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Abstract

Audio identification via fingerprint has been an active research field for years. However, most previously reported
methods work on the raw audio format in spite of the fact that nowadays compressed format audio, especially
MP3 music, has grown into the dominant way to store music on personal computers and/or transmit it over the
Internet. It will be interesting if a compressed unknown audio fragment could be directly recognized from the
database without decompressing it into the wave format at first. So far, very few algorithms run directly on the
compressed domain for music information retrieval, and most of them take advantage of the modified discrete
cosine transform coefficients or derived cepstrum and energy type of features. As a first attempt, we propose in this
paper utilizing compressed domain auditory Zernike moment adapted from image processing techniques as the
key feature to devise a novel robust audio identification algorithm. Such fingerprint exhibits strong robustness, due
to its statistically stable nature, against various audio signal distortions such as recompression, noise contamination,
echo adding, equalization, band-pass filtering, pitch shifting, and slight time scale modification. Experimental results
show that in a music database which is composed of 21,185 MP3 songs, a 10-s long music segment is able to
identify its original near-duplicate recording, with average top-5 hit rate up to 90% or above even under severe
audio signal distortions.
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1 Introduction
As an emerging entertainment fashion, online music
business such as listening, downloading, identification,
and searching have become one of the hottest applica-
tions on the World Wide Web for several years.
According to the statistical report in [1], online music
ranks third in all network applications, and 75.2% Inter-
net users have ever used the above services.
Among various online applications, music identifica-

tion based on audio fingerprinting technique has
attracted much attention from both the research com-
munity and the industry. By comparing the fingerprint
of an unknown music segment, which is usually trans-
mitted from mobile phones on the wireless telecom net-
work or from personal computers on the Internet, with
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those previously calculated and stored in a fingerprint
database, related metadata such as lyrics and singer’s
name are returned. The fingerprint must characterize
the nature of the music content to differentiate from
each other, possess strong robustness to various kinds of
severe audio signal degradations, and typically use only a
several-second music fragment for identification in the
database. To date, a number of algorithms have been
published with rather high retrieval performance, most
of them operate on the PCM wave format, and commer-
cially deployed software systems have also appeared [2].
However, with the mature of CD-quality audio com-

pression techniques at lower bit rate and the fast grow-
ing of the Internet, compressed audio content is
increasingly ubiquitous and has become the dominant
fashion of storing and transmitting in either music li-
braries or personal electronic equipment. It will be inter-
esting and meaningful in practice if audio features are
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directly extracted from the compressed domain and used
for music identification in the database.
So far, only a few algorithms that perform music infor-

mation retrieval (MIR) directly on the compressed domain
have been proposed. Liu and Tsai [3] calculated the com-
pressed domain energy distribution from the output of the
polyphase filters as a feature to index songs. For each song
in the dataset, they use its refrain as the query example to
retrieve all similar repeating phases, obtaining an average
78% recall and 32% precision. They claim that to their
knowledge, this is the first compressed domain MIR algo-
rithm. Lie and Su [4] directly used selected modified
discrete cosine transform (MDCT) spectral coefficients
and derived sub-band energy and its variation to represent
the tonic characteristic of a short-term sound and to
match between two audio segments. The retrieving prob-
ability achieves up to 76% among the top-5 matched. Tsai
and Hung [5] described a query-by-example algorithm
using 176 MP3 songs of the same singer as the database.
They calculate spectrum energy from sub-band coeffi-
cients (SBC) to simulate the melody contour and use it to
measure the similarity between the query example and
those database items. By summing up the sub-band coeffi-
cients in every 12 frames (about one tone duration) to ob-
tain tone energy lines, the melody contour is represented
by a string sequence with two letters (U, D), where ‘D’
means the current tone energy is smaller than its preced-
ing one, and ‘U’ means greater. With 40 frames assembled
as a query example, the accuracy achieves 74% within top-
4 and 90% within top-5. In Tsai and Wang’s paper [6],
they used scale factors (SCF) and sub-band coefficients in
an MP3 bit stream frame as features to characterize and
index the object. All SCF and SBC values are divided into
26 bins using a tree-structured quantizer; values in the
same bin are accumulated to form a histogram as the final
indexing patterns. Due to its statistical nature, this ap-
proach can tolerate certain length variance between the
query example and database items. When length variance
is between [0%, 10%), [10%, 15%), [15%, 100%), the query
item can be obtained in top-5, 10, 15 results, respectively.
Pye [7] designed a new parameterization referred to as an
MP3 cepstrum based on a partial decompression of
MPEG-1 Layer III audio to facilitate the management of a
typical digital music library. It is approximately six times
faster than conventional Mel frequency cepstrum coeffi-
cient (MFCC) for music retrieval while the average hit rate
is only 59%. Jiao et al. [8] designed a robust compressed
domain audio fingerprinting algorithm, taking the ratio
between the sub-band energy and full-band energy of a
segment as intra-segment feature and the difference be-
tween continuous intra-segment features as inter-segment
feature. Experiments show that such fingerprints are ro-
bust against transcoding, down sampling, echo adding,
and equalization. However, the authors do not show any
results on the retrieval hit rate. Zhou and Zhu [9]
designed an MP3 compressed domain audio fingerprint-
ing algorithm. By exploiting long-term time variation in-
formation based on the modulation frequency analysis, it
is reported to be especially robust against time scale modi-
fication (TSM) at the cost of higher computation com-
plexity. However, in experiment, the defined detection
rate and accuracy rate are different from the top-n style
measures of other algorithms; thus, it is difficult to judge
whether it really outperforms other methods as stated. In
[10], Liu and Chang calculated four kinds of compressed
domain features, i.e., MDCT, MFCC, MPEG-7, and
chroma vectors from the compressed MP3 bit stream.
PCA is applied to reduce the high dimensional feature
space, and QUC-tree and inverted lists of MP3 signatures
are constructed to perform more efficient search. How-
ever, the experiments are only performed on MP3 frag-
ments, which is not enough to reflect the song-level
performance in real application environment.
The above methods achieve certain retrieval achieve-

ments, while they do not consider or obtain convincing
results to the most central problem in audio fingerprint-
ing, i.e., robustness. In practical application scenarios,
for example, transmitting an unknown music clip
through cell phone and wireless telecom network, the
audio might often be contaminated by various audio dis-
tortions like lossy compression, environmental noise,
echo adding, time stretching, and pitch shifting. More-
over, previously used features principally follow the line
of MDCT coefficient and its derived spectral energy.
Then, can we develop a new type of compressed domain
feature to achieve high robustness in audio fingerprint-
ing? It is well known that Zernike moment has been
widely used in many image-related research fields such
as image recognition [11], image watermarking [12], hu-
man face recognition [13], and image analysis [14] due
to its prominent property of strong robustness and rota-
tion, scale, and translation (RST) invariance. So far, vari-
ous compressed domain audio features including scale
factors [15,16], MP3 window-switching pattern [17,18],
basic MDCT coefficients and derived spectral energy,
energy variation, duration of energy peaks, amplitude
envelope, spectrum centroid, spectrum spread, spectrum
flux, roll-off, RMS, rhythmic content like beat histogram
[19-24] have been used in different applications such as
retrieval, segmentation, genre classification, speech/
music discrimination, summarization, singer identifica-
tion, watermarking, and beat tracing/tempo induction.
However, in spite of the extensive use in various image-
related research fields for years, to the authors’ know-
ledge, Zernike moment has not yet been applied to
music information retrieval. This motivated our initial
idea of developing compressed domain Zernike mo-
ments for audio fingerprinting technique. Two
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important properties of Zernike moment, i.e., strong ro-
bustness and translation invariance, are utilized to re-
spectively resolve the problems of noise interference and
desynchronization to some extent. Note that in the one-
dimensional (1D) audio circumstance, properties of rota-
tion and scale invariance are of no use.
In this paper, we first group 90 granules, the basic pro-

cessing unit in decoding the MP3 bit stream, into a rela-
tively big block for the statistical purpose, then calculate
low-order Zernike moments from extracted MDCT coef-
ficients located in selected low to middle sub-bands, and
finally obtain the fingerprint sequence by modeling the
relative relationship of Zernike moments between con-
secutive blocks. Experimental results show that this low-
order Zernike moment-based audio feature achieves
high robustness against common audio signal degrada-
tions like recompression, noise contamination, echo
adding, equalization, band-pass filtering, pitch shifting,
and slight TSM. A 10-s music fragment, which is pos-
sibly distorted, is able to retrieve its original recording
with an average top-5 hit rate of 90% or beyond in our
test dataset composed of 21,185 popular songs.
The remainder of this paper is organized as follows.

Section 2 introduces the basic principles of MPEG-1
Layer III, bit stream data format, the concept of Zernike
moment, and its effectiveness as a robust audio com-
pressed domain feature. Section 3 details the steps of de-
riving MDCT low-order Zernike moment-based audio
fingerprint and the searching strategy. Experimental re-
sults on retrieval hit rate under various audio signal dis-
tortions are given in Section 4. Finally, Section 5
concludes this paper and points out some possible ways
for future work.
2 Compressed domain auditory Zernike moment
2.1 Principles of MP3 compression and decoding
An illustration of the MPEG-1 Layer III encoder is
shown in Figure 1. In the first step, a sequence of 1,152
PCM audio samples are filtered through a polyphase fil-
ter bank into 32 Bark scale-like sub-bands, which simu-
late the critical bands in the human auditory system
(HAS), and then decimated by a factor 32. Each sub-
Figure 1 Block diagram of MPEG-1 Layer III (MP3) encoder.
band will thereby contain 36 sub-band samples that are
still in the time domain [25,26].
Next, the sub-bands are further subdivided to provide bet-

ter spectral resolution by MDCT transform using long or
short window depending on the dynamics within each sub-
band which is controlled by the psychoacoustic model. If
the time-domain samples within a given sub-band show a
stationary behavior, a long window (e.g., 25 ms) is chosen in
order to enhance the spectral resolution in the following
MDCT. If the sub-band samples contain transients, three
consecutive short windows (e.g., each is 4 ms) are applied in
order to enhance the time resolution in the following
MDCT. Moreover, start window and stop window are also
defined in order to obtain better adaption when window
transients appear. Figure 2 shows an example of a sequence
of windows applied to a sub-band.
MDCT transform on a sub-band will produce 18 fre-

quency lines if using a long window and three groups of
frequency lines each having six frequency lines at differ-
ent time intervals if using three consecutive short win-
dows. Fifty percent overlap between adjacent windows is
adopted in both cases. Therefore, MDCT transform on a
granule will always produce 576 frequency lines, which
are organized in different ways in the cases of long
windowing and short windowing.
Combined with other adjuvant techniques including

psychoacoustic model, scale-factor, Huffman coding, and
quantization, the final compressed bit stream is generated.
Figure 3 displays the frame format of MP3 bit stream [27].
Each frame has two granules to exploit further
redundancies.
In MP3 decoder, the basic processing unit of the input

bit stream is a frame of 1,152 samples, approximately
26.1 ms at the sampling rate of 44.1 kHz (note that each
granule can be dealt with independently) [28]. One
granule of compressed data is first unpacked and
dequantized into 576 MDCT coefficients then mapped
to the polyphase filter coefficients in 32 sub-bands by in-
verse modified discrete cosine transform. Finally, these
sub-band polyphase filter coefficients are inversely
transformed and synthesized into PCM audio, as shown
in Figure 4 [26]. Therefore, access of transformation co-
efficients in Layer III can be either at the MDCT or the



Figure 2 Illustration of a typical sequence of windows to be applied to a sub-band.
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filter bank level, the latter is obviously more time-
consuming.

2.2 A brief introduction of the Zernike moment
Zernike moment was originally designed as a powerful tool
for image processing applications due to its robustness and
RST invariant property. It has been demonstrated to outper-
form other image moments such as geometric moments,
Legendre moments, and complex moments in terms of sen-
sitivity to image noise, information redundancy, and capabil-
ity for image representation [29].
In this section, we give a brief introduction of the basic

concept of Zernike moment. Zernike moments are
constructed by a set of complex polynomials which form
a complete orthogonal basis set defined on the unit disk
x2 + y2 ≤ 1. These polynomials have the form

Pnm x; yð Þ ¼ Vn;m ρ; θð Þ ¼ Rnm ρð Þexp jmθð Þ; ð1Þ

where n is a non-negative integer, m is a non-zero
integer subject to the constraints that (n − |m|) is non-
negative and even, ρ is the length of vector from the ori-
gin to the pixel (x, y), and θ is the angle between the
vector and x-axis in counter-clockwise direction. Rnm(ρ)
is the Zernike radial polynomials in (ρ, θ) polar coordi-
nates defined as

Rnm ρð Þ ¼ ∑
n− mj j

2

s¼0
−1ð Þs n−sð Þ!

s! nþ mj j
2 −s

� �
! n− mj j

2 −s
� �

!
ρn−2s: ð2Þ
Figure 3 Frame format of MPEG-1 Layer III bit stream.
Note that Rn;m ρð Þ ¼ Rn;−m ρð Þ; so Vn;−m ρ; θð Þ ¼ V �
n;m

ρ; θð Þ.
Zernike moments are the projection of a function onto

these orthogonal basis functions. The Zernike moment
of order n with repetition m for a continuous two-
dimensional (2D) function f(x, y) that vanishes outside
the unit disk is defined as

Anm ¼ nþ 1
π

∬
x2þy2≤1

f x; yð ÞV �
n;m x; yð Þdxdy: ð3Þ

For 2D signal-like digital image, the integrals are re-
placed by summations to

Anm ¼ nþ 1
π

∑
x
∑
y
f x; yð ÞV �

n;m x; yð Þ; x2 þ y2≪1: ð4Þ

2.3 Compressed domain auditory Zernike moment
The inconvenience of directly applying Zernike moment
to the audio case lies in that audio is inherently a time-
variant 1D data, while the Zernike moments are only ap-
plicable for 2D data. Therefore, we must map the audio
signals to 2D form before making them suitable for cal-
culating the moment. In this paper, we construct a series
of consecutive granule-MDCT 2D images to directly cal-
culate the Zernike moment sequence in the MP3 com-
pressed domain. In light of the frame format of the MP3
bit stream, one granule corresponds to about 13 ms,
which means that it is indeed an alternative representa-
tion of time. On the other hand, MDCT coefficients can
be roughly mapped to actual frequencies [30]. Therefore,



Figure 4 Block diagram of MPEG-1 Layer III (MP3) decoder.
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the way we construct granule-MDCT images is virtually
done on the time-frequency plane. Human audition can
be viewed in parallel with human vision if the sound is
converted from a one-dimensional wave to a two-
dimensional pattern distributed over time along a fre-
quency axis, and the two-dimensional pattern (frequency
vs. time) constitutes a 2-D auditory image [31]. This
way, we may seek to explore alternative approaches to
audio identification by making recourse to mature tech-
nical means applied in computer vision. Although the
link between computer vision and music identification
has been made in several published algorithms, which all
take the short-time Fourier transform of time-domain
audio slices to create the spectrograms for the time-
frequency representation using only the magnitude
components [32-35], methods based on visualization of
compressed domain time-MDCT images have not yet
been demonstrated for music identification. We argue
that mature techniques in computer vision such as
Zernike moment may in fact be useful for computa-
tional audition; the detailed calculation procedures of
the proposed method will be described in the next
section.
As stated in the introduction, the goal of calculating

MDCT-based Zernike moment is to use it as an audio
fingerprint after necessary modeling, for direct com-
pressed domain music identification. As an effective
audio feature, will it be steady enough under various
audio signal distortions? We did some experiments to
check it. Figure 5 shows an example of MDCT 2-order
Zernike moment sequence calculated from a 5-s clip of
an MP3 song. The calculation includes several steps like
granule grouping, sub-bands selection, and auditory
image construction. It is a complex procedure and will
be depicted in detail in the next section. It can be clearly
seen that the Zernike moment curve is rather stable,
keeping its basic shape at the same time positions under
common audio signal distortions like MP3 recompres-
sion at 32 kbps, echo adding, band-pass filtering, noise
contamination, volume modulation, equalization, and
pitch shifting up to ±10%. When the sample excerpt is
slightly time scale-modified, the curve only translates a
small distance along the time axis with little change to
the basic shape. These observed phenomena confirm
our initial motivation. Herein, low-order Zernike mo-
ment of time-MDCT auditory image displays great po-
tential to become a powerful audio fingerprint.

3 Algorithm description
As described above, the main difficulty of applying
Zernike moment to audio is the dimension mismatching.
So, we first depict how to create a 2D auditory image
from 1D compressed domain MP3 bit stream. The de-
tailed procedure of this proposed algorithm is described
as follows.

3.1 MDCT-granule auditory image construction
3.1.1 Y-axis construction: frequency alignment
MP3-encoded bit stream is divided into many frames,
which are the basic processing unit in decoding. Each
frame is further subdivided into two independent gran-
ules, each with 576 values. If a granule is encoded using
a long window, these 576 values represent 576 frequency
lines and are assigned into 32 Bark scale-like sub-bands,
that is, each sub-band includes 18 frequency lines. If a
granule is compressed via a short window, these values



Figure 5 An example MDCT Zernike moments curve under various audio signal degradations. Order = 2, block = 50 granules, hop
size = 2 granules.
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only stand for 192 frequency lines, and each line in-
cludes three values that belong to three consecutive win-
dows respectively, see Figure 6.
In order to construct the Y-axis of the auditory im-

ages to calculate the Zernike moment, we must unify
the frequency distribution of both long- and short-
window cases by adapting the original MDCT-granule
relationship to achieve approximately the same fre-
quency resolution. For long-window cases, we group
every three consecutive MDCT coefficients of one
Figure 6 Distribution of MDCT coefficients in ‘long window’ and ‘sho
granule into a new sub-band value, which is equal to
the mean of the absolute value of the original three
MDCT coefficients, considering that MDCT coeffi-
cients could be positive or negative, see Equation (5).
For short-window cases, we substitute the original
three MDCT values belonging to different windows at
the same frequency line with the mean of their abso-
lute value, see Equation (6). In this way, all MDCT
values in a granule are uniformly divided into 192
new sub-bands for both long- and short-window
rt window’ types of granule.
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cases; this forms the basis for further construction of
auditory image.

sn i; jð Þ ¼
snl i; jð Þ ¼ 1

3

X3jþ2

n¼3j

s i; nð Þj jj ¼ 0; 1; 2…; 191 5ð Þ

sns i; jð Þ ¼ 1
3

X2
m¼0

sm i; jð Þj jj ¼ 0; 1; 2…; 191; 6ð Þ

8>>>><
>>>>:

where s(i, n) is the original MDCT coefficient in the
ith granule, nth frequency line for the long-window
case; sm(i, j) is the original MDCT coefficient in the ith
granule, jth frequency line, mth window for the short-
window case; and snl(i, j) and sns(i, j) are the new MDCT
values in the ith granule, jth frequency line for the long-
and short-window cases, respectively.

3.1.2 X-axis construction: granule grouping
After the above Y-direction operations, we have to go on set-
ting up the X-axis to form the final auditory images. In the
proposed method, N continuous granules (N= 90 in experi-
ment) are partitioned into a block and act as the X-axis of
one auditory image. The first block slides forward with M
granules (M = 1 in experiment) as the hop size to form the
X-axis of the following images.
Besides being a necessary step to construct the X-

axis of auditory images, overlapping between two
consecutive blocks is also a radical means to alleviate
the time-domain desynchronization between the ori-
ginal and the extracted fingerprint calculated later.
Figure 7 shows an illustration of the mechanism: H(i)
represents the start section of the ith block, H(i + 1)
represents that of the (i + 1)th block (the whole block
length is unable to be depicted due to the space limi-
tation). The hop size is for example 2 granules, i.e.,
A + B (A = B here). By reason of the time-domain
desynchronization caused by random cropping etc.,
query bit stream is scarcely possible to be exactly
aligned to H(i) or H(i + 1). When the query clip lies
on the left of the dashed line, for example QH(j), it
Figure 7 Desynchronization alleviation by overlapping between cont
resembles H(i) more, while when it lies on the right,
for example QH(j’), it looks more like H(i + 1). Only
when the query fragment happens to lie in the mid-
dle, it comes to the worst synchronization perform-
ance, i.e., half hop size. We hope that the designed
audio fingerprint benefits from the transformation in-
variance property of the Zernike moment and will
only be slightly or even not changed under this scope
of misalignment.

3.1.3 Auditory image construction
With the above definition of the X- and Y-axes, we are
now to construct the auditory images for calculating
Zernike moments. Figure 8 is an image for illustration,
where its pixels constitute anM ×N matrix. N pixels along
the Y-axis represent N new MDCT coefficients calculated
in terms of Equations (5) and (6), and M pixels at the X-
axis mean the M time-domain granules, i.e., a block. It is
known that sounds located in the low-middle frequency
area cover the main content most vital to the HAS and
are usually much more robust against various audio dis-
tortions than high frequency components. Therefore, we
pick out the second to the fifty-first new sub-band MDCT
values in this method to act as the Y-axis, which roughly
correspond to 300 to 5,840 Hz of real frequency according
to Table 1 [17]. M is set to 90 granules to form the X-axis
and mitigate the problem of desynchronization.
Consequently, the (x, y) coordinates of a pixel in

the kth constructed auditory image are shown in
Equation (7):

f k x; yð Þ ¼ sn i; jð Þ
k ¼ 0; 1; 2…;N block

i ¼ 0; 1; 2…; 89
x ¼ k � hop sizeþ i
y ¼ j ¼ 2; 3;…; 51

; ð7Þ

where k means the kth auditory image, and Nblock is
the total number of blocks of the query clip or the
iguous blocks.



Figure 8 An illustration of the constructed auditory image.
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original music piece, which is variable and determined
by the audio length.

3.2 Compressed domain audio features: MDCT Zernike
moments
Fragment input and robustness are known to be two
crucial constraints on audio fingerprinting schemes. If
modeling with audio signal operations, this is equal
to imposing random cropping plus other types of
audio signal processing on the input query example.
Random cropping causes serious desynchronization
between the input fingerprint sequence and those
stored ones, bringing a great threat to the retrieval
hit rate. Usually, there are two effective mechanisms
to resist time-domain misalignment, one is invariant
feature, and the other is implicit synchronization
which might be more powerful than the former [36].
However, in the MPEG compressed domain, due to
its compressed bit stream data nature and fixed frame
structure, it is almost impossible to extract meaningful
Table 1 Map between MDCT coefficients and actual frequenc

Long window

Index of MDCT coefficient Frequency (Hz)

0 to 11 0 to 459

12 to 23 460 to 918

24 to 35 919 to 1,337

36 to 89 1,338 to 3,404

90 to 195 3,405 to 7,462

196 to 575 7,463 to 22,050
salient points serving as anchors as in the uncompressed
domain [37]. Therefore, designing a statistically stable
audio feature becomes the main method to fulfill the task
of fragment retrieval and resisting time-domain
desynchronization in audio fingerprinting.
With the preparations above, we substitute f(x, y) in

Equation (4) with f k(x, y) in Equation (7) and calculate
the Zernike moment of the kth auditory image as below

Ak
nm ¼ nþ 1

π
∑
x
∑
y
f k x; yð ÞV �

n;m x; yð Þ; ð8Þ

where n is the moment order, and m must be subject to
the condition that (n − |m|) is non-negative and even.

3.2.1 Effect of moment orders
The order n plays a crucial role in the above moment calcu-
lation. A carefully selected order will directly determine the
robustness of this feature and the running speed. Generally
ies for long and short windows sampled at 44.1 kHz

Short window

Index of MDCT coefficient Frequency (Hz)

0 to 3 0 to 459

4 to 7 460 to 918

8 to 11 919 to 1,337

12 to 29 1,338 to 3,404

30 to 65 3,405 to 7,462

66 to 191 7,463 to 22,050
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speaking, low-order moments characterize the basic shape
of an audio or image signal, while higher-order ones depict
the high-frequency details [14]. Thereby, we naturally con-
jecture that low-order Zernike moments will perform better
than high-order moments in our application. In order to
verify this assumption and help obtain the most suitable
order for strong robustness, we did some comparative ex-
periments shown below. In Figure 9, the Zernike moment
of orders 2, 6, 10, and 16 are first calculated and then com-
pared with those values under two typical distortions, i.e.,
equalization and noise addition. It can be clearly seen that
with the order increasing, the moment envelope fluctuates
more and more dramatically. The Zernike moment curve of
the order 2 is the most stable one in the experiment and is
chosen as the final value in this algorithm. An affiliated
benefit brought by this order is that the computation speed
of its corresponding Zernike moment is much faster than
any other higher-order situations.
3.3 Fingerprint modeling
On the basis of those Zernike moments calculated
from a series of auditory images sliding along the
granule axis, we sum up all Zernike moments with
order n ≤ 2 as the final feature to further increase the
invariance as shown in Equation (9). The final audio
fingerprint sequence is derived according to Equation
(10). This method is straightforward yet effective by
omitting the exact moment values and only retaining
their relative magnitude relationship. Similar methods
have been used in query-by-humming systems to
model the progressive tendency of the melody line.
Figure 9 Stability of MDCT Zernike moments at different orders (2, 6,
Zk
mn ¼

X
0≤n≤2
n−ð jmj≥0

n− mj jð Þ%2 ¼ 0

Ak
mn ð9Þ

S kð Þ ¼ 0 if Zk
mn < Zkþ1

mn
1 if Zk

mn ≥ Zkþ1
mn

k ¼ 0; 1; 2…;N slot−1:
�

ð10Þ

3.4 Fingerprint matching
The emphasis of this paper is taking compressed do-
main audio Zernike moment as the key feature for
audio fingerprinting. As stated in Section 2, such kind
of feature is rather stable under common audio signal
distortions and slight time-domain misalignment like
time scale modification. By further modeling with the
fault-tolerant magnitude relationship between mo-
ments of successive auditory images, the steadiness of
the derived fingerprints is further reinforced. There-
fore, by right of the power of the stable fingerprint,
we can adopt a relatively straightforward yet effective
measure, i.e., Hamming distance, to perform exhaust-
ive matching between the query example and those
stored recordings. An illustration of the matching
procedure is shown in Figure 10. More specifically,
let {x1, x2, … , xn} be the input query fingerprint se-
quence which belongs to the kth song, xi1; x

i
2;…; xiN

� �
be the stored fingerprint sequence of the ith song
(n≪N), Nsong be the number of songs stored in the
10, and 16).



i

Figure 10 An illustration of the fingerprint matching procedure.
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database, and Equation (11) be the minimum bit error
rate (BER) of matching within a song.

BER ið Þ ¼ 1
n
min x1; x2;…; xnð Þ⊗ xij; x

i
jþ1;…; xijþn−1

� �� �
¼ 1;…;N song j ¼ 1;…;N−nþ 1:

ð11Þ
The total number of comparison within the database

is (N − n + 1) ×Nsong.
Given a reasonable false positive rate (FPR), the

threshold of the bit error rate T can be acquired from
both theoretical and practical ways to indicate under
what condition a match can be called a hit. Let BER
(i’) be the ascending reordered form of BER(i), namely
BER(1’) < BER(2’) < BER(3’) < BER(4’) < BER(5’) <… <
BER(Nsong

’ ), then the final retrieval results are summa-
rized in Equation (12), and more details are shown in
the flow diagram of Algorithm 1 below.

result ¼
top1 if k ¼ 1

0

top5 else if k∈ 2
0
; 3

0
; 4

0
; 5

0� �
top10 else if k∈ 6

0
; 7

0
; 8

0
; 9

0
; 10

0� �
failed else

8>><
>>:

ð12Þ

4 Experiments
The experiments include a training stage and a testing
stage. In the training step, three parameters (i.e., hop
size, block size, and BER threshold) that affect the algo-
rithm’s performance are experimentally tuned to get the
best retrieval results. To achieve this end, a small train-
ing music database composed of 100 distinct MP3 songs
is set up. In the testing stage, the algorithm with the
obtained parameters from training is tested on a large
dataset composed of 21,185 different MP3 songs to thor-
oughly evaluate the retrieval performance and robust-
ness. All songs in the two databases are mono, 30 s long,
originally sampled at 44.1 kHz, and compressed to
64 kbps, with a fingerprint sequence of 672 bits. In both
stages, audio queries are prepared as follows. For each
song in the training (testing) database, a 10-s long query
segment is randomly cut and distorted by 13 kinds of
common audio signal manipulations to model the real-
world environment, and hence, 1,400 (296,590) query
segments (including the original segments) are obtained,
respectively.
4.1 Parameter tuning
First, we describe the parameter tuning procedure. Note
that when the combination of the parameters varies, the
associated fingerprint database is named in accordance



Figure 11 Influence of various hop sizes on top-1 hit rate.
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with the following rule, i.e., FPDB_ < hop-size > _ <
block-size > _ < order-number > .

4.1.1 Effect of hop size
Hop size is the interval between two adjacent blocks in
the time axis. Smaller hop size is beneficial to alleviate
the desynchronization between the query segment and
its true counterpart in the original audio. Since each
Figure 12 Influence of various block sizes on top-1 hit rate.
block is concatenated by granules, theoretically, one
granule of hop size will lead to the minimal displace-
ment. This conclusion is also experimentally demon-
strated in Figure 11, where hop size varies from 1 to 4,
the block size are fixed at 30 or 40, and the Zernike mo-
ment order fixed at 2 or 4. It can be clearly seen that
when the hop size is 1, the corresponding blue curves
are always above other curves. More precisely, when the
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hop size becomes bigger, the top-1 hit rate curve moves
downwards, namely the identification accuracy becomes
worse.

4.1.2 Effect of block size
As stated in Section 3, a block is assembled by a set of
granules in order to endure small variations in the time
domain. Generally, longer block will generate steadier
Zernike moment value at the cost of lowering local sen-
sitivity and discriminability of fingerprints. To investi-
gate the effect of block size on top-1 hit rate, we first fix
the hop size at 1 and Zernike moment order at 2 and
then vary the block size from 30 to 120 by increment of
10. From Figure 12, it can be seen that for the common
audio signal distortions such as lossy compression, echo
adding, and resampling, the top-1 hit rates are not obvi-
ously affected by the increase of the block size. However,
for time scale modifications (±2% and ±3% in the experi-
ment), the corresponding four curves (in the middle of
the figure) go up monotonically with the increase of the
block size and reach a stable status when block size is
equal to 90 granules. Therefore, the parameter block size
is set as 90 in the experiment.

4.1.3 BER thresholding
Since we use BER as the metric to test fingerprint simi-
larity (discrimination) and robustness, we have to first
determine a reasonable threshold T based on the desired
FPR in real applications. It is insignificant to claim the
robustness without taking FPR into consideration. For a
query fingerprint and an equal-length part of a stored
fingerprint, they are judged as similar in a perceptual
sense if the bit error rate is below the threshold T. The-
oretical and semi-theoretical analysis on bit error rate
Figure 13 Relationship between BER threshold and top-1 hit rate.
have been studied in the literature (for example, [8,38]).
However, these approaches rely on the assumption that
fingerprint bits are random independent and identically
distributed, and error bits can be further modeled by
normal distribution. This is unfortunately not the case
in reality due to relevance incurred by large overlap be-
tween contiguous frames, and a theoretical FPR value is
usually much smaller than its corresponding experimen-
tal value. Consequently, we prefer to adopt the experi-
mental method to estimate the false positive rate. First, a
set of fingerprint pairs combined from different songs
are constructed, then the BER of each pair is calculated.
All BER values exhibit a bell-shaped distribution around
0.5. Given a specific threshold T, false positive rate is de-
termined by dividing the number of falsely matched
queries by that of all fingerprint pairs. We further ob-
serve that experimental FPRs corresponding to most
thresholds, for example from 0.2 to 0.4, are acceptable in
practice. Then, which threshold is most appropriate? To
help make this selection, we did some experiments from
another point of view to investigate the relationship be-
tween top-1 identification hit rate and the BER threshold
T as shown in Figure 13. It can be seen that when T in-
creases from 0.30 to 0.40, the hit rate lines under com-
mon audio signal distortions, pitching shifting, and time
scale modifications first successively go upwards monot-
onously and then keep steady after 0.34; in other words,
bigger thresholds do not significantly contribute to the
identification hit rate any more. In conclusion, 0.34 is
adopted as the BER threshold in the experiment.

4.2 Retrieval results under distortions
To simulate the real-world interference, we apply
various audio signal operations on the compressed



Figure 14 Retrieval performance under various time-frequency distortions.

Table 2 False statistics of identification results

Actual Predicted

Positive Negative

Positive (27,378) 23,336 4,042

Negative (29,256) 106 29,150
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query examples using audio editing tools Cool Edit
(Adobe Systems Inc., CA, USA) and Gold Wave
(GoldWave® Inc., Canada). Since music identification
is done in a fragmental way, the processing procedure
is actually equivalent to a mixture of random cut plus
signal processing. For each song in the testing data-
base, where 21,185 distinct songs are collected all to-
gether, a 10-s segment is first randomly cut and then
manipulated by 13 various audio signal distortions.
Accordingly, the query set amounts to 296,590 audio
excerpts. With the parameters set as above (i.e., block
size = 90, hop size = 1, and BER threshold = 0.34), the
top-1, 5, and 10 identification rates of the queries
within the testing dataset are averaged and illustrated
in Figure 14. The horizontal axis lists the abbreviation
of audio signal distortions adopted in the experiment.
ORG means original audio signal which is not
distorted. ECHO means echo addition with 100-ms
delay and 50% decay. EQUH means 10-band
equalization. PF10 and PZ10 mean pitch shifting by
−10% and +10%, respectively. NOI20 means noise
addition at SNR of 20 dB. BP means band-pass filter-
ing from 100 to 6,000 Hz. 32 means MP3
recompression under 32 kbps. VAL6 and VAL3 mean
volume change under −6.02 and +3.52 dB, respect-
ively. TSMZ2, TSMF2, TSMZ3, and TSMF3 mean
time scale modification under +2%, −2%, +3%, and
−3%, respectively.
It can be seen that this proposed MDCT Zernike

moment-based fingerprint shows satisfying identifica-
tion results, even under severe audio signal processing
like heavy lossy recompression, volume modulation,
echo adding, noise interference, and various frequency
wrappings such as band-pass filtering, equalization,
and pitch shifting (±10%). To be more specific, when
the queries are original or only distorted by echo
adding, band-pass filtering, and volume modulation,
the top-5 hit rates (green bars) are almost not
influenced and all come close to 100%. Under other
more severe signal manipulations such as equaliza-
tion, pitch shifting, noise addition, and MP3 compres-
sion, the top-5 hit rates are pretty good and still
above 90%. The only deficiency is that under pitch-
reserved time scale modifications, which can be mod-
eled as a kind of cropping/pasting to relatively
smooth local parts in between music edges [37], the
identification results drop quickly with the increase of
scaling factors and become unacceptable when ±3%
time scale modifications are performed.
This weakness is essentially caused by the fixed data struc-

ture of the MP3 compressed bit stream. In this case, implicit
synchronization methods based on salient local regions can-
not be applied. The only way to resist serious time-domain
desynchronization is to increase the overlap between con-
secutive blocks and design more steady fingerprints; how-
ever, the overlap has an upper limit of 100% (98% has been
used in this method), and discovering more powerful fea-
tures is not an easy work.
At present, it is difficult to quantitatively compare

with other algorithms because different datasets or
even different evaluation measures are used. It is also
unrealistic to precisely reimplement these methods
due to the lack of adequate details. In fact, one im-
portant task of our work is to collect enough songs
(21,185 songs in the experiment) and queries (296.590
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distorted queries) under various distortions (13 kinds
of audio signal distortions) so that the experimental
results are more convincing. Since this dataset is
much larger and more comprehensive than those
used in the cited references, the source codes will be
published to the research community and serve as a
baseline system.

4.3 False analysis
In a practical identification system, two important false
statistics must be taken into account to thoroughly
evaluate the overall performance. The first is called false
negative rate, which fails to detect the correct songs
even though the query is included in the database. The
second is false positive rate, which returns wrong
matched results for a query that does not belong to the
database and is more annoying in commercial applica-
tions. Below, a confusion matrix is adopted to analyze
the two types of mistakes. To achieve this aim, we pre-
pare 27,378 queries that exist in the testing database and
29,256 queries that come from outside the database. In
all the true queries, 4,042 of them are not successfully
retrieved from the database (i.e., the false negative rate is
14.7%), while for all the false queries, 106 of them are
falsely judged to be within the database and get wrong
results (i.e., the false positive rate is 3.6 × 10−3), as shown
in Table 2. The false positive rate is acceptable in prac-
tical application, while the false negative rate is relatively
big. The reasons are twofold, one is that the above num-
bers are top-1 identification results, the other is that
many database songs of a same singer have quite similar
musical aspects in rhythm, harmonic progression, in-
strument arrangement, etc. so that the queries are
confused.

5 Conclusion
In this paper, a novel music identification algorithm is
proposed, which directly works on the MP3-encoded bit
stream by constructing the MDCT-granule auditory im-
ages and then calculating the auditory Zernike moments.
By virtue of the short-time stationary characteristics of
such feature and large overlap, 10-s long query excerpts
are shown to have achieved promising retrieval hit rates
from the large-scale database containing intact MP3
songs and distorted copies under various audio signal
operations including the challenging pitch shifting and
time scale modification. For future work, combining the
MDCT Zernike moments with other powerful com-
pressed domain features using information fusion will be
our main approach to improve the retrieval performance
and robustness against large time domain misalignment
and stretching. Cover song identification performed
right on the compressed domain is our final aim to be
accomplished.
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