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Abstract

Reduction can be important to aid quickly attaining the integer least squares (ILS) estimate from noisy data. We
present an improved LLL algorithm with fixed complexity by extending a parallel reduction method for positive
definite quadratic forms to lattice vectors. We propose the minimum angle of a reduced basis as an alternative quality
measure of orthogonality, which is intuitively more appealing to measure the extent of orthogonality of a reduced
basis. Although the LLL algorithm and its variants have been widely used in practice, experimental simulations were
only carried out recently and limited to the quality measures of the Hermite factor, practical running behaviors and
reduced Gram-Schmidt coefficients. We conduct a large scale of experiments to comprehensively evaluate and
compare five reduction methods for decorrelating ILS problems, including the LLL algorithm, its variant with deep
insertions and our improved LLL algorithm with fixed complexity, based on six quality measures of reduction. We use
the results of the experiments to investigate the mean running behaviors of the LLL algorithm and its variants with
deep insertions and the sorted QR ordering, respectively. The improved LLL algorithm with fixed complexity is shown
to perform as well as the LLL algorithm with deep insertions with respect to the quality measures on length reduction
but significantly better than this LLL variant with respect to the other quality measures. In particular, our algorithm is
of fixed complexity, but the LLL algorithm with deep insertions could seemingly not be terminated in polynomial time
of the dimension of an ILS problem. It is shown to perform much better than the other three reduction methods with
respect to all the six quality measures. More than six millions of the reduced Gram-Schmidt coefficients from each of
the five reduction methods clearly show that they are not uniformly distributed but depend on the reduction
algorithms used. The simulation results of the reduced Gram-Schmidt coefficients have clearly shown that our
improved LLL algorithm tends to produce small reduced Gram-Schmidt coefficients near zero with a larger probability
and large reduced Gram-Schmidt coefficients near both ends of 0.5

and —0.5 with a smaller probability.
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1 Introduction method was invented by the three authors with an L in

Reduction is to find the shortest basis vectors and try
to make them as orthogonal as possible [1,2]. It has
been revolutionarily revitalized with the publication of
the landmark polynomial-time reduction method by A.
Lenstra, H. Lenstra and L. Lovasz [3]. Since this reduction
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all their family names, it has since been widely known as
the LLL or L3 algorithm (see e.g., [4-6]). Almost all prac-
tical algorithms of reduction are involved with the LLL
algorithm at a certain stage [7]. The LLL algorithm has
already had a profound impact on computational geome-
try of numbers and found many important applications in
a variety of highly interdisciplinary subjects such as inte-
ger programming [8-10], multiple-input-multiple-output
(MIMO) communication systems [11-14], learning with
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errors [15], cryptography [4,16], discrete tomography [17],
and global navigation satellite systems (see e.g., [18-27]).
As a result, even an international conference was solely
dedicated to celebrate the 25th birthday of the invention of
the LLL algorithm at the University of Caen in 2007, with
its proceedings containing excellent review and applica-
tion papers (see e.g., [6,28,29]) published in 2010 [5] (For
more information on this event, the reader is referred to
the conference website http://11125.info.unicaen.fr/ and the
book of proceedings [5]).

Although the LLL algorithm has been successfully
applied in practice, its actual running behavior remains
mysterious, is problem-dependent and cannot be pre-
cisely predicted in advance (see e.g., [6,14,29,30]), due
to the fact that the swapping operation of lattice vectors
is controlled by the Lovasz condition with a swapping
control parameter § (see e.g., [3,6,7,30]). Subsequent the-
oretical works are thus mainly focused on two aspects: (a)
to understand statistical mean running behavior and aver-
age complexity of the LLL algorithm in practice and (b)
to improve the efficiency and stability of the LLL algo-
rithm. Given a lattice £ with a complete basis B of full
rank #, Daudé and Vallée [30] proved that the complex-
ity O(n*logA) of the LLL algorithm, as given originally
by Lenstra et al. [3], can be replaced by O(n*logA/a),
which depends only on the ratio of lengths between the
longest and shortest lattice vectors. Here, A is the length
of the longest or maximum vector and a4 that of the
shortest vector. By assuming a probabilistic model of unit
ball for random lattice vectors (see also [31]), Daudé and
Vallée [30] further obtained the statistical mean complex-
ity of O(n* log n/2) for the LLL algorithm. Recently, Jaldén
et al. [13] showed that the complexity of O(n*logA/a)
[30] should only depend on the condition number «g of
the starting lattice basis B. In other words, A/a should
be replaced by «p. Ling and Howgrave-Graham [32] pro-
posed an effective LLL reduction method by relaxing the
size-reduced condition of the original LLL algorithm and
analyzed its complexity (see also [33]).

In addition to the probabilistic model approach, one
can directly conduct random simulations to gain insight
into practical running average behavior of the LLL algo-
rithm. An excellent numerical experiment in this aspect
was recently carried out by Nguyen and Stehlé [7],
based on three types of random lattice bases, namely,
the Goldstein-Mayer bases, the Ajtai-type bases and the
knapsack-type bases. Their simulations and theoretical
analysis confirmed the well-known fact that the LLL algo-
rithm performs much better in practice than the worst-
case bound of complexity. As a result, they proposed
a floating-point-based L? algorithm [6,7]. Based on the
random simulation results, Nguyen and Stehlé [7] fur-
ther studied the output quality of Hermite defects and
the distribution of the reduced Gram-Schmidt coefficients

Page 2 of 29

wij between —0.5 and 0.5. Following the experiments
on u; by Nguyen and Stehlé [7], Schneider et al. [34]
studied the mean and variance of the shortest reduced
vector.

A number of approaches have been proposed in order
to improve the performance and output quality of the
LLL algorithm, which include (a) imposing stronger test
conditions for swapping lattice vectors, (b) improving
numerical stability using Householder factorization and
floating point techniques, and (c) directly simplifying the
LLL algorithm with fixed complexity [14]. Compared with
the Lovasz swapping test of §||b} I < b, + i+1)ib] %
with § = 3/4, a stronger swapping strategy implies using a
larger value for the control parameter § in the Lovasz con-
dition, which can be between 0.95 and 0.999 (see e.g., [7]).
Unlike the Lovasz test which involves only the two consec-
utive orthogonalized vectors b} and bl’f_H, an even much
stronger swapping strategy was proposed by Schnorr and
Euchner [35], which is involved with all the orthogonal-
ized vectors (by,b},;,...,by) foralli < (k —1). If a
swapping is required, the vector by is directly inserted
between b;_; and b;. As a result, the strategy is naturally
called deep insertions by Schnorr and Euchner [35] (see
also [6]). Numerical stability and computational efficiency
have been successfully attained using Householder factor-
ization or properly selecting a floating point precision (see
e.g, [6,7]). Heuristics and sorting were also demonstrated
to enable to speed up reduction such as the LLL algorithm
and improve its output quality [19,21-23,36-39] (For the
review on recent progress of the LLL algorithm and other
variants, the reader is referred to Nguyen and Vallée [5],
Stehlé [6], Seysen [40] and Vallée and Vera [29]).

The purposes of this paper are threefold: (a) to extend
the parallel Cholesky-based reduction for positive defi-
nite quadratic forms proposed recently by Xu [22] to the
reduction of lattice basis vectors, which will be referred
to as an improved LLL algorithm with fixed complexity in
the remainder of this paper; (b) to propose the minimum
angle as an alternative quality measure of orthogonaliza-
tion of the reduced lattice basis; and (c) to conduct a
large scale of random simulations in order to compare
and evaluate five lattice basis reduction methods, namely,
the original LLL algorithm, the deep-insertion LLL algo-
rithm proposed by Schnorr and Euchner [35], the fixed
complexity algorithm published by Vetter et al. [14], the
LLL algorithm with the sorted QR ordering presented by
Gan and Mow [38] (see also [33,39]) for basis vectors and
by Xu [22] for positive definite quadratic forms, and the
improved LLL algorithm with fixed complexity developed
in this paper. The comparison and evaluation of these
methods will be based on a number of reduction qual-
ity measures. In Section 2, we will first briefly outline
the LLL algorithm, the deep-insertion LLL algorithm, the
fixed complexity algorithm and the LLL algorithm with
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the sorted QR ordering for the convenience of compari-
son in numerical simulations, and then present our own
improved LLL algorithm with fixed complexity. Section 3
will focus on quality measures of reduction of lattice
vectors. In Section 4, we will conduct a large scale of ran-
dom simulations to demonstrate the performance of the
improved LLL algorithm with fixed complexity and com-
pare it with the other four algorithms. Finally, we will
summarize the major results in Section 5.

2 LLL-based reduction methods

Given m linearly independent vectors by, by,...,b, in
R", a (sub-)lattice is a discrete point set defined by (see
e.g., [1,2,41])

ﬁ:!ZbiZHZiGZ}, (1)
i=1

where R” is an n-dimensional, real-valued space, and
Z is a one-dimensional integer space. In particular,
Freeden [41] has further developed harmonic lattice
point theory for use in geomathematics. The vectors
b; ( = 1,2,...,m) form a basis of the lattice L. It
is well known that the bases of the lattice £ are not
unique, since the matrix B right-multiplied with a uni-
modular matrix G, namely, BG, is also a basis of L,
where B = (by,by,...,b,). Among an infinite num-
ber of the bases of £, some are much more efficient
for solving problems of theoretical and practical impor-
tance from pure and applied science than the others, as
already implied/demonstrated clearly by the first question
posed to Hendrik Lenstra from Van Emde Boas and A.
Marchetti-Spaccamela in 1980 that eventually led to the
invention of the celebrated LLL algorithm [28].

The question now is how to find the unimodular matrix
G such that the new lattice basis BG is optimal in a certain
sense of optimality. As far as senses of optimality are spec-
ified and formulated as objective functions, reduction is
then equivalent to solving an integer programming prob-
lem with one and/or multiple objective functions [22]. The
conventional sense of optimality in the theory of lattice
reduction would be twofold: (a) that all the reduced vec-
tors are the shortest and (b) that all the reduced vectors
are mutually orthogonal. Unfortunately, this combined
sense of optimality is practically impossible to achieve,
except for some trial types of bases. Even worse is that
the shortest vector problem itself is conjectured to be NP-
hard (see e.g., [42]), not to mention that finding a good
reduced basis generally is only the means to help solve
problems at hand but certainly not the final goal. Thus,
almost all algorithms of practical importance for lattice
basis reduction are either based on the Gram-Schmidt
orthogonalization or the Householder QR factorization
to naturally obtain a (suboptimal) unimodular matrix G
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under a certain condition for reducing the lengths of the
basis vectors. Other senses of optimality include the met-
ric for reduction defined by Seysen [40] and the minimiza-
tion of the maximum variance of the integer-transformed
real-valued solution proposed recently by Zhou and Ma
[43]. Since LaMacchia [44] reported that Seysen’s method
of reduction cannot compete with the LLL algorithm, we
will not pursue this method any further in this work.

2.1 ThelLLL algorithm

The LLL algorithm has been well documented in the lit-
erature, often given in the form of pseudo-codes (see e.g.,
[4,6,7,14,29,30,35]) and can even be easily available from
the internet. The algorithm consists of two essential com-
ponents, namely, the Gram-Schmidt orthogonalization
and the Lovasz condition. Given the basis by,by,...,b,,
(assumed to be linearly independent as in the above),
the Gram-Schmidt orthogonalization aims at making the
reduced basis as orthogonal as possible and proceeds as
follows:

i—1
b;»k =b, — Z /,Ll'jbik, (2a)
j=1
where the Gram-Schmidt coefficient
wij = (bi, b)/(b7, b) (2b)

is always assumed, without loss of generality, to fall
between —1/2 and 1/2, with (;, -) standing for the
Euclidean inner product on R”. In case that |u;| > 1/2,
b; is replaced with (b; — [14;7 b)), where [ 1] is the nearest
integer to ju;; [3]. Actually, a basis is called size-reduced, if
gl =1/2(A <j<i=<m).

To further make the reduced vectors as short as possi-
ble, the LLL algorithm implements the Lovasz condition,
namely,

SIIb 1% < bl + pa+nbf 2 3)

to decide whether the Gram-Schmidt orthogonalization
procedure (2) should be temporarily suspended and the
action of swapping between b;1; and b; should be taken.
If the swapping is necessary, one has to exchange b; with
bit1 and then set the current stage of (i + 1) back to i in
(2), before the orthogonalization (2) is reactivated. Lenstra
et al. [3] proved that the procedure described can always
converge in polynomial time. For more details, the reader
is referred to Lenstra et al. [3].

Although pseudo-codes of the LLL algorithm are read-
ily accessible, some implementations require updating the
Gram-Schmidt coefficients w; (j < k) (see e.g., [3,6,7]).
Actually, it is easy to prove that updating p; is needed
only if all 14 are computed in advance. Because we com-
pute each jiy; only when its turn comes and because the
loop j, as implemented at Step S4 of Algorithm 1, runs
from (k — 1) to 1, it is not necessary for us to update
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tij- Actually, the procedure for updating w; has been
automatically implemented by the loop from S4 to S10
in Algorithm 1. For convenience of reference, we list our
pseudo-codes of the LLL algorithm in Algorithm 1. Note,
however, that if k = 2 and if a swapping is required at step
S13 of Algorithm 1, then one will have to update b} as well.

2.2 LLL algorithms with deep insertions

LLL algorithms with deep insertions were first proposed
by Schnorr and Euchner [35] and have led to many more
applications and further investigations, as clearly seen
from an ever increasing long list of citing articles either on
the Web site of Google Scholar or the ISI Web of Science.
The basic idea of LLL algorithms with deep insertions is to
use the same Gram-Schmidt orthogonalization process as
the LLL algorithm to achieve almost orthogonality of the
reduced lattice vectors but to replace the Lovasz condition
with a stronger condition of vector swapping to further
reduce the lengths of the reduced lattice vectors. In fact,
following Lenstra et al. [3], we know that any reduced
vector is upper-bounded by the following inequality
(see e.g., [3]):

Ibil1? < '~ 1b} 2, 4)

wherea = 1/(8 —1/4) and 1/4 < § < 1. In the case of the
LLL algorithm, § = 3/4 and o = 2.

Obviously, a smaller « and/or a smaller ||b}|| directly
result in a tighter upper bound of length for the reduced
vector b; and potentially indicate that the length of b;
can be further reduced in comparison with that from the
LLL algorithm. More specifically, Schnorr and Euchner
[35] proposed replacing the Lovasz condition (3) with the
following stronger test:

-1
SIbFI* < b} + Y i (5)
j=i

Algorithm 1 Pseudo-codes of the LLL algorithm

S1 Input: the basis of lattice by, bo, ..., by,

S2 Initialize: k = 2 and b} = b;

S3 while k < m

S4 forj=(k—1)tolstep—1

S5 compute fig;

S6 if il > 0.5

S7 set uj; to its nearest integer [ 1]

S8 replace by = by — [i]b; and wgj = pg; — [1axs]
S9 end

S10 end

S11 compute by

S12 if the Lovasz test (3) is true, continue to next k
S13 else swap by with by_; and set kK = min(k — 1,2)
S14 end

S15 end
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for all 1 < i < [ The Lovasz condition (3) is a spe-
cial case of (5) by restricting i to (! — 1). In other words,
the LLL algorithm is of insertion with a unit depth. If
(5) is violated, then a minimum index i is chosen and
b; is inserted right before b;. By setting / back to i,
one can then resume the reduction procedure with deep
insertions.

Because (5) applies for all 1 < i < /, all the values ||b} ||
(1 < i < m) from the LLL algorithm with deep insertions
should be smaller than those from the LLL algorithm. In
addition, Schnorr and Euchner [35] also proposed using a
bigger value of § = 0.99, which leads to a smaller value
of «. Nguyen and Stehlé [7] set § to 0.999 in their exper-
imental study of the performance of the LLL algorithm.
Schnorr and Euchner [35] stated that the complexity of the
LLL algorithm with deep insertions is super polynomial,
with the published examples showing that its practical
running time is longer by a few times than the original
LLL algorithm. Gama and Nguyen [45] reported that the
LLL algorithm with deep insertions is of super exponential
complexity. One way to control the complexity of reduc-
tion with deep insertions is to limit the depth of insertions
by setting (/ — i) in (5) to some constant. In our exper-
iments to be reported in Section 4, we implement the
control condition (5) without any restriction on i. More
specifically, the implemented variant of LLL algorithms
with deep insertions is to replace steps S12 to S15 of
Algorithm 1 with the following deep insertion process [35]
in Algorithm 2.

2.3 TheLLL algorithm with the sorted QR ordering

A different ordering of the basis vectors could affect the
running time and the reduction quality of the LLL algo-
rithm and its different variants (see e.g., [19,36,37]). Both
ascending and descending orderings of the basis vectors
have been used for reduction (see e.g., [19,22,36,37]).
Using two variants of the LLL algorithm with deep
insertions, Backes and Wetzel [36,37] have shown that

Algorithm 2 Pseudo-codes of the LLL algorithm with
deep insertions. The codes are identical with Algorithm 1,
except for steps S12 to S15 of Algorithm 1 replaced with
the following lines

S12A fori=1to (k—1)

k—1
S13A  if§||b}[1? > Ib}|* + IX; M,z(jllbfllz,
S14A insert by before b; and set k to i. If k = 1, goto
S2 of Algorithm 1;
otherwise, goto S4 of Algorithm 1
S15A  else continue to next k
S16A  end
S17A end
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sorting can indeed affect the practical running behav-
iors of the algorithms, but the extent of effect depends
on the types of lattice bases. In one case, ascending
order could speed up the reduction significantly. How-
ever, in the other case, it could increase the time of
reduction substantially. Xu [19,22] has shown through
numerical simulations that arranging the basis vectors
in ascending order could improve the quality of reduc-
tion in the sense of producing a smaller condition
number.

The sorted QR ordering has been popular in com-
munications and can be very effective in constructing a
suboptimal integer estimator (see e.g., [24,25,46-48]). The
terminology of sorted QR directly came from the publi-
cation by Wiibben et al. [47], although such a suboptimal
integer estimator was first formulated by Xu et al. [24]
in 1995 (see also [25]) in the language of minimum piv-
oting for Gaussian and/or Cholesky decompositions and
was called a one-step, non-exact solution. Actually, Xu
et al. [24] went one step further than Wiibben et al. [47] by
implementing the reduction of positive definite quadratic
forms with the sorted QR ordering into the procedure
to construct the suboptimal integer solution. The basic
idea of the sorted QR ordering is to arrange the unknown
integer parameters in the order of maximum conditional
weightings on the basis of the normal matrix. It has been
recently proposed by Gan and Mow [38] (see also [33,39])
as a component of the LLL algorithm for reduction of
basis vectors and by Xu [22] for reduction of positive
definite quadratic forms. The random simulations of Xu
[22] have clearly shown the effectiveness of the sorted QR
ordering to reduce the condition number of a positive
definite quadratic form. For low-dimensional problems,
it can significantly reduce the running time of reduction
[22,38]. The average running time and performance of
the methods can also be found in Ling and Mow [39].
In the case of positive definite quadratic forms, Xu [22]
focused on the performance to reduce the condition num-
ber of a positive definite matrix. Thus, in this paper, we
will include the LLL algorithm with the sorted QR order-
ing proposed by Gan and Mow [38] (see also [33,39]) for
comparison. The algorithm is essentially the same as the
LLL algorithm, except for that the vector with the mini-
mum length projected onto the complement range of the
subspace spanned by the orthogonalized vectors up to the
present is first picked up for reduction/orthogonalization
among the unreduced basis vectors. More specifically,
the LLL algorithm with the QR sorting can be readily
coded by replacing step S12 of Algorithm 1 with the lines
shown in Algorithm 3. More details on the algorithm
can also be found in Ling and Mow [33,39]. We should
note, however, that Algorithm 3 may be said to be a spe-
cial case of Xu [22]. Due to the Lovasz condition (3), the
final reduced positive definite matrix from this version of

Page 5 of 29

Algorithm 3 The LLL algorithm with the QR sorting. The
codes are identical with Algorithm 1, except for step S12
of Algorithm 1 replaced with the following lines

S12A if the Lovasz test (3) is true

S13A project the remaining vectors onto the comple-
ment range of the sub-space spanned by the
orthogonalized vectors;

S14A pick up the vector, whose projected length is

minimum, as the next by and continue;
S15A end

LLL algorithms with the QR sorting does not necessarily
match that of Xu [22].

2.4 An LLL algorithm with fixed complexity

The flow of the LLL algorithm dynamically depends on a
problem at hand and the corresponding arithmetic opera-
tions cannot be estimated precisely beforehand. Except for
the worst-case complexity, one cannot know exactly when
the LLL algorithm will terminate. In order to make the
running behavior of the LLL algorithm completely count-
able in advance, Vetter et al. [14] proposed a fixed com-
plexity LLL algorithm. Obviously, the uncontrollability of
the LLL algorithm is solely due to the Lovasz condition (3).
As a result, in order to clear this unpredictability, Vetter
et al. [14] directly eliminated the winding step, namely,
k = min(k — 1,2) from Algorithm 1. However, the
swapping operation remains active, if the Lovasz condi-
tion (3) is violated. To compensate for prohibiting the
progress counter k to step back in the LLL algorithm, they
suggested executing the above procedure repeatedly for
(m — 1) times (simply m in our implementation). The
resulted algorithm is thus called fixed complexity LLL
algorithm by Vetter et al. [14]. Since the algorithm will
be used in our numerical simulations for comparison and
since a complete set of pseudo-codes is not given in Vetter
etal. [14], we list the pseudo-codes of this fixed complexity
LLL algorithm in Algorithm 4.

2.5 Improved LLL algorithm with fixed complexity

To start developing our improved LLL algorithm with
fixed complexity, let us assume (a) that the vectors of the
sublattice £, namely, B = (b, by,...,b,) in R” are lin-
early independent, as in the literature on lattice reduction
and (b) that these vectors have been orthogonalized and
can be rewritten, without loss of generality, as follows:

B = B*LY, (6a)

where B* is an orthogonal matrix consisting of mutually
orthogonal column vectors, the superscript T stands for



Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137
http://asp.eurasipjournals.com/content/2013/1/137

Algorithm 4 Pseudo-codes of the fixed complexity LLL
algorithm by Vetter et al. [14]

S1 Input: the basis of lattice by, by, ..., b,

S2 Initialize: countLOOP =1

S3 while countLOOP < m

S4 setk =2and b] =b;

S5 while k < m

Sé6 forj=(k—1)to1lstep —1

S7 compute pig

S8 if |pgi] > 0.5

S9 set uy; to its nearest integer [ piy;]

S10 replace by = by — []bj and iy = pg—
[4k]

S11 end

S12 end

S13 compute by

S14 if the Lovasz test (3) is not true,

S15 swap by with by_; and by with by,

S16 end

S17 continue to next k

S18 end

S19  if the Lovasz test (3) is true for all k, terminate
S20  continue to the next countLOOP
S21 end

transpose, and L is a lower triangular matrix with all its
diagonal elements being equal to unity, namely,

1
b1 1

L=| %1 l» 1 (6b)
Lt Lo bz ... 1

The elements of L are essentially the original Gram-
Schmidt coefficients, namely, [;; = (b;, b;-‘) / (b;“, b;k), with
b;.k being the jth column vector of B*.

L of (6b) can be rewritten as the product of a uni-
modular matrix G and a new lower triangular matrix L,
namely,

L=GL,, 7)
where
1
21 1
L, =| M31 K3 1 ,

Mml MWm2 Mm3 - 1
and all the elements p;; satisfy
[wijl < 0.5, @G> )).
Substituting (7) into (6a) yields
B=B*L/G". 8)
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By treating B*LZ as B and repeating the above pro-
cedure from (6a) to (8), we can then finally obtain the
reduced basis B(= B*Ll{).

Proposition 1. Given a set of m linearly independent
vectors by, by, ..., b, in R”, the reduction by repeating
the process from (6a) to (8) always converges in a finite
number of iterations.

The proof of the proposition is trivial. In fact, given
two linearly independent vectors a and b, it is trivial to
prove that (b*,b*) < (b, b), if the size reduction is active,
namely, |[7| > 1, whereb* = b —raandr = [(a,b)/(a,a)].
If we assume that the process described in the proposition
does not converge, this means that there always exists, at
least, one non-zero integer r to reduce the length of a vec-
tor. In other words, the determinant of the reduced basis,
or equivalently, det{(B*)TB*}, can be arbitrarily small.
However, this contradicts with the well-known fact that
det{BTB} is invariant for a given lattice. Similar work may
be found in Ling and Mow [39], though they did not
summarize their related work as clearly as we state in
proposition 1 with the help of formulae (6a) to (8). Nev-
ertheless, we should note that proposition 1 is still slightly
different from the work of Ling and Mow [39] in two
senses: (a) while Ling and Mow [39] directly implemented
the sorted QR technique to re-arrange the basis vectors,
we do not assume any sorting in proposition 1 and (b) as
a result of (a), the proofs given here and in Ling and Mow
[39] are essentially different.

From a formal point of view, proposition 1 is complete
to serve as a protocol of reduction algorithm. In order
to turn it into an efficient reduction algorithm, we will
focus on two heuristic factors: (a) sorting the basis vectors
by, by, ..., b,, to construct the matrix L of (6b) such that
the lengths of the basis vectors can be maximally reduced
quickly and, as a result, the running time of the algo-
rithm can be significantly saved and (b) the complexity
of the algorithm. Ling and Mow [33,39] proposed apply-
ing the sorted QR technique, as originally invented by Xu
et al. [24] in 1995 to construct a suboptimal integer esti-
mator, to sort the basis vectors. Although the QR-sorting
strategy is very powerful in obtaining a suboptimal inte-
ger solution, it was shown to perform less efficiently for
the reduction of positive definite quadratic forms [22].
Actually, in the development of a Cholesky-based reduc-
tion algorithm with fixed complexity for positive definite
quadratic forms, Xu [22] found that two sorting strate-
gies are very powerful to reduce the condition number of
a positive definite quadratic form. One such sorting tech-
nique is to sort the vectors by, by, . .., by, according to the
ascending order of their lengths, which will be referred
to as ascending sorting and abbreviated by ASCE. The
other is to implement a perturbation to the first sorting
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strategy, which will be referred to as perturbed sorting and
abbreviated by PERT. More precisely speaking, the second
perturbed sorting technique PERT is implemented as fol-
lows: to start the reduction algorithm, we first follow the
sorting strategy ASCE. In the following one or two itera-
tions, we sort the vectors by, by, ..., by, according to the
ascending order of the lengths of the orthogonalized vec-
tors b, b3, ..., b} . Then we return to the sorting strategy
ASCE and use it until the termination of the reduction
algorithm. Since the two sorting strategies ASCE and
PERT can be run in parallel, they are assembled together
to construct our improved (parallel) LLL algorithm (For
more details on these and other sorting techniques, the
reader is referred to Xu [22]).

Now we face the same situation as in the case of the
LLL algorithm, i.e., that we do not know exactly when
our reduction algorithm will terminate. In order to make
the arithmetic operations of the reduction algorithm pre-
dictable in advance, we can limit the number of iterations
by setting a maximum value, say Kpyax. By doing so, the
algorithm either terminates naturally or when the itera-
tion number hits Kn,x. However, according to the expe-
rience of numerical simulations [19,22] more iterations
can improve the reduction quality in terms of condition
numbers slightly but can also worsen such quality mea-
sure. Therefore, we set the maximum number of iterations
Kmax to the rank of lattice m and finish constructing our
improved (parallel) LLL algorithm with fixed complexity.
We note, however, that a Knax larger than 3m is not rec-
ommended. In the final version used to report the results
in Section 4, we set Kiax to 15 if m < 15.

Thus, we are now in a position to assemble what we
described in the above in the form of an algorithm with
fixed complexity in Algorithm 5. Algorithm 5 is parallel in
the sense that either step S4A or S4B can be used inde-
pendently. Since condition numbers can be thought of as
a combined quality measure of orthogonality and length
defects, the final output reduced basis from Algorithm 5
is the one with a smaller condition number. We should
note that Algorithm 5 is different from the parallel LLL-
deep algorithm by Ling and Mow [39] in the sense that
they used the sorted QR strategy in the lines S4A and S4B.
The two sorting strategies of S4A and S4B will be shown
to perform much better than the sorted QR for reduction
in Section 4.

Compared with the LLL algorithm [3] and its fixed com-
plexity variant by Vetter et al. [14], the improved LLL algo-
rithm with fixed complexity has two significant features:
(a) the LLL algorithm and its published variants perform
the size reduction on its individual Gram-Schmidt coef-
ficient w;. This operation is also on and off without a
natural smooth flow, depending on the switch control
by the Lovasz test. The improved LLL algorithm with
fixed complexity directly works on all the Gram-Schmidt
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Algorithm 5 Pseudo-codes of the improved LLL algo-
rithm with fixed complexity

S1 Input: the basis of lattice by, by, . . .
S2 Initialize: countLOOP = 1

S3  while countLOOP < Kpax

)le

S4A  use the sorting strategy ASCE to sort by, by,.. .,
b,,, or

S4B use the sorting strategy PERT to sort by, by,.. .,
by

S5 compute the Gram-Schmidt orthogonalization (6a)
S6 reduce the matrix L to get L, via (7)

S7 if no reduction is possible, terminate

S8 replace B with B*Lg

S9 continue to the next countLOOP

S10 end

coefficients p;; simultaneously. As a result, a global opti-
mal size reduction could be achieved at each iteration.
From this point of view, we might say that the LLL algo-
rithm and its other variants are only locally optimal in size
reduction; and (b) unlike the LLL algorithm and its known
variants, the improved LLL algorithm with fixed complex-
ity requires no Lovasz test. Thus, the flow of algorithmic
actions is completely transparent and smooth.

3 Quality measures of lattice basis reduction

As is well known, the goals of lattice reduction are to make
the reduced basis as orthogonal as possible and to make
the lengths of the reduced basis vectors as short as pos-
sible. Thus, quality measures of lattice reduction should
directly be associated with the goals of reduction. Three
most widely used quality measures are the Hermite defect,
the length defect, and the orthogonality defect, which are
denoted by H(B), /(B), and O(B), respectively, and given
as follows (see e.g., [29,31]):

H(B) = ﬂ (9a)
[det(L£)]V/m’
L
¢L(B) = L) (9b)
and
OB) = Tz, bl (9¢)

~ [det(D)]*
where b; is the shortest reduced basis vector, det(£) is
the determinant of the lattice £ and is equal to det{B” B},
A(L) is the first minimum of £. A length defect can also
be defined as the ratio of the length of b; to the ith succes-
sive minimum of £ [31]. The Hermite defect (9a) and the
length defect (9b) may be interpreted to evaluate the mean
and absolute improvements of the length of the shortest
reduced vector against the lattice £ and its first minimum
A(L), respectively. Because the Hermite defect H(B) of
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(9a) remains exponential with a power roughly equal to
the rank 71, Nguyen and Stehlé [7] suggested replacing (9a)
by the Hermite factor yp to measure the output quality
of reduction, which can be defined through the following
relationship:

o — bl
B [det(L))/om

The factor of two in the power of det(£) on the right-
hand side of (10) is due to the difference in defining
the determinant of a lattice. More precisely speaking,
Nguyen and Stehlé [7] defined det(L) as the square root
of det{BTB}.

Since finding A(L) is conjectured to be NP-hard, ¢(B)
of (9b) is more of theoretical value but likely is not a
practical quality measure of reduction. Furthermore, both
det(£) and A(L) are invariant for a given lattice L. If we
are concerned with the comparison of different reduction
methods, we can simply focus on ||b; || only and denote

£1(B) = ||by|l.

(10)

(11)

As an alternative quality measure to the Hermite defect
and the length defect, one may define a new quality mea-
sure of length defect as the length ratio of the longest basis
vector to the shortest one, namely,

iy = sl 1D}
byl
where b; has been defined in (9a). Obviously, a best
reduction method should result in the minimum r(B).

For the ILS problem of minimizing (z —z/)TW(z — zy),
the absolute lengths of the basis vectors are not important
since they can be made arbitrarily small without affecting
the solution to the ILS problem [20], even though making
the reduced basis as short as possible has been a goal of
reduction. Here z and zy are the unknown integer vector
to be estimated and a real-valued vector, respectively, and
Wy is a positive definite (weight) matrix. Actually, given
two positive definite weight matrices W, and o'Wy, it is
trivial to prove that both matrices lead to the same ILS
estimator, no matter how small the positive scalar « is.
From this point of view, a quality measure of reduction for
ILS problems should emphasize the relative lengths of the
reduced basis instead of their absolute lengths. In other
words, a good quality measure of reduction should min-
imize the maximum relative length of the reduced basis
vectors for an ILS problem. A natural quality measure of
this type is the condition number in association with the
ILS problem, which has been shown to be very powerful
in evaluating the performance of reduction methods [19].
Actually, the condition number may be interpreted as a
combined quality measure of length defect and orthogo-
nality defect [22]. The smaller the condition number, the
better a reduction method can be said to be. In the case

(12)
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of the lattice £, the condition number can be defined as
follows:

KB = Amax/*mins (13)

where Apax and Apin are the maximum and minimum
singular values of the matrix B, respectively.
The orthogonality defect (9¢) is defined on the basis of
Hadamard’s inequality:
m
det(C) < [ TIbal> (14)
i=1
If the reduced basis is mutually orthogonal, (14) becomes
an identity. The idealized minimum value of the orthogo-
nality defect O(B) is equal to unity. However, there exists
no upper bound for O(B) of (9¢). As is well known, the
smaller O(B), the better a reduction method. The ques-
tion is that we do not have any operational objective
criterion to judge whether a reduction basis is sufficiently
orthogonal from its value of O(B) in [1, c0). In other
words, although a reduction is to make the reduced basis
as orthogonal as possible, unfortunately, we cannot prac-
tically tell the extent of orthogonality of the reduced basis
from the orthogonality defect O(B).
As a result, we define the minimum angle among the
reduced basis vectors of £ as an alternative quality mea-
sure of orthogonality, which can be written as follows:

6(B) = min{f, 1 <i <j < m},
where

(15)

8 = min{arccos(p;), 180° — arccos(pj)},
_ (b;, bj)

b 11
and arccos(p;) is given in degrees. By definition, we have
0° < 0(B) < 90°. If all the basis vectors are mutually
orthogonal, #(B) = 90°. Based on the quality measure
(15) of orthogonality, we can now be quite confident to say
intuitively that a good reduction method should almost
always guarantee an angle above 45° (ideally 60° in the
best case) for 8(B) of (15). As an alternative quality mea-
sure of orthogonality, 6 (B) of (15) may be intuitively more
appealing than O(B) of (9¢), since, given a value of 6(B),
we can immediately have an idea in our mind on how
orthogonal the reduced basis looks like. We should note,
however, that the computation of 8(B) is not more diffi-
cult than that of O(B), since both 6 (B) and O(B) are solely
based on the elements of the matrix B”B.

Pij

4 Experiments and analysis of results

4.1 Numerical simulation of random lattice bases

Broadly speaking, a lattice can be said to be random, if
there exists, at least, one random element in any of the
basis vectors B. Probabilistic models such as the uniform
distribution in the unit ball or on the unit sphere have
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played an important role in understanding the mean prac-
tical running behavior of the LLL algorithm and in the
derivation of statistical mean values of quantities of the
reduced basis (see e.g., [29-31]). Ajtai [49,50] demon-
strated the worst-case performance of an LLL variant
using the following random basis:

i—2

b; = fie; + fii-nei—1/2 + Zfijﬂiiei'
j=1

(16)

where

fii — kc(m—i—b—l)/k,

Jii-1) = fa-va-v,
fij =fj»

e; is the ith standard/natural basis vector in a Euclidean
space, k is an integer of the size roughly equivalent to a
fractional part of m, and c is a positive constant. j;; are all
assumed to be independent random variables with a uni-
form distribution over [ —1/2, 1/2]. A modified version
by making all the lower-triangular elements become ran-
dom with a uniform distribution can be found in Nguyen
and Stehlé [7] and Vallée and Vera [29] and is called ran-
dom bases of the Ajtai’s type. Likely, the most widely used
random lattice with a lot of applications is of the knap-
sack type and defined by the row vectors of the following
matrix (see also [4,7,29]):

a110...0
a4 01...0

, (17)
a4y 00 0 1

where all the elements a; are random and uniformly dis-
tributed independently.

A particular distribution tends to generate random
bases with some particular statistical features and might
affect lattice basis reduction without our a priori knowl-
edge. Thus, as a basic principle to guide the simulation of
random lattices for our experiments, we require that (a) all
the elements of B must be random, and (b) the basis B be
generated from a non-informative referential system. As a
result, we decide to generate the random bases using the
decomposition:

B =UTsy, (18)

where U and V are non-informative referential systems
of different dimensions and S contains all the nonzero
(positive) singular values of B. More precisely, U and V
can be generated using the non-informative probabilistic
model for referential systems, and the nonzero elements
of S are generated using a uniform distribution. As a mat-
ter of fact, if all the elements of a random matrix are
of identical and independent normal distributions with
mean zero, then its eigenvector matrix is non-informative
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[51,52]. Thus we can first simulate a standard Gaussian
matrix and then decompose it to obtain U and V. Actu-
ally, these guiding rules were first suggested and used by
Xu [19,22].

More specifically, we simulate 10,000 random exam-
ples of B, with the number of columns uniformly dis-
tributed over [3, 60] and the number of rows uniformly
distributed over [ m,800]. In our experiments, we decide
to set the maximum rank of lattice to 60, since finding
the exact solution to the shortest vector problem up to
such a dimension is still foreseeable [45]. In particular,
almost all practical applications of GPS kinematic appli-
cations are low-dimensional (see e.g., [26,27]). The condi-
tion numbers of the simulated examples range from 10 to
5 x 10%.

For convenience of discussing the experiment results
in the remainder of this section, we will use the abbre-
viations of PROB, LLL, DEEP, SLLL, VLLL, and PLLL to
denote the original random examples, the LLL algorithm
(Algorithm 1 with the original § = 0.75), the LLL algo-
rithm with deep insertions (Algorithm 2 with the original
8 = 0.99), the LLL algorithm with the sorted QR ordering
(Algorithm 3), the LLL algorithm with fixed complexity
by Vetter et al. [14] (Algorithm 4), and our improved LLL
algorithm with fixed complexity (Algorithm 5), respec-
tively. We may note that we choose the original § value
in our experiments since computation time for reduction
would increase significantly with the increase of §. Nev-
ertheless, in low-dimensional GPS applications, reduction
is only an intermediate procedure for integer estimation;
thus, a significant increase of reduction time is highly not
desirable.

4.2 Practical running behaviors of variants of the LLL
algorithm

Given an integer basis for a lattice £, Lenstra et al. [3] have

proved that the LLL algorithm requires

Kp = O(m?10g bunax) (19)

iterations to terminate in the worst case, where b  is
the maximum length of the integer basis B. Alternatively,
Daudé and Vallée [30] proposed an improved worst-case
bound for the number of iterations as follows:

K = O(m* 10g(Dx /iin))» (20)

where b}, and b%. are the maximum and minimum
lengths of the orthogonalized basis vectors, respectively.
Recently, Jaldén et al. [13] suggested replacing (b}, /b5 ..)
in (20) with the condition number of B and obtained a new

worst case bound:
K, = O(m?logkp), (21)

where «p is the condition number of B.



Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137
http://asp.eurasipjournals.com/content/2013/1/137

However, it has been widely reported that the LLL
algorithm runs surprisingly much faster than the the-
oretical worst complexity bound predicts (see e.g.,
[7,29,34,45,53]). Experiments have only been carried out
recently to demystify and explain nice practical behavior
of the LLL algorithm in terms of running time and out-
put quality (see also [7,34,45,53]). Nguyen and Stehlé [7]
reported that the bound of iterations (19) seems to be tight
for random lattices of Ajtai’s type, but might be relaxed
for lattice bases of Knapsack type. The experiments by
Gama and Nguyen [45] clearly demonstrated that the run-
ning time of Schnorr-Euchner’s algorithm of enumeration
aided by the LLL algorithm with deep insertions to solve
the shortest vector problem is super-exponential.

Based on the 10, 000 random examples, we will continue
and complement the investigation of mean practical run-
ning behaviors by Nguyen and Stehlé [7] and Gama and
Nguyen [45], in the sense that: (a) they [7,45] only tested
the upper bound (19) with the simulated results from LLL
and DEEP, but we will test all the three upper bounds
(19), (20), and (21) with the results from LLL, DEEP, and
SLLL; and (b) the random bases used in our simulations
are neither of Ajtai’s type nor of Knapsack type, as used by
Nguyen and Stehlé [7] and Gama and Nguyen [45] in their
study.

To begin with, for each of the 10,000 random examples,
we have recorded the numbers of iterations for the three
basis reduction methods, namely, LLL, DEEP, and SLLL,
which are denoted by KﬁLL, KISEEP, and KéLLL, respectively,
where the superscript i stands for the ith random example.
In order to understand the practical running behavior of
DEEP and compare it with that of LLL, we have computed
the ratio

Phepp = Kbepp/Kiir, (i =1,2,...,10,000).

The mean and maximum values of p]i)EEP for each rank
of lattice are shown in Figure 1. Obviously, they increase
with the increase of the rank of a lattice, indicating that
the practical running behavior of DEEP is exponential,
at least, for the random lattices under investigation. The
results of experimental complexity support the report of
super-exponential complexity of the LLL algorithm with
deep insertions by Gama and Nguyen [45]. In other words,
DEEP may not be super-polynomial in the worst case, as
otherwise mentioned by Schnorr and Euchner [35].

In order to investigate the tightness of the upper bounds
of iterations (19), (20), and (21), we have computed the
following indices:

(22)

py(B) = Kj/(m*10g bmax) (23a)
p1(D) = K/ (m* 108(Dax/ Bimin)s (23b)
() = K]/(m2 logxg), (23¢)

for each of the 10,000 examples, where the subscript /
stands for each of the basis reduction methods, namely,
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LLL, SLLL and DEEP, respectively. To understand the
practical tightness of Kp in (19), we have plotted prL(B),
psier(B) and pppep(B) for all the 10,000 examples,
together with their mean values at each rank of lattice, in
Figure 2. Note, however, that we have encountered a few
negative values of pj(B) for small 7 values, since we ignore
the condition of integer lattice required by the index pj(B).
These few values are simply neglected and not shown in
Figure 2. In a similar manner to gain the experimental
information on Kj in (20) and K, in (21), we have shown
pLLL(D), psLiL(), and ppeep()) in Figure 3 and prrp(c),
psiLL(k), and ppeep (k) in Figure 4, respectively.

Figures 2, 3, and 4 have clearly shown a number of pat-
terns: (a) all the three indices to evaluate the upper bounds
of iterations, namely, pj(B) of (23a), pj(/) of (23b), and
pj(k) of (23c), behave more or less similarly for each of
the three methods LLL, SLLL, and DEEP. More precisely
speaking, prrL and psp iy decrease with the increase of
m and seem to converge to a small constant, no matter
which of byax, b}y, /bl ., and/or kg in (23) is used in asso-
ciation with them, as can be clearly seen from panels A
and B of Figures 2, 3, and 4. Thus, we may conclude that
LLL and SLLL could run much faster than the theoreti-
cal bounds of iterations, as given in (19), (20), and (21).
In other words, as for LLL and SLLL, all the bounds (19),
(20), and (21) are not tight for the lattices under study.
In fact, we also tried to fit the green LLL and red SLLL
curves to the analytical function a/m?. The values of b are
found to be between 1.7 and 1.8 for byax and b, /b¥. .
The value of a from SLLL is about half of that from LLL.
In the case of kp, the values of b are about 2.2, but with
the values of a being equal to 1,572.4 and 908.0 for LLL
and SLLL, respectively. These results indicate that practi-
cal running behavior of the LLL algorithm may be much
better than what the statistical mean behaviors have pre-
dicted; (b) the red lines of panel D of Figures 2, 3, and 4 are
all consistently below the green. This should indicate that
on average, SLLL runs faster than LLL, as also consistently
confirmed by the fitting results to the green and red lines;
and (c) the average behavior of DEEP tends to decrease
with the increase of m (compare the black lines of panel D
of Figures 2, 3, and 4), implying that the average running
behaviors of DEEP may be polynomial. However, the max-
imum values of ppggp clearly increase with the increase of
m (compare panel C of Figures 2, 3, and 4), indicating that
its worst case complexity is exponential. This observa-
tion is consistent with the statement of super-exponential
complexity about DEEP by Gama and Nguyen [45].

4.3 Performance of the five lattice basis reduction
algorithms

We will now compare all the five basis reduction methods,

namely, LLL, DEEP, SLLL, VLLL, and PLLL, based on the

10, 000 randomly simulated examples and in terms of the



Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137 Page 11 of 29
http://asp.eurasipjournals.com/content/2013/1/137

g’ 25

it R !

- roN\

a \

2 A

2 2

=

[

[

]

§ 15F

£

&

[

(7]

©

s 1f

c

.2

<

2

k]

o o5}

2

f

£

=]

£

= ol

[

£

T

c

«©

c

8 0.5 I I I I I

= 0 10 20 30 40 50 60

indices of lattice ranks

Figure 1 Practical running behaviors of LLL algorithm with deep insertions relative to original LLL algorithm. Shown in this figure are the
mean and maximum values of log ppggp for each rank of lattice, which are displayed in solid and dashed lines, respectively.

6 4
A
5 B
[
2 3+ 1
.g 4
©
S
o 3 1 2 1
o
(=
E 2 |
2 1 | i 1
1 Wi
. I”lillillillillilimi.m.;.i!.........,....i..
0 20 40 60 0 20 40 60
40 ‘ g 5
C D
. 4
[
.§ 30 1
s .
S B 3
2 20 : !
2 2
c i
S 10 "'3f:---=w o
- i
i
o Linit uimilillllllm " ||“|“ i o
0 60 0 20 40 60
indices of lattice ranks indices of lattice ranks
Figure 2 Tightness of K in (19) for three reduction methods LLL, SLLL, and DEEP with 10,000 examples. panel A - p | (B); panel B -
psiLL(B); panel € - ppeep (B); and panel D - mean values of pi( (B) (green line), psi 1 (B) (red line) and ppeep(B) (black line) for each rank of lattices.




Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137
http://asp.eurasipjournals.com/content/2013/1/137

Page 12 of 29

mean running behaviors

mean running behaviors

80

60

40

20

100

il

'“li'||[|I|ii||h..,..',,,,, .

40 60

o
* || i

indices of lattice ranks

80

60

40

30

25

20

15

10

20 40 60

indices of lattice ranks

Figure 3 Tightness of K; in (20) for three reduction methods LLL, SLLL, and DEEP with 10, 000 examples. panel A - p | (/); panel B - psi | (/);

panel € - ppeep(/); and panel D - mean values of py (/) (green line), psi () (red line), and ppeep (/) (black line) for each rank of lattices.

mean running behaviors

mean running behaviors

0.8

0.6

0.4r

0.2r

15

10+

TN .
Wi
LT
! |

20 40 60

f:

¥ G
3 1
0_[ulllli"“""“il“"" i"l"l
20

0

indices of lattice ranks

0.8

0.6

0.4r

0.2r

i :
x’“ l

“I"IIll||““i|i"liﬂIillillllllilulnm

20 40 60

20 40 60
indices of lattice ranks

Figure 4 Tightness of K, in (21) for three reduction methods LLL, SLLL, and DEEP with 10, 000 examples. panel A - p (| (k); panel B -
psiLL(k); panel € - ppeep(); and panel D - mean values of py( (k) (green line), psi (k) (red line), and ppeep (k) (black line) for each rank of lattices.




Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137
http://asp.eurasipjournals.com/content/2013/1/137

six quality measures of reduction discussed in Section 3.
More precisely, the six quality measures used to com-
pare the basis reduction methods are (a) the orthogonality
defect O(B) of (9¢); (b) the minimum angle among the
reduced vectors, namely, 6(B) of (15); (c) the Hermite
factor yp of (10); (d) the length ¢;(B) of the shortest
reduced vector by in (11); (e) the maximum length ratio
r(B) of (12); and finally, (f) the condition number «p of
(13). The first two quality measures, i.e., O(B) and 6(B),
are related to the orthogonality of a reduced basis, the
quality measures yp, £1(B), and r(B) mainly reflect the
length reduction of the reduced basis, while the condition
number kg is a combined quality measure of orthog-
onality and length reduction. The Hermite factor has
been theoretically given in Lenstra et al. [3] and recently
investigated experimentally (see e.g., [7,34,45]), and the
condition number «p of (13) as a quality measure of reduc-
tion has been substantially studied experimentally (see
e.g., [19,22]). However, no experimental results on the
other four quality measures have ever been reported in the
literature, at least, to the best knowledge of this author.
Before we come to a particular quality measure, let us
briefly explain how we compare reduction methods and
compute/estimate the probabilities PBetter and PWorse
listed in the succeeding tables. Let us assume that we
now would like to compare two reduction methods 7 and
J (I,] € {LLL,DEEP,SLLL, VLLL, PLLL, PROB}) on the
basis of a particular quality measure, say m,. With the
10,000 m, values for each of I/ and J on hand, we can
count the number of examples #; with which I performs
better than / and the number of examples n; with which
J performs better than I with respect to this quality mea-
sure m,. When we compare I with /, we assign n;/10, 000
to PBetter and 7;/10,000 to PWorse in the succeeding
tables. Actually, #;/10,000 and #;/10, 000 correspond to
the estimated frequency/probability with which I per-
forms better and with which J performs better, respec-
tively. Following this notion, we compare the results from
LLL, DEEP, SLLL, VLLL, and PLLL with the original prob-
lems on the basis of the quality measures O(B), 6(B),
£1(B), r(B), and «p, and list the estimated probabilities
in Table 1, where PBetter stands for the probabilities
with which the five basis reduction methods improve
(or perform better than) the original problems on the
corresponding quality measure, respectively.

4.3.1 Orthogonality defect

For each of the 10,000 simulated examples, we have
computed the corresponding orthogonality defects from
LLL, DEEP, SLLL, VLLL, and PLLL, which are collec-
tively denoted by OLLL, OPEEP | OSLLL QVLLL ‘g OPLLL)
respectively. Together with the original problems, we have
plotted the cumulative probability functions (cdf) of the
orthogonality defects in Figure 5. Among the five basis
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Table 1 Probabilities estimated by comparing LLL, DEEP,
SLLL, VLLL, and PLLL with original problems

Measures  Methods LLL DEEP SLLL VLLL PLLL
o®) PBetter 05020 06152 05693 04730 0.6336
PWorse 04980 03848 04307 05270 03664

0(8) PBetter 03128 04120 03418 0.1937 04638
PWorse 06828 05866 06540 08019 05280

0@ PBetter 04461 05386 04721 03870 0.5231
PWorse ~ 0.1130 0.0006 0.0001 0.1042 00141

/(B) PBetter 04110 05571 04805 02972 05415
PWorse 05887 04429 05195 07019 04585

PBetter ~ 0.9990 09991 09990 0.9929 0.9993

“ PWorse 00010 0.0009 0.0010 00071 0.0007

O(B), £1(B), r(B), kg, and 6 (B) correspond to the quality measures described in
Section 3. PBetter, the probability with which LLL, DEEP, SLLL, VLLL, and PLLL
improve the quality indices of the problems; PWorse, the probability with which
LLL, DEEP, SLLL, VLLL, and PLLL worsen the quality indices of the problems.
Otherwise, these methods do not change the quality indices of the problems.

reduction methods under study, PLLL performs the best
and VLLL the worst in orthogonality defects. SLLL is
consistently better than LLL (compare the red and green
lines) but worse than DEEP in general. It is surprising
to see from Figure 5 that none of the reduction meth-
ods can produce a smaller orthogonality defect than the
original problems overwhelmingly. It is clear from row
O(B) of Table 1 that, even in the best case, we still see
the probability of 0.366 with which the original problems
have a smaller orthogonality defect than PLLL. As will be
clear, in other parts of this section, the original problems
can be significantly improved. From this point of view,
the orthogonality defect alone does not necessarily reflect
the quality of a reduction method correctly. One should
exercise great care to interpret the orthogonality defect
when using it to evaluate the performance of a reduc-
tion method. It is also interesting to see that the popular
LLL algorithm only shows a chance of 0.502 to produce
a smaller orthogonality defect (compare O(B) of Table 1
under LLL).

Since a cdf plot does not reveal a direct comparison
of each simulated example between any two methods of
reduction, we have computed the differences of orthog-
onality defects for the 10,000 examples. Illustrated in
Figure 6 are the probability density functions (pdf) of the
differences of orthogonality defects of PLLL relative to
LLL, DEEP, SLLL, and VLLL. The statistics by compar-
ing PLLL with the other four basis reduction methods are
listed in Table 2. Both Figure 6 and Table 2 (row O(B))
have clearly shown the outstanding performance of PLLL
over LLL, DEEP, SLLL, and VLLL with respect to the
quality measure of orthogonality defect. Although DEEP
might be thought to produce the best results, it could
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only win PLLL with a small probability of 0.125 on the  (log O™ — log OPEEP), (log OMt — log OSML), and
orthogonality defect. (log OML — log OVILL), which are plotted in the pdf form

Because both LLL and DEEP are popular, we have fur-  in Figure 7 and summarized statistically in Table 3. It is
ther computed the differences of orthogonality defects clear from panel C of Figure 7 that LLL performs signifi-
of LLL relative to DEEP, SLLL, and VLLL, namely, cantly better than VLLL. This might indicate that the fixed
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Table 2 Probabilities estimated by comparing PLLL with
LLL, DEEP, SLLL, and VLLL

Measures Methods LLL DEEP SLLL VLLL
PBetter 0.908 0.785 0.847 0.991
O(B)
PWorse 0.003 0.125 0.088 0.009
PBetter 0.731 0.547 0.666 0.830
0(B)
PWorse 0.192 0314 0.238 0.169
B PBetter 0.305 0.024 0.183 0.562
1
PWorse 0.019 0.076 0.026 0.015
® PBetter 0.774 0.361 0.584 0.882
p
PWorse 0.134 0512 0316 0118
PBetter 0.845 0.808 0.796 0.951
KB
PWorse 0.097 0.102 0.139 0.049

O(B), 6(B), £1(B), r(B), and kg correspond to the quality measures described in
Section 3. PBetter, the probability with which PLLL performs better; PWorse, the
probability with which LLL, DEEP, SLLL, and VLLL perform better than PLLL.
Otherwise, PLLL produces the same results as the other reduction methods.

complexity of VLLL may finish the reduction too quickly.
However, both DEEP and SLLL are surely much better
than LLL, as can be seen from panels A and B of Figure 7,
and the values of PWorse in row O(B) of Table 3. This
should indicate that deep insertions and the sorted QR
ordering help make the reduced vectors more orthogo-
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nal than the original LLL algorithm. Nevertheless, DEEP
is better than SLLL on this quality measure, as can be seen
from panel D of Figure 7, which displays the pdf function
of the orthogonality defects from DEEP relative to those
from SLLL.

4.3.2 Minimum angle 0 (B) among the reduced vectors

Orthogonality defect has been defined and used to quan-
titatively measure the extent of orthogonality of a reduced
lattice basis. It can take on a value from the idealized unity
to infinity, which corresponds to a completely orthogonal
basis with a full rank and a rank-defect sub-basis, respec-
tively. An obvious disadvantage of orthogonality defect
is that given a value of O(B), we do not have any idea
about how orthogonal the reduced basis looks like. As a
result, we proposed an alternative quantity 6(B) to mea-
sure the extent of orthogonality of a reduced basis. As the
minimum angle defined in [0°, 90°] among all the mutual
vectors of a reduced basis, 6(B) is intuitively appealing,
since we can immediately tell roughly how orthogonal
the reduced basis is. Actually, the two extreme values
of 6(B), namely, 0° and 90°, correspond to a degenerate
reduced basis and a completely orthogonal basis, respec-
tively. Unlike the other five quality measures, the bigger
the minimum angle, the better the corresponding reduc-
tion method is with respect to 6(B). In this section, we

0.09

0.06

0.03

probability density functions

0.04

0.03

0.02

0.01

probability density functions

-4 -2 0 2
differences of orthogonality defects (log)

0.12 B

0.08

0.04

-2 -1 0 1 2 3

0.1

0.05

0
-4 -2 0 2
differences of orthogonality defects (log)

Figure 7 Probability density functions of differences of orthogonality defects (in logarithm). This figure is to compare LLL with DEEP, SLLL,
and VLLL in panels A to €, and DEEP with SLLL in panel D. panel A, (log O — log OPEEP) for LLL relative to DEEP; panel B, (log O — log O°h)
for LLL relative to SLLL; panel €, (log O — log OV''Y) for LLL relative to VLLL; and panel D, (log OPFP — log O°1) for DEEP relative to SLLL.
Negative difference values mean better results for LLL in panels A, B and C, and better results for DEEP in panel D.
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Table 3 Probabilities estimated by comparing LLL with
DEEP, SLLL, and VLLL

Measures Methods DEEP SLLL VLLL
PBetter 0.202 0.152 0.725
O(B)
PWorse 0.739 0.771 0.275
PBetter 0.275 0.368 0.558
0(B)
PWorse 0.648 0.527 0.347
PBetter 0428 0.364 0.790
Kg
PWorse 0514 0.559 0.210

O(B), 6(B) and kz are the same as in Table 1. PBetter, the probability with which
LLL performs better; PWorse, the probability with which DEEP, SLLL, and VLLL
perform better than LLL. Otherwise, LLL produces the same results as the other
reduction methods.

shall use the 10,000 random examples to investigate the
effectiveness of 9(B) as an alternative quality measure of
orthogonality defect.

As in the case of orthogonality defect, let us denote the
10,000 minimum angles 6(B) from each of LLL, DEEP,
SLLL, VLLL and PLLL by gL, gPEEP gSLLL gVILL 4pq
0P, respectively, with those of the original problems by
0PROB, The cdf curves of these minimum angles are shown
in Figure 8, and the probabilities estimated by comparing
QLLL QDEEP oSLLL gVLLL .4 @PLLL (irp gPROB oo Jicreqd
in row 6(B) of Table 1. We may observe from Figure 8
that (a) VLLL tends to output small minimum angles
with a bigger probability than LLL, DEEP, SLLL, and
PLLL, indicating that VLLL could terminate with a poorly
orthogonal reduced basis with a significant probability; (b)
all the other four methods of basis reduction are generally
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satisfactory, but the order of increasing performance to
produce a bigger minimum angle is immediately visible,
ranging from the least effective LLL, SLLL, and then DEEP
to the most effective PLLL. In other words, PLLL is most
successful in guaranteeing a big minimum angle with a
biggest chance. It is most robust in avoiding a reduced
basis of poor orthogonality, with an almost zero proba-
bility of 0.001 to result in a minimum angle smaller than
45%; and (c) the problems themselves can have a bigger
probability to have a minimum angle over [51.8°, 67.9°],
depending on which of LLL, DEEP, SLLL and PLLL is
used to compare with PROB. A closer look at row 6(B) of
Table 1 has shown a surprising phenomenon that none of
the reduction methods can have a probability of more than
0.5 to improve the original problems with respect to this
quality measure. However, the problems will be demon-
strated to be significantly improved in terms of ¢; (B) and
kg in this section. This should indicate that the minimum
angle alone, as in the case of orthogonality defect, is not
sufficient to represent the quality of a reduced basis or a
reduction method, unless the lengths of the original basis
are already short. Nevertheless, this quality measure also
consistently indicates that both PLLL and DEEP are the
best reduction methods under study.

To carry out a direct comparison of each example
among LLL, DEEP, SLLL, VLLL, and PLLL, we have first
computed the differences (0 PLLL _ gLLLy " (PLLL _ gVLLL)
(@PMLL — 9SLLLy and (@M — 9PEEP) which are then
depicted in Figure 9 in the form of pdf histograms and
statistically summarized in row 6 (B) of Table 2. It is obvi-
ous from both Figure 9 and Table 2 that PLLL performs
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significantly better than any of the other four reduction
methods in producing a bigger minimum angle of the
reduced basis. Although we may infer from row 6(B) of
Table 2 that the next best method of reduction is DEEP,
followed by SLLL and LLL, with VLLL in the bottom of
performance with respect to this quality index, we decide
to show the direct evidence by comparing the popular LLL
algorithm with the other three methods, namely, VLLL,
SLLL, and DEEP. More precisely, we have depicted the pdf
histograms of the quantities (@M —gVILLy (@LLL _ gSLLL)
and (O™t — 9PEEP) jp Figure 10 and summarized them
statistically in Table 3. LLL is clearly better than VLLL
but worse than SLLL and DEEP. Panel D of Figure 10
also shows that DEEP performs better than SLLL, more
precisely, with a probability of 0.569 to 0.330 for DEEP.

4.3.3 Hermite factor yg

The Hermite factor is an important quality measure
of a reduction method and theoretically reflects the
upper bound of the shortest reduced vector through the
following inequality (see e.g., [3]):

[b1]l < B~ D/ [det(L)]Y*™, (24)

where g is equal to 4/ (48 — 1). 1/ can be rewritten as y3,
which is then referred to as the Hermite factor in the liter-
ature [7,34,45]. In the case of LLL, 8 = 2 and yp = 1.189.
When § approaches to one, 8 ~ 4/3 and yg ~ 1.075

[7,45]. Experimental studies [7,45] have shown that yp can
be practically much smaller than theoretically expected.
yp can be as small as 1.02 in the case of LLL and 1.01
in the case of DEEP (compare Table one of Gama and
Nguyen [45]). Based on the experimental pdf of the Gram-
Schmidt coefficients 1;; and the assumption of a Weibull
distribution to probabilistically describe the Lovasz con-
dition, Schneider et al. [34] obtained the expectation value
of 1.019 for yp after the LLL reduction, which is slightly
smaller than 1.0219 obtained experimentally by Gama and
Nguyen [45].

Based on the experiments on the 10,000 random exam-
ples, we obtain the Hermite factors yp after the reductions
by LLL, PLLL, VLLL, SLLL, and DEEP. Because the exper-
iments by Nguyen and Stehlé [7] have shown the conver-
gence of logarithm of yp to a certain constant, instead of
computing yp, we have directly computed log(yp), which
is denoted by 7 and given as follows:

1 by
ng = log(ys) = — log ! (25)

m ° [det(L£)]/@m)°
All the np values after the reductions are shown in
Figure 11, together with those of the original random
problems. Indeed, np from any of the reductions (LLL,
PLLL, VLLL, SLLL, and DEEP) tend to stabilize after rank
15 and converge to some constant. The statistics of yp
(m > 15) for each of the five reductions are listed in
Table 4. It is clear from Table 4 that both PLLL and
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Table 4 Statistics of Hermite factors with 2z > 15 from five
reduction methods LLL, DEEP, SLLL, VLLL, and PLLL

Methods LLL DEEP SLLL VLLL PLLL
Mean 1.0100 1.0090 1.0096 1.0122 1.0090
Max 1.0271 1.0178 1.0277 1.0513 1.0178
Min 0.9858 0.9858 0.9858 0.9931 0.9858

Mean, mean values of yz; Max, maximum values of yg; Min, minimum values of y;.

DEEP perform most excellently, followed by SLLL and
LLL. Actually, the curves of mean values from PLLL (the
green line) and DEEP (the red-dotted line) in panel F of
Figure 11 reveal that these two methods essentially pro-
duce the same results of yz on average. The relative error
of the mean yp of PLLL to that of DEEP is negligibly equal
to 0.007%. The mean value of yp after DEEP is consistent
with the report of 1.01 by Gama and Nguyen [45], though
negligibly smaller by 0.001. VLLL results in the biggest
mean value of the Hermite factors. Even worse, although
all the other four methods have produced relatively large
negative values of np for a small rank m, VLLL tends to
maintain all the same large positive values of np as the
original problems (compare panels D and F of Figure 11).
Our experiments have shown that a smaller mean value
of yp is not impossible for the LLL algorithm, which might
be related to types and randomness of lattice bases. On
the other hand, the g values of the original problems also
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converge to a small constant, irrelevant to any differences
in the problems themselves, as can be seen in panel F of
Figure 11. This might indicate that a quality measure with
a power function could only reveal a rough aspect of qual-
ity of a reduction method but hide all detailed important
features of a problem and/or a reduction method.

4.3.4 Length £1(B) of the shortest reduced vector

Reduction is to make the reduced basis vectors of lattice as
short as possible, but the effect of reduction is dependent
on methods of reduction and their control parameters.
Since solving the shortest vector problem of a lattice is
conjectured to be NP-hard, we will focus on the shortest
reduced vectors obtained after applying the five meth-
ods of reduction, i.e., LLL, DEEP, SLLL, VLLL, and PLLL,
based on the 10, 000 simulated random lattices. More pre-
cisely, let us denote the 10,000 lengths of ¢;(B) after the
reductions of LLL, DEEP, SLLL, VLLL, and PLLL by the
vectors Z%LL, Z?EEP, E?LLL, ZYLLL, and ZELLL, respectively.
For a clear visualization, we have plotted the cdf functions
of (EIELLL _ Z]fLL), (ZIELLL _ E]IDEEP), (elfLLL _ E?LLL)’ and
(ePHLL — ¢YILLy in Figure 12. It is clear from Figure 12
that DEEP performs the best in outputting the shortest
reduced vectors, which are theoretically expected, since
DEEP employs a strongest swapping condition to rein-
force reducing the lengths of the reduced vectors [35].
Panel B of Figure 12 has shown that PLLL is almost as
good as DEEP in producing the shortest reduced vectors.
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Table 5 Probabilities estimated by comparing DEEP with
LLL, SLLL, and VLLL

Measures Methods LLL SLLL VLLL
PBetter 0319 0.201 0.576
£1(B)
PWorse 0.005 0.006 0.001
PBetter 0.802 0.668 0915
r(B)
PWorse 0.104 0.223 0.085

PBetter, the probability with which DEEP performs better; PWorse, the
probability with which LLL, SLLL, and VLLL perform better. Otherwise, DEEP
produces the same results as the other reduction methods.

Looking at the two numbers of probability in column
DEEP of row £1(B) of Table 2, we can see that both
PLLL and DEEP produce exactly the same results of £ (B)
with a probability of 0.9, or equivalently, with 90% of the
examples. In the remaining 10%, each of PLLL and DEEP
performs better than the other with 2.4% and 7.6% of the
examples, respectively. Keeping in mind that DEEP has a
super-exponential complexity [45] in the worst case, PLLL
is remarkable to find a shortest possible £;(B) at a fixed
complexity. We can also see from Figure 12 that although
both LLL and SLLL cannot compete with PLLL (see pan-
els A and C and Table 2), they are much better than VLLL
(see panel D).

Since DEEP has been known for its great ability to
output the nearly shortest reduced vector as a direct
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consequence of deep insertions [35], we have made a fur-
ther comparison of DEEP with LLL, VLLL, and SLLL.
Based on the above results of ¢;(B), we have computed
and listed the probabilities of DEEP in comparison with
LLL, VLLL, and SLLL in Table 5 and shown the cdf curves
of (ZJIDEEP _ ZIfLL), (le)EEP _ K?LLL)’ and (e]l)EEP _ ZYLLL)
in Figure 13. Indeed, DEEP outperforms any of these
three methods of reduction, as also obviously shown in
column ¢;(B) of Table 5 and Figure 13. A significant,
positive impact of the sorted QR ordering on ¢;(B) can
also be inferred by comparing the columns LLL and SLLL
of Table 5 and panels A and C of both Figure 12 and
Figure 13.

4.3.5 Length ratio r(B)
Success of reduction is supposed to shorten the lengths of
the reduced basis vectors. Theoretical results of reduction
guarantee the following inequality of bound
Ibell?/2%(L) < o™ (26)
for k > 1 [35]. If we replace ||bg|| by max{|/ba],. .
and « by a, = al/?
follows:

o Ibm I}
in (26), then we can rewrite (26) as

max({|[|ball,..., by} < g1
AL -

(27)
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where o, will be referred to as the length reduction fac-
tor in the remainder of this paper. Remembering that A (L)
cannot be directly attainable as a result of any reduction
algorithm, we will replace it with ||b; ||. Thus, the left-hand
side of (27) exactly becomes the length ratio as defined in
(12). In the similar way to defining 7p in connection with
the Hermite factor, we may define

1
nr = loga, = — logr(B), (28)
m

which can be directly estimated from the length ratio r(B).

After reduction, we can obtain the 10,000 length ratios
of r(B) for each of LLL, DEEP, SLLL, VLLL, and PLLL,
which are collectively denoted by the vectors rLLL yDEEP
pSLLL pVILL " and rPLLL The results of n, are shown in
Figure 14 for each rank of lattices and the statistics of the
length reduction factors «;, are listed in Table 6. As in the

Table 6 Statistics of length reduction factors with m > 15
from reduction methods LLL, DEEP, SLLL, VLLL, and PLLL

Methods LLL DEEP SLLL VLLL PLLL
Mean 1.0164 1.0133 1.0148 1.0182 1.0136
Max 1.0533 1.0435 1.0456 1.1456 1.0435
Min 1.0082 1.0067 1.0057 1.0070 1.0064

Mean, mean values of «;; Max, maximum values of a,; Min, minimum values of «;.

case of np for the Hermite factor yp, Figure 14 has clearly
shown that the 7, values converge for all the five reduction
methods under study. By looking at panels A, B, C, and E
of Figure 14, one may conclude that except for VLLL, the
other four methods of reduction, i.e.,, LLL, DEEP, SLLL,
and PLLL work equally well with respect to the length
ratio r(B). A closer examination of Table 6 reveals that
(a) DEEP performs the best. This should be theoretically
expected, since DEEP was designed to further reduce the
lengths of a reduced basis [35]; (b) the second best method
of reduction is PLLL, which is almost as good as DEEP,
followed by SLLL and LLL; and (c) VLLL has the poorest
performance.

Let us now come to a direct comparison of the length
ratios r(B) for each simulated random example among
the five reduction methods. Theoretically, we expect that
a good reduction method should result in a small value
of 7(B), unless the basis B of a lattice is already orthogo-
nal. Shown in Figure 15 are the cdf curves of (log r’t —
logrML), (log rPML — log rPEEP), (log rPML — Jog rSULL),
and (logr’™ — logrVLL). The probabilities computed
from these quantities are summarized in row r(B) of
Table 2. It is obvious from Figure 15 that PLLL outper-
forms LLL, SLLL, and VLLL with respect to this quality
measure, as can also be confirmed by looking at row r(B)
of Table 2. The last column of row r(B) in Table 2 shows



Xu EURASIP Journal on Advances in Signal Processing 2013, 2013:137
http://asp.eurasipjournals.com/content/2013/1/137

Page 22 of 29

0.8

0.7

05

04

cumulative distribution functions

0.2

0.1+

!

o

-2 -1.5 -1

PLLL _

\/LLL)

line indicates (logr logr

-0.5 (1] 0.5 1
differences of maximum length ratios (log)

Figure 15 Curves of cumulative distribution functions of length ratios. This figure is to compare PLLL with LLL, DEEP, SLLL, and VLLL. The green

line indicates (log r’''- — log rth); the dashed black line indicates (log r’''s — log rPEP); the red line indicates (log rP''- — log r°tt); and the blue

that DEEP performs significantly better than PLLL with
a probability of 0.512 but worse only with a probabil-
ity of 0.361 in terms of r(B). To further compare DEEP
with LLL, SLLL, and VLLL, we have computed the quan-
tities, i.e., (logrPFEP — logr'l), (log rPFEP — log rSLLL),
and (log rPFE? — log rVI'L), shown the cdf curves of these
quantities in Figure 16 and summarized their performance
probabilities in row r(B) of Table 5. Both Figure 16 and

Table 5 clearly show the superior performance of DEEP
over LLL, SLLL, and VLLL.

4.3.6 Condition number kg

Both the shortest vector and closest point problems of
a lattice defined by a basis B are associated with its
positive definite quadratic form. The shape of the cor-
responding searching ellipsoid is strongly determined by
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the condition number of its associated positive definite
matrix, or equivalently, the condition number of B [22].
As an additional quality measure of lattice basis reduction
to the Hermite factor and orthogonality defect, condition
numbers were only used to compare the performance of
reduction methods for positive definite quadratic forms
recently (see e.g., [19,22]). Following Xu [19,22] for the
reduction of positive definite matrices, we will use the
concept of condition numbers to compare the perfor-
mances of reduction methods for lattice vectors.

Having applied LLL, DEEP, SLLL, VLLL, and PLLL
to the 10,000 randomly simulated examples, we have
obtained the 10,000 condition numbers for each of these

methods, which are denoted by k5%, K?EEP, KgLLL, ,ky L,

and KELLL, respectively. The condition numbers of the
original 10, 000 random examples are collected in the vec-
tor KEROB. The cdf curves of all these condition numbers,
namely, KL;LL, KEEEP, KES;LLL, K};LLL, and K};LLL, together
with KEROB, are shown in Figure 17. This figure has illus-
trated that (a) all the methods of reduction are effective
to reduce the condition numbers of problems, as can also
be seen from row «pg of Table 1. VLLL could worsen the
condition number of a problem significantly (compare the
pink line of Figure 17). However, we should note that
the success of a reduction method to reduce the condi-
tion number of a problem can depend on the original
condition number and the rank of a lattice [19,22]; (b)
PLLL consistently outperforms all the other four methods
of reduction, namely, LLL, DEEP, SLLL, and VLLL, for
almost all the problems; and (c) LLL, DEEP, and SLLL
perform much better than VLLL.
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In order to have a closer look at the random simula-
tion results on condition numbers, we have carried out a
direct comparison of each example among the five meth-
ods of reduction under study. More specifically, we have
computed the differences of the condition numbers (in

logarithm) (log kPP — log i E1), (log i BMME — log i DEEP),
(log kB — log S, and (log kB — log kYML). The

pdf histograms of these differences are shown in Figure 18,
and the estimated probabilities from comparing PLLL
with LLL, DEEP, SLLL, and VLLL are summarized in
row kg of Table 2. This direct comparison of condi-
tion numbers for each example reaffirms the outstand-
ing performance of PLLL over LLL, DEEP, SLLL, and
VLLL in reducing the condition number of a problem,
but unlike the cdf curves of Figure 17, Table 2, together
with Figure 18, has shown that LLL, DEEP, SLLL, and
VLLL could still be more successful than PLLL to reduce
the condition number of a problem, though with a small
probability from 0.05 to 0.14. Figure 18 has once again
illustrated that VLLL is least effective to reduce condition
numbers of problems.

The popular LLL algorithm is then compared with
DEEP, SLLL, and VLLL. In a similar manner, we

have computed the differences (logxi't — logxpFED),
(log KJ%LL — log KELLL), and (log K;?LL — log KI\;’LLL), whose

pdf histograms are shown in Figure 19. The estimated
probabilities from comparing LLL with DEEP, SLLL, and
VLLL in terms of condition numbers are listed in row g
of Table 3. It is very clear from both Figure 19 and Table 3
that LLL performs much better than VLLL but worse than
DEEP and SLLL in terms of condition numbers. Although

cumulative distribution functions

3
condition numbers (log)

4 5 6

Figure 17 Cumulative distribution functions of condition numbers (in logarithm) from 10, 000 random examples. PROB, black line; LLL,
green line; DEEP, dotted black line; SLLL, red line; VLLL, pink line; and PLLL, blue line.
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Tables 2 and 3 might be used to conclude that SLLL is
more effective than DEEP, we decide to provide the direct
evidence by showing the pdf histogram of (log K?EEP —
log KELLL) in panel D of Figure 19. More precisely, SLLL
performs better than DEEP to reduce the condition num-
bers of problems with 50.5% of the examples but worse

than DEEP with 42.4% of the examples.

4.4 Quality of the Gram-Schmidt coefficients after
reduction

The Gram-Schmidt coefficients p;; are known to satisfy
the inequality |u;| < 0.5 forall 1 < j < i after reduc-
tion. Theoretical analysis of the LLL algorithm by Lenstra
et al. [3] assumes the upper bound of 1/4 for M,zj to derive
all the lower and upper bounds on the reduced vectors b;.
In order to investigate probabilistic behaviors of the LLL
algorithm and its variants, one often assumes that all the
Gram-Schmidt coefficients j1;; after reduction are inde-
pendent and uniformly distributed over [ —0.5, 0.5] (see
e.g., [49,50,53]). It is only recently that numerical experi-
ments were carried out by Nguyen and Stehlé [7], which
have revealed that 1;; are not necessarily distributed uni-
formly over [ —0.5, 0.5]. Actually, the first experiments to
gain the practical knowledge on p;; found that the distri-
bution of p;;—1) looks like a sunken basin, independent
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of the reduction algorithms (the LLL algorithm and its
variant with deep insertions) and the used random bases
[7]. They also found that with the increase of the gap of (i—
), the distribution of 11;; tends to have a uniform distribu-
tion over [ —0.5, 0.5]. Similar experiments were followed
by Schneider et al. [34]. They confirmed the same sunken
shape of distribution for w;;—1) after the LLL reduction
as in Nguyen and Stehlé [7], went on to fit experimental
data with a symmetrical polynomial function and finally
used the fitted distribution to derive the mean values and
variances of the shortest reduced vector.

Based on our own experiments on the 10,000 random
lattices, we have obtained, in total, 6,149,762 u; (1 <j <
i < m), and 304, 941 p;;—1) for each of the five reduction
methods under study. The pdf histograms of 6,149,762
i are shown in Figure 20. It is obvious from Figure 20
that except for DEEP, the pdf curves of the other four
reduction methods are symmetrical with one peak at zero,
which are clearly not uniform. The pdf function of DEEP
looks flatter than the other pdf curves but shows three
peaks, two at the end points of —0.5 and 0.5 and one at
zero, respectively. The pdf curves of ;; have shown a clear
dependence on reduction methods, which is inconsistent
with the observation by Nguyen and Stehlé [7] that the
distributions of ;; seem to be method-independent. We
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can also see from panel F of Figure 20 that PLLL results
in most p;; around zero and least y;; close to the two end
points of —0.5 and 0.5.

The pdf histograms of the Gram-Schmidt coefficients
Wii—1) are depicted for each of LLL, DEEP, SLLL, VLLL,
and PLLL in Figure 21. By comparing Figure 21 with
Figure 20, we can see that except for PLLL, the shapes
of the pdf functions change dramatically for all the other
four methods. Now, DEEP shows a clear shape of a sunken
basin, as consistently found in Nguyen and Stehlé [7] and
Schneider et al. [34]. SLLL results in the shape of a val-
ley. Likely, the condition of deep insertions would force
the Gram-Schmidt coefficients p; with all i —j > 1 to
take smaller values. As a result, the percentage of |1;;—1)|
closer to 0.5 might be relatively increased to turn the more
or less flat pdf curve of DEEP in Figure 20 into a deeply
sunken basin in Figure 21, if we limit ourselves to 1t;;1).
The pdf functions for both LLL and VLLL have three
peaks, two at the end points of —0.5 and 0.5 and one at
zero. These should indicate that all these four methods of
reduction, i.e., LLL, DEEP, SLLL and VLLL, tend to pro-
duce more p;;—1) around the two end points of —0.5 and
0.5. It is, however, interesting to see that the pdf pattern
of w;;—1) from PLLL remains unchanged, still with a lot
more number of points close to zero and a less number of
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points around —0.5 and 0.5. A great number of 1;; close to
zero, together with a small number of j1;; around the two
end points of —0.5 and 0.5, may also explain the excellent
performance of PLLL, as seen in the performance analysis
of Section 4.3.

5 Conclusion

Reduction is to make a reduced basis of lattice as orthog-
onal as possible and as short as possible. A breakthrough
came with the invention of the LLL algorithm by Lenstra
et al. [3]. Its variants have since been substantially devel-
oped and applied widely to solve highly interdisciplinary
problems (see e.g., [5]). We have extended the paral-
lel reduction method developed recently by Xu [22] for
positive definite quadratic forms to lattice basis vectors,
which is referred to as the improved LLL algorithm with
fixed complexity in this paper. The proposed parallel algo-
rithm consists of three basic components: (a) sorting the
lattice vectors. Here, we implement two versions, one
directly in ascending order of the lengths of the vectors
and the other by perturbing the ascending sorting strat-
egy in the first one or two iterations with the order of
the lengths of the orthogonalized vectors; (b) the Gram-
Schmidt orthogonalization process; and (c) a complete
size reduction on the whole Gram-Schmidt coefficient
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Figure 21 Pdf histograms of Gram-Schmidt coefficients j;;_1) after reductions by LLL, DEEP, SLLL, VLLL and PLLL. Panel A, LLL; panel B,
DEEP; panel C, SLLL; panel D, VLLL; and panel E, PLLL. In order to show a direct comparison of these methods, we have also plotted all the pdf
curves together in panel F: the green line indicates LLL; the black line indicates DEEP; the red line indicates SLLL; the pink line indicates VLLL; and the
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matrix. The complexity of the algorithm is fixed by setting
a maximum number of iterations.

Reduction is to make the reduced basis as short as possi-
ble and as orthogonal as possible. For an ILS problem, the
absolute lengths of the basis, or equivalently, the magni-
tudes of the diagonal elements of the weight matrix of the
ILS problem, are not important, since they can be made
arbitrarily small without affecting the solution to the ILS
problem [20]. From this point of view, a good quality mea-
sure of reduction for an ILS problem should minimize
the maximum relative length of the reduced basis. On the
other hand, although the orthogonality defect O(B) has
been defined and widely used to evaluate the quality of a
reduction method, it basically does not help much to tell
the extent of orthogonality of the reduced basis at all. We
have proposed the minimum angle of a reduced basis as an
alternative quality measure of orthogonality, which may
be intuitively more straightforward than the orthogonality
defect.

We have carried out a large scale of random exper-
iments to investigate the output quality and practical
running behaviors of the five reduction methods for low-
dimensional GPS applications: (a) the original LLL algo-
rithm, (b) its variant with deep insertions, (c) the LLL
algorithm with sorted QR ordering; (d) an LLL algorithm
with fixed complexity proposed recently by Vetter et al.
[14]; and finally, (e) the improved LLL algorithm with
fixed complexity proposed in this paper. The five reduc-
tion methods have been extensively compared on the basis
of six quality measures of reduction, namely, the orthog-
onality defect, the minimum angle, the Hermite factor,
the length of the shortest reduced vector, the maximum
length ratio, and the condition number of the reduced
basis. The improved LLL algorithm with fixed complexity
has been shown to perform as well as the LLL algorithm
with deep insertions with respect to the quality measures
of the length of the shortest reduced vector and the Her-
mite factor, to be slightly less efficient with respect to
the maximum length ratio but otherwise to outperform
deep insertions on the other three quality measures of
orthogonality and condition numbers.

The random experiments have clearly shown that the
LLL variant with deep insertions is very powerful in
producing a uniformly short reduced basis, as might be
expected theoretically. However, it is much less efficient
than the improved LLL algorithm with fixed complexity
in turning the reduced basis as orthogonal as possible. As
a consequence, the former cannot compete with the latter
from the combined point of view of length and orthogo-
nality defects. In particular, since the LLL algorithm with
deep insertions can be super exponential in complex-
ity, as confirmed by the experiment results in this paper,
the fixed complexity of our improved LLL algorithm can
be profoundly more efficient computationally than this
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variant of LLL. Our LLL algorithm with fixed complex-
ity has been shown to perform significantly better than
the other four methods of reduction. The random simula-
tions have also clearly demonstrated that the QR sorting
can be a significant plus to the LLL algorithm on all the
account of six quality measures. The LLL algorithm with
fixed complexity proposed recently by Vetter et al. [14] has
been shown to have the worst performance on the account
of all the six quality measures.

The random experiments have illustrated that both
quality measures of orthogonality, i.e., the orthogonality
defect and the minimum angle, are not sufficient to prop-
erly reflect the quality of a reduction method. They should
be interpreted with caution and used together with the
quality measures of the shortest reduced vector and/or
the condition number in order to properly evaluate the
quality or performance of a reduction method. Condition
numbers are appropriate to correctly reflect the com-
bined effect/quality of a reduction method with respect to
orthogonality and length defects.

Based on the 10,000 random examples, we have also
investigated the mean running behaviors of the LLL algo-
rithm and its two variants with the sorted QR ordering
and deep insertions. The LLL variant with deep inser-
tions is confirmed to have a super-exponential complexity,
as stated by Gama and Nguyen [45]. The simulations
have also supported the widely spread belief that the LLL
algorithm performs much better in practice than theo-
retically expected. Actually, three theoretical formulae on
the upper bound of mean number of iterations tend to
converge to a small constant with the increase of lattice
ranks.

The simulation results on the distribution of Gram-
Schmidt coefficients after reduction have reaffirmed that
Gram-Schmidt coefficients are not uniformly distributed,
as observed in the excellent experimental study by Nguyen
and Stehlé [7] and otherwise often assumed for study-
ing probabilistic behaviors of the LLL algorithm and its
variants (see e.g., [49,50,53]). The distribution of wu;;—1)
with deep insertions shows a shape of deeply sunken
basin, which is consistent with the reports by Nguyen
and Stehlé [7] and Schneider et al. [34]. However, our
distribution results on the whole Gram-Schmidt coeffi-
cients have clearly shown that the distributions of j1;; are
reduction-dependent, which contradicts with the state-
ment by Nguyen and Stehlé [7] that these distributions
seem to be independent of both reduction methods and
lattice models. The improved LLL algorithm with fixed
complexity has been shown to have a consistent distri-
bution either for all u; or for ;1) only. In particular,
the distributions of both w;; and ;1) indicate that our
improved LLL algorithm with fixed complexity tends to
produce more Gram-Schmidt coefficients closer to zero
and less Gram-Schmidt coefficients closer to the two
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end points of —0.5 and 0.5 than any other methods of
reduction under study. Finally, we should note, however,
that we have conducted all these experiments with low-
dimensional GPS applications in mind. If the reader is
interested more in very high-dimensional (say a few hun-
dreds and above) cryptographic applications, then further
work of random simulations may be necessary.
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