structure of the vector space which is spanned by
the measures collected upon the sensors. This vector
space is the direct sum of the source signal subspace and
the noise subspace. These methods are efficient when
�s(f ) is full rank, i.e. when the signals are decorrelated.
The signal subspace is spanned by the eigenvectors asso-
ciated with the P largest eigenvalues, the noise subspace
is spanned by eigenvectors associated with the N − P
smallest eigenvalues. Thus, the covariance matrix can be
written:

�(f ) = [
Vs(f )Vn(f )

] [�s(f ) 0
0 �n(f )

] [
Vs(f )Vn(f )

]+ ,

(4)

where Vs(f ) and Vn(f ) are the matrices containing the
eigenvectors associated with the signal and the noise sub-
space, respectively, �s and �n are diagonal matrices con-
taining eigenvalues associated with the signal and noise
subspaces.
Multiple signal classification (MUSIC) is the best known

high-resolution method. It exploits the orthogonality
between the signal subspace and the noise subspace. The
DOA of sources is given by the positions of the maxima of
the pseudo-spectrum represented by:

FMUSIC(f , θ) = 1
a+(f , θ)Vn(f )V+

n (f )a(f , θ)
, (5)

where θ ∈ [−90°, 90°].
The implementation of MUSIC requires the eigen-

decomposition of the covariance matrix �(f ). The

conventional methods are achieved by either the eigen-
value decomposition or the singular values decomposition
(SVD). However, the main drawback of this conventional
decomposition is its inherent important computational
load. Indeed, the number of sensors N is often larger
than the number of sources P. It means that the dimen-
sion of the noise subspace (N − P) is often larger
than the signal subspace dimension (P). It is more effi-
cient to use solely the signal subspace than the noise
subspace. Indeed, we can calculate the signal subspace
Vs(f ) = [

v1(f ), v2(f ), . . . , vP(f )
]
whose columns are the P

orthonormal basis vectors. The projector onto the noise
subspace spanned by the (N − P) eigenvectors associated
with the (N − P) smallest eigenvalues is Vn(f )V+

n (f ) and
can be given by:

Vn(f )V+
n (f ) = I − Vs(f )V+

s (f ), (6)

where I is the identity matrix.

High-resolution algorithm for wideband signals in
time domain
Proposedmodel
When the number of sensors is smaller than the num-
ber of sources, we propose to exploit the bandwidth of
the source signals, using a high-resolution algorithm to
estimate the TDOA of the signals received on each sen-
sor. The spectral information received on each sensor is
divided into a number of frequencies M larger than the
number of sources P, P < M. These frequencies will
play in the high-resolution algorithm the same role as the
sensors in the classical array processing methods.
Consider a sensor jwhich receives the scattered signals s

generated by P objects in the presence of an additive noise.
The signal received on sensor j can be written as:

rj(t) =
P∑
i=1

ci,js(t − τi,j) + nj(t), (7)
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where ci,j represents an amplitude and phase shift term
and is assumed to be independent of time, τi,j stands for
the (i, j)th TDOA and nj is an additive noise. The Fourier
transform of rj(t) is

r̃j(f ) =
P∑
i=1

ci,js̃(f )e−2iπ f τi,j + ñj(f ) (8)

as the signal is sampled, the FFT is used to compute the
DFT. Further, this representation will be used:

r̃j = �Ajcj + ñj, (9)

where r̃j = [
r̃j(f1), · · · , r̃j(fm), · · · , r̃j(fM)

]T is the DFT of
the sensor output, � = diag

(
s̃(f1), · · · , s̃(fm), · · · , s̃(fM)

)
is the known diagonal matrix made of the signal Fourier
transform, cj = [

c1,j, · · · , ci,j, · · · , cP,j
]T is the vector of the

ci,j and ñj = [
ñj(f1), · · · , ñj(fm), · · · , ñj(fM)

]T is the vector
of the noise DFT. The (M × P) matrix Aj is the trans-
fer matrix of the source-frequency system with respect
to some chosen reference times. Aj = [

a(τ1,j) · · · a(τP,j)
]
,

where a(•) = [
e−2iπ f1(•), e−2iπ f2(•), · · · , e−2iπ fM(•)

]T .
The sensor noise is assumed to be independent of the

source signals. On each sensor, the high-resolution algo-
rithms can be used to estimate the different TDOA. Using
the source TDOA sets estimated on the different sensors
allows us to localize the sources. As the proposed method
is applied to all sensors independently and the obtained
TDOA are simultaneously used to localize the sources, we
will get rid of the subscript j to simplify the notations. In
the following section, we present the proposed method.

TDOA estimation for a given sensor j
As in Eq. (3), the covariance matrix of the data can be
defined by the (M × M)-dimensional matrix:

� = E
[
r̃r̃+

]
. (10)

As the noise and the signal are assumed to be indepen-
dent,

� = �A�cA+�+ + �ñ, (11)

where�ñ is the (M×M) noise covariancematrix and�c =
E[ cc+].
Let A′ = �A and

� = A′�cA′+ + �ñ (12)

This data model allows to use high-resolution algo-
rithms of array processing on the matrix � using a′ = �a
instead of a to extract the TDOA on each sensor.
In this paper, we assume that P is known or can be esti-

mated, for instance, by sorting the eigenvalues of � or
using the known criteria AIC and MDL [24,25].
Although the high-resolution algorithms assume that

the matrix � is full rank, this assumption is not fulfilled,

due to the fact that we are dealing in this paper with P
totally correlated signals.

Frequential smoothing
If thematrix� is not full rank, which is the case in the con-
sidered problem, the performances of the high-resolution
algorithms will be degraded. The SVD will not be relevant
enough and the signal subspace will be under-estimated
[8-10]. For instance, some eigenvectors will be lost to
describe this subspace.
To avoid this problem, spatial and frequential smooth-

ingmethods are proposed [8-10,20]. Their efficiency relies
on the number of sensors or on the frequency bandwith
of the signals, respectively [3,17-20]. In this paper, we
address the following issue: only few sensors are avail-
able and the source signals are totally correlated signals.
That is why we propose to use a frequential smooth-
ing method. The method estimates an unbiased covari-
ance matrix of the observation and reduces the signal
correlation [20]. The modified spatial smoothing process-
ing (MSSP) method exploits the translation invariance
and the backward propagation to estimate the covariance
matrix.
The frequency band of M frequencies is divided into

K sub-bands of L frequencies with a certain overlap, as
shown in Figure 2. Usually, the maximum overlap between
two consecutive sub-bands is L − 1 frequencies, yielding
the following relation between L, K andM:

M = L + K − 1. (13)

The observation vector r̃k in kth sub-band can be writ-
ten as a sub-vector of the observation at a given frequency
band [17]. For each sensor, the expression of each obser-
vation sub-vector r̃k can be written as:

r̃k = �kA1Dk−1c + ñk , (14)

where A1 is made of the L first rows of A, �k and ñk
include the rows {k, k + 1, . . . , k + L − 1} of � and ñ,
respectively.D is the diagonal matrix which stands for the
operator that shifts the observation on the correspond-
ing sub-band between the different sub-bands, defined by:
D = diag

(
e−2iπ�f τ1 , e−2iπ�f τ2 , · · · , e−2iπ�f τP

)
and � f =

fL−f1
L−1 .
The matrix �k is used to whiten the observation vector:

yk = �−1
k r̃k = A1Dk−1c + �−1

k ñk . (15)

Thus,

E[ yky+
k ]= �k = A1Dk−1�c

(
Dk−1

)+
A+
1

+ �−1
k �ñk

(
�−1

k

)+ = �s̃
k + �ñ

k ,

(16)
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Figure 2 Sub-bands division used. TheM frequencies’ band is divided into K sub-bands of L frequencies. The recovery between two consecutive
bands is maximum (L − 1) frequencies.

where �c = E[ cc+], �s̃
k = A1Dk−1�c

(
Dk−1)+ A+

1 and

�ñ
k = �−1

k �ñk

(
�−1

k

)+
. Let �mp be the average of the

different covariance matrices estimated at different sub-
bands in the forward and backward directions. We have

�mp = 1
2K

K∑
k=1

(
�k + J�∗

kJ
) = �s̃

mp + �ñ
mp, (17)

where J stands for the anti-diagonal matrix of permutation
that helps to generate the observation vector in the back-
ward direction and �s̃

mp = 1
2K
∑K

k=1

(
�s̃
k + J(�s̃

k)
∗J
)
and

�ñ
mp = 1

2K
∑K

k=1

(
�ñ
k + J(�ñ

k)
∗J
)
. High-resolution algo-

rithms can be yielded using �mp and a1 which is made of
the L first elements of a′.
This method will be used in the rest of this paper.

Influence of the number of the sub-bands for a fixed
sensor j
To assess the decorrelation efficiency of this method, we
will assume, for a given sensor, that there are two sources
characterized by their amplitudes c1 and c2. Let γ be their
correlation coefficient that we define using the elements
of the matrix �c:

γ = �c(1, 2)√
�c(1, 1)�c(2, 2)

, (18)

where �c(i, j) = E[ cic∗j y]. For totally correlated sources,
its modulus reaches 1.
Let �K

c = 1
2K
∑K

k=1Dk−1�c(Dk−1)+ and �K
JcJ so that

A1�
K
JcJA

+
1 = 1

2K
∑K

k=1 J�∗
kJ. Then, Eq. (17) can be written

as : �mp = A1
(
�K
c + �K

JcJ
)
A1.

�K
c ’s (1, 2) element is

�K
c (1, 2) = �c(1, 2)

K

K∑
k=1

e−2iπ�f�τ(k−1), (19)

where �τ = τ1 − τ2. The correlation coefficient in �K
c

is γK = γ
(
sin(Kα)
K sin(α)

)
e−i(K−1)α , where α = π�f�τ . The

modulus of γK is |γK | = |γ |
∣∣∣ sin(Kα)
K sin(α)

∣∣∣.
The term J�∗

kJ consists in a double mirror symmetry
along the rows and the columns of the matrix �∗

k . Then,
�K
JcJ ’s (1, 2) element is

�K
JcJ (1, 2) = �c(1, 2)∗

K

K∑
k=1

e2iπ(2f1+(2k+L−2)�f )�τ . (20)

Thus, the new correlation coefficient γmp for the MSSP
method can be expressed [20]:

γmp = γ
sin(Kα)

K sin(α)

(
e−i(K−1)α + �∗

c (2, 1)
�c(2, 1)

e−iβ
)
, (21)

where β = 2α(2 − L − K+1
2 ) − 4π f1�τ . Therefore, the

modulus of γmp is∣∣γmp
∣∣ = |γK | ∣∣cos (arg(c2) − arg(c1) + α(2 − L − K)

−2π f1�τ
)∣∣ .

(22)

This new modulus
∣∣γmp

∣∣ is smaller than the original |γ |
and decreases as K�f�τ increases.
The size of the matrix �mp must be at least (P + 1) ×

(P + 1), which means L ≥ P + 1. On the other hand,
as the sources are correlated and according to the algebra
properties, the mean must be made on at least P matrices
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[18,26] , which means K ≥ P and M ≥ 2P + 1. If the for-
ward and backward directions are used [27], this amount
is reduced to 3P

2 .

Whitening of the modified data
The high-resolution algorithms of array processing
assume that the matrix �ñ (see Eq. (17)) is diagonal.
The noise covariance matrix �ñ

mp must then be σ 2
mpIL.

Assuming �ñ = σ 2IM gives

�ñ
k = �−1

k �ñk

(
�−1

k

)+

= diag
(

σ 2

|s̃(fk+l)|2
)
; l = {0, · · · , L − 1}

(23)

and then

�ñ
mp = diag

(
σ 2

2K

( K∑
k=1

1
|s̃(fk+l)|2 + 1

|s̃(fk+L−1−l)|2
))

;

× l = 0, · · · , L − 1.
(24)

The amount
∑K

k=1
1

|s̃(fk+l)|2 + 1
|s̃(fk+L−1−l)|2 varies with

l = 0, · · · , L − 1. Let �ñ
mp = σ 2�2, where

� is the L × L diagonal matrix with �(l, l) =√
1
2K

(∑K
k=1

1
|s̃(fk+l)|2 + 1

|s̃(fk+L−1−l)|2
)
, Eq. (17) becomes

�mp = �r̃
mp + σ 2�2, (25)

and let �w be obtained from �mp by the following
transformation:

�w = �−1�mp�
−1 = �−1�r̃

mp�
−1 + σ 2�−1�2�−1

= �−1�r̃
mp�

−1 + σ 2IL.
(26)

The high-resolution methods must be slightly changed
as the two subspaces have been shifted by �−1. Rather
than testing the vector a1 as presented in the previous
section, the vector to be tested is a′

1 = �−1a1. High-
resolution algorithms can now be used to estimate the
TDOA on each sensor. In the following, we will present a
way to localize the sources using the so-estimated TDOA.

Source localization
This section will address the localization issue. In the
case of a linear antenna, the distance δi,j from source i,
i = 1, · · · ,P, to sensor j, j = 1, · · · ,N , is, according to
Al-Kashi theorem,

δi,j =
√

ρ2
i + (

(j − 1)d
)2 + 2(j − 1)dρi sin(θi) , (27)

where ρi and θi denote the range and DOA of the source
against the antenna, as shown in Figure 3, and d is the
distance between two consecutive sensors.

The presented method estimates the different TDOA
τ̂i,j, which correspond to τ̂i,j = δi,j

v +Ti, where Ti is relative
to each source i, as shown in Figure 4, and v is the wave
velocity.

Source links with estimated TDOA
The estimated τ̂i,j are not sorted by source on each sen-
sor. To localize the sources, it is important to know to
which source each τ̂i,j is linked. This is not the case here,
as shown in Figure 5. So each τ̂i,j must be associated with
the corresponding source.
To achieve that, we are looking for an indicator that will

help us regroup the TDOA by source. In the following, we
present a hierarchical clustering procedure that yields the
TDOA sets.
Rather than considering the TDOA themselves, we will

compare them. Thus, we propose to introduce the amount
Ok,l
i,j :

Ok,l
i,j = τ̂ 2i,j − τ̂ 2k,l −

(
j2 − l2 − 2(j − l)

)
(dv )

2

2d(j − l)

= ok,li,j + T2
i − T2

k + 2 δi,j
v Ti − 2 δk,l

v Tk

2d(j − l)
,

(28)

where

ok,li,j =
(

δi,j
v

)2 −
(

δk,l
v

)2 − (
j2 − l2 − 2(j − l)

) ( d
v

)2
2d(j − l)

= ρ2
i − ρ2

k + 2(j − 1)dρi sin(θi) − 2(l − 1)dρk sin(θk)

2d(j − l)v2

(29)

which becomes, in the case where i = k, that is, where τ̂i,j
and τ̂k,l are the TDOA of the signals emitted by the same
source:

oi,li,j = ρi sin(θi)

v2
(30)

and so,

Oi,l
i,j = ρi sin(θi)

v2
+
(
δi,j − δi,l

)
Ti

d(j − l)v
. (31)

For a given sensor j ∈ [ 1, · · · ,N] and a given source
i ∈ [ 1, · · · ,P], we will consider {Ok,l

i,j , k ∈ [ 1, · · · ,P] }
l∈ [1,...,j−1,j+1,...,N]. The right TDOA set corresponding to
the τ̂i,j TDOA, {τ̂kli ,l}l∈ [1,...,j−1,j+1,...,N], will minimize the

variance of {Okli ,l
i,j }l∈ [1,...,j−1,j+1,...,N]. (see Figure 6). The

indicator consists then for a given sensor and source to
compute all the possible TDOA sets and choose the one
that minimizes the variance of {Ok,l

i,j , k ∈ [ 1, · · · ,P] }
l∈ [1,...,j−1,j+1,...,N].
All the TDOA sets have now been identified. We can

proceed to the source localization, which is the purpose of
the next section.
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Figure 3 A linear equispaced array with several sources, each has a different instant of emission. The first sensor of the array is used as a
reference for the sources’ range and DOA.

Estimation of source range and DOA for a given source
In the following, we propose a method to estimate the
ranges and DOA of the sources by using the estimated
TDOA of the received signals on the different sensors.
The proposed method is independent from the source to
localize.Wewill get rid of superscript i in order to simplify
the notation.
For each TDOA set associated with the signal emit-

ted by the ith source and received on the sensors, we
consider the following amount which evaluates the time
delays between the first sensor and the other sensors of
the antenna (j = 2, · · · ,N):

τ̂1 − τ̂j = δ1 − δj

v
= δ1

v

⎛
⎜⎝1 −

√√√√1 + δ2j − δ21

δ21

⎞
⎟⎠ (32)

using Eq. (27) we have δi,1 = ρi.

In this section, index i is omitted. Then, we set δ1 = ρ.
Let h(j) = δ2j −δ21

δ21
= (j−1)2d2+2(j−1)dρ sin(θ)

ρ2 . Then, Eq. (32)
becomes

(
τ̂1 − τ̂j

)
v = ρ

(
1 −√

1 + h(j)
)
. (33)

If
∣∣h(j)∣∣ < 1 for all j; which is equivalent to the following

assumption: d(N−1)√
2−1 < ρ, indeed, ∀j ∈ [ 2, . . . ,N] ,−1 ≤

h(j)≤ (N−1)2d2+2(N−1)dρ

ρ2 , then to have (N−1)2d2+2(N−1)dρ

ρ2

< 1, we must ensure d(N − 1)(1 + √
2) < ρ; Eq. (33) can

be expressed using the Taylor’s development of
√
1 + h(j)

and the Newton binomial formula:

Figure 4 τ i,j time needed for the signal from source i to reach the sensor j. Ti is time needed for the emitter’s signal to reach the source i.
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Figure 5 Example with four sources, and the evolution of different τ̂ i,j. If the τ̂i,j are only sorted in decreasing order on each sensor.

P(j) = (
τ̂1 − τ̂j

)
v

= ρ

∞∑
n=1

n∑
k=0

(−1)n
(2n − 2)!

(n − 1)! 2n+k−1(n − k)!

(
d
ρ

)n+k

× sin(θ)n−k(j − 1)n+k .
(34)

The three first coefficients of this polynomial P(j+1) =
A0 + A1j + A2j2 + A3j3 · · · + Anjn · · · are A0 = 0, A1 =
−d sin(θ), A2 = d2(sin(θ)2−1)

2ρ . As A0 = 0, we can consider
P′(j) = P(j+1)

j = A1 + A2j + A3j2 · · · + An+1jn · · · .
With a number of sensors N at least equal to 3, it

is possible to get a linear approximation of P′ through
a linear regression. This consists in estimating A1 and

Figure 6 All the combinations of τ̂i,j are tested. For each combination, the (N − 1) values of �k,l
i,j the variance is calculated. The criterion used is

the minimising.
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A2. This is one approach to estimate the DOA and the
range as:

θ̂ = arcsin
(
Â1
d

)
(35)

and

ρ̂ = Â2
1 − d2

2Â2
. (36)

This simple estimation method suffers the fact that a
bias on θ̂ induces a bias on ρ̂ and this error mainly
depends on the order at which the linear regression of P′
is done.
In the next section, we present a method, to enhance

this estimation using an iterative algorithm.

Improvement of the source localization
Range ρ̂ and DOA θ̂ estimated in the previous section
are used to initialize an iterative algorithm to improve the
estimation accuracy, using a numerical solution to mini-
mize a non-linear function with a set of parameters, like
the Levenberg-Marquardt algorithm (LMA) [28].
Assuming that x = sin(θ) and y = 1

ρ
, LMA will refine

the estimation of (x, y) by minimizing

e(x, y) =
N∑
j=2

(Kj(x, y))2, (37)

where Kj(x, y) =
(
P′(x, y, j) − (τ̂1−τ̂j)v

j

)
∀ 2 ≤ j ≤ N

where P′(x, y, j) is, using Eq. (34), P′(x, y, j) = 1
j−1

∑∞
n=1∑n

k=0(−1)n (2n−2)!
(n−1)!2n+k−1(n−k)!d

n+kyn+k−1xn−k(j − 1)n+k .
The parameter vector (x, y) is initialised by x0 = sin(θ̂)

and y0 = 1
ρ̂
. At the nth iteration of LMA, (xn, yn) is

replaced by a new estimate (xn+1, yn+1) = (xn + ξxn , yn +
ξyn). To determine (ξxn , ξyn), the Kj functions are lin-
earised:

Kj(xn+1, yn+1) = Kj(xn + ξxn , yn + ξyn) ≈ Kj(xn, yn)
+ �(j − 1, 1)ξxn + �(j − 1, 2)ξyn ,

(38)

where �(j, l) is the (j, l) element of the matrix �. � is the
(N − 1) × 2 Jacobian matrix of the (N − 1) derivatives of
the functions Kj, j = 2, · · · ,N :

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂K2
∂x

∂K2
∂y

...
...

∂Kj
∂x

∂Kj
∂y

...
...

∂KN
∂x

∂KN
∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

Using Eqs. (37) and (38), we obtain

e(xn+1, yn+1) =
N∑
j=2

(Kj(xn, yn) + �(j − 1, 1)ξxn

+ �(j − 1, 2)ξyn)2.
(40)

In a matrix formalism, we obtain

e(xn+1, yn+1) = ||K + ��||2, (41)

where K =[K1, · · · ,Kj, · · · ,KN ]T and � = (ξxn , ξyn)T .
Assume that e(xn+1, yn+1) reaches its minimum, then its
first derivative with respect to � is null. Equation (41)
becomes in a matrix formalism:(

�T�
)

� = �TK (42)

� =
(
�T�

)−1
�TK. (43)

LMA consists in replacing Eq. (43) by a ‘damped version’,
to avoid inverting an ill-conditioned matrix [28]:(

�T� + λ diag
(
�T�

))
� = �TK (44)

� =
(
�T� + λ diag

(
�T�

))−1
�TK. (45)

The (non-negative) damping factor λ is adjusted at each
iteration. If e(x, y) decreases rapidly, a smaller value is
used, bringing the algorithm closer to the Gauss-Newton
algorithm, whereas if an iteration yields an insufficient
decrease of the residual value, λ can be increased, giving
a step closer to the gradient descent direction [29]. LMA
is stopped at a given step ne when the difference between
e(xn, yn) and e(xn+1, yn+1) is less than a given threshold
value. Then, θ and ρ are estimated by θ̂ = arcsin(xne) and
ρ̂ = 1

yne
.

Main algorithm
Steps
We now afford the basic tools which are required for
our algorithm. The different steps of the algorithm are
enumerated as follows:

1. Sample the signal received on each sensor, and apply
the FFT;

2. Then for each sensor:

(a) compute �mp using Eq. (17);
(b) compute �w using Eq. (26);
(c) estimate the number of sources P ;
(d) use the modified high-resolution methods to

estimate the TDOA : τ̂1,j, ..., τ̂P,j

3. build the TDOA sets using Eq. (28);
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Figure 7 DOA RMSE (°) versus the number of sources P with MUSIC algorithm for both classical and proposedmethods, with SNR = 10 dB.

4. with each TDOA set, obtain the DOA and the range
of each source using the proposed method based on
LMA.

Parameters of interest
The most influential parameter is the number L of fre-
quencies in the sub-bands:

1. It influences the performance of the MSSP
decorrelation algorithm [19];

2. it specifies the dimension of the signal and noise
subspaces, so it has to be higher than the number of
sources P. Otherwise, these methods will not work
[21];

3. as the number of sensors influences the spatial
resolution and separation power of the methods
[30-33]y, similarly L influences on the time
resolution and separation power for τi,j estimation;

The number of sensors N :

1. It has to be larger than 3 to enable the polynomial fit
and the iterative method to work, as the maximum
degree for the polynomial fit is N − 1;

2. if N is too high, the recombination of the time series
will not converge fast enough to be observed after a
reasonable computation time.

The degree chosen for the polynomial fit presented:

1. It introduces a bias in A1 and A2 estimation and as a
consequence in θ and ρ estimation;

2. if θ → π
2 then A2 tend to 0, it might be of use to

estimate and use A3 = ρ
2

(
d
ρ

)3
(sin(θ) − sin3(θ)) =

ρ
2

(
d
ρ

)3
sin(θ) cos2(θ) for ρi estimation.

Figure 8 Range NRMSE (%) versus the number of sources P with MUSIC algorithm for proposedmethod.
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Figure 9 Range NRMSE (%) versus the SNR (dB) with the proposedmethod for P = 4 sources and N = 4 sensors.

The total number of frequencies M must be high enough
so that:

1. The choice of L value can be done adequately
2. the number of sub-bands K can be large enough to

efficiently decorrelate the signals.

At last, let us consider the source space distribution.
Respecting d(N − 1)(1+ √

2) < ρi, ∀i = 1, · · · ,P, there is
no limit in the choice of the different DOA values θi. The
only limitation appears while applying the high-resolution
algorithm. Indeed, if the time estimation resolution is εHR,
for all i, for all k �= i and for all j wemust have |τi,j −τk,j| >

εHR. Note that for all n > 1, An ∝ 1
ρn−1 , so lim

ρ→+∞An = 0

and especially lim
ρ→+∞A2 = 0.A1 is constant. Meaning that

for a given antenna, as the range ρ increases, as expected,
it becomes more difficult to estimate it. The accuracy of θ
estimation is not linked to ρ.

Numerical results
Simulated data
To localize immersed sources, we proposed to compare
two methods: classical methods, based on a spatial analy-
sis of the spatial covariance matrix of the data to estimate
the DOA [5], and the proposedmethod, based on a spatio-
temporal analysis which first estimates TDOA from the
frequential covariance matrix of the data on each sensor
and then estimates the DOA and range of the sources.

Figure 10 DOA RMSE (%) versus the SNR (dB) with the for proposedmethod for P = 4 sources and N = 4 sensors.
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Figure 11 Experimental tank.

To decorrelate the signals, smoothing methods are used.
Spatial smoothing for classical methods [18] and frequen-
tial smoothing for the proposed methods are used. The
smoothing methods in spatial (respectively, frequential)
domain require that the number of sensors N (respec-
tively, the numberM of frequencies) must be greater than
or equal to 3P

2 . As the number of sources increases, the
classical methods will not give satisfying results when P >
2N
3 . The proposed method shifts all the spatial assump-
tions of classical methods into frequential assumptions.
We observed the performance of the classical and pro-

posed methods when we increase gradually the number

of sources from P = 1 to 6 sources, whose ranges and
DOA values are, in order of appearance, (100 m, −10°; 98
m, −2.5°; 102 m, 2.5°; 96 m, −5°; 104 m, 5°; 94 m, −7.5°).
The signals are received on a rectilinear and of N = 4
sensors which corresponds to a 1.5-m-length equispaced
antenna. The received signals are simulated for an under-
water acoustic experiment. Each source emits a linear
chirp signal:

s(t) =
{
ei2π

(
f0+ �f

2T .t− �f
2

)
t if 0 ≤ t < T

0 else
, (46)

Figure 12 Experimental setup.
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Figure 13 DOA RMSE (°) for experimental data, N = 4, P = 5, versus SNR.

with a span of T = 0.25 s, a band of �f = 3 kHz and a
central frequency of f0=1.5 kHz. The received signal on
each sensor is generated using rj(t) = ∑P

i=1 ci,js(t− τi,j) +
nj(t); j = 1, · · · , 4, where the noise nj(t) is white and
Gaussian with variance σ 2 and the ci,j coefficients are ran-
domly chosen and uniformly distributed so |ci,j| = 1. As
the medium is assumed to be water, the velocity of the
wave is set to v = 1,500m/s and the τi,j are calculated using
Eq. (27). The SNR value is set to SNR = 10 dB defined
by SNR = 10 log

( |s|2
σ 2

)
.The received signal is sampled at

10 kHz.

For each simulation, Nt = 500 trials are used, and K =
150 sub-bands containing L = 50 frequencies are used.
The DOA estimation root mean square error (RMSE)

defined as:

RMSE(θ) =

√√√√√ 1
P

P∑
i=1

1
Nt

Nt∑
j=1

[
(θi − θ̂

j
i )
2
]
, (47)

and the range normalized root mean square error
(NRMSE) defined as:

Figure 14 Range NRMSE (%) for experimental data, N = 4, P = 5 versus SNR.
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NRMSE(ρ) =

√√√√√ 1
P

P∑
i=1

1
Nt

Nt∑
j=1

⎡
⎣(ρi − ρ̂

j
i

ρi

)2
⎤
⎦ (48)

are shown in Figures 7 and 8 versus the number of sources.
When P < N , bothmethods are able to estimate the DOA,
the proposed method giving more accurate results. When
P ≥ N , classical methods cannot be used. The proposed
method still works with a satisfying accuracy .
Moreover, the proposed method estimates the range of

the different sources, as shown in Figure 8. Figures 9 and
10 show the range and DOA RMSE versus the SNR.

Experimental data
In order to assess the efficiency of the proposed method,
we propose to localize buried objects in a real-world
environment. The experiment is carried out in an acous-
tic tank under conditions which are similar to those in
an underwater environment. The bottom of the tank is
filled with sand. The experimental device is presented in
Figure 11. The tank is topped by two mobile carriages.
The first carriage supports an issuer transducer and the
second supports a receiver transducer managed by the
computer. The observed signals come from various reflec-
tions on the objects being in the tank. In this experiment,
we have recorded the reflected signals by a single receiver.
This receiver is moved along with a straight line with a
step d = 10 cm in order to create a uniform linear array of
N = 5 sensors. The buried objects are P = 6 small cylin-
drical shells, buried at the same depth in sand, with DOA
{32°, 33°, 34°, 35°, 36°, 37°}. The wave speed in the water
v1 = 1,500 m/s and in the sediment v2 = 1,700 m/s.
Figure 12 sums up the experimental set-up.
For each experiment, the transmitted signal is a short

pulse with a duration of 15 μs, the frequency band is
[150,250] kHz. At each sensor, time-domain data corre-
sponding only to target echoes are collected with SNR
equal to 20 dB. To simulate different SNR values, we add a
simulated white Gaussian noise. In this study, the received
signal from direct path of propagation is used to fulfil
matrix �.
The estimation of RMSE and NRMSE as given in

Eqs. (47) and (48) is presented versus SNR values in
Figures 13 and 14. From Figures 13 and 14, it can be seen
that the proposed method could effectively estimate the
bearings and ranges of the buried objects in the real-world
data since the RMSE and NRMSE are low.

Conclusions
This paper describes a way to address the problem of
scattering object localization when the usual methods
cannot be applied, especially because this method allows
the number of sources to be higher than the number of
sensors since the emitted signal is wideband. It enables,

for instance, to have antennas with less sensors. Further-
more, several sources can have the same DOA. Thus, the
proposed method exploit the spectral information of the
wideband received spectrum. The signal received on each
sensor is treated independently, using high-resolution
algorithms to estimate the TDOA of each scattered image
of the emitted signal. Then, the DOA and the range are
jointly estimated to localize the objects. Numerical results
for both simulated and experimental data reveal the good
performance of our method for DOA estimation as well as
for range estimation.
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