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Abstract

A Wald test with enhanced selectivity capabilities is proposed in homogeneous environments. At the design stage,
we assume that the cell under test contains a noise-like interferer in addition to colored noise and possible signal
of interest. We show that the Wald test is equivalent to a recently proposed Rao test. We also observe that this
Rao/Wald test possesses constant false alarm rate property in homogeneous environments.
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1. Introduction
Detection of a deterministic signal known up to an un-
known scaling factor in the presence of colored noise is
a fundamental problem in many applications including
wireless communications, seismic analysis, hyperspectral
imaging, sonar, radar, and others. However, there is no
uniformly most powerful test for the quoted problem
since the covariance matrix of the noise and the amplitude
of the signal are both unknown. Consequently, a variety of
different solutions have been explored in open literature
under slightly different settings. The most prominent and
pioneering detection approaches are Kelly’s generalized
likelihood ratio test (GLRT) [1], adaptive matched filter
(AMF) [2], and adaptive coherence estimator (ACE) [3].
However, the above-cited detectors have been designed

without taking into account the possible presence of sig-
nal mismatch, and they behave quite differently in this
situation. A mismatched signal may arise due to several
reasons, for example, imperfect array calibration, spatial
multipath, pointing errors, etc. Since it is difficult to find
a decision scheme capable of successfully detecting slightly
mismatched mainlobe targets and effectively rejecting
sidelobe targets simultaneously, it becomes important
to achieve a good tradeoff between a high sensitivity of
mainlobe targets and perfect rejection of sidelobe targets.
In order to meet this goal, several strategies have been
exploited. One solution is to design a two-stage detector,
which is formed by cascading two detectors: the first-stage
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detector, usually with perfect sensitivity properties, judges
if there is enough received energy entering into the recei-
vers; the second-stage detector, usually with perfect select-
ivity properties, makes the decision as to whether or not
the received signal is to be considered as the signal of
interest (SOI). One declares the presence of a target only
when the received signal survives both detection thresh-
olds. This is the principle underlying the adaptive sidelobe
blanker (ASB) and its improved versions [4-7]. Another so-
lution is to modify the hypothesis test problem by adding a
fictitious signal under the null hypothesis; this fictitious sig-
nal is assumed to be orthogonal to the presumed signal
steering vector. When there is no target in the presumed
direction but one in another direction, e.g., a sidelobe tar-
get, the detector will incline towards the null hypothesis,
which is the desired result. This is the rationale of the
adaptive beamformer orthogonal rejection test (ABORT)
[8] and whitened ABORT (W-ABORT) [9]. A third solu-
tion is to design a tunable detector. For example, in [10], a
tunable detector is proposed, which consists of a blend
of Kelly’s GLRT and AMF through a so-called sensitivity
parameter. This parameter controls the degree to which
sidelobe targets are rejected. This approach is also used
in [11,12], where different tunable detectors are devised
through similar sensitivity parameters. A fourth solution
is to assume that a noise-like interferer exists in the cell
under test (CUT) but not present in the training data.
More precisely, the GLRT in this setting is proposed in
[13], which is found to be the ACE, while the Rao test is
proposed in [14], with the name—double-normalized
AMF (DN-AMF). It is shown that the ACE has excellent
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sidelobe signals rejection capabilities, at the price of a cer-
tain loss in terms of detection of matched signals. Com-
pared to its natural competitor, the DN-AMF provides
both enhanced sidelobe targets rejection capabilities and
high-detection performance of mainlobe targets.
The solutions mentioned above are either based on

GLRTcriterion or based on Rao criterion. As is well known,
there are usually three design criteria; besides the GLRT
and Rao criteria, another one is the Wald test criterion.
Thus, we resort to the Wald test criterion to devise a de-
tector with enhanced selectivity properties in homoge-
neous environments. At the design stage, we assume that
the CUT contains a noise-like interferer in addition to
colored noise and possible SOI. In particular, we show
that the Wald test is equivalent to the Rao test, i.e.,
DN-AMF. This shades a new light on the fact that the
Rao/Wald in this situation has excellent sidelobe targets
rejection capabilities.
The remainder of this article is organized as follows.

Section 2 deals with the problem formulation. The Wald
test is presented in Section 3, while the equivalence of
the Wald and Rao tests is exploited in Section 4. Finally,
Section 5 concludes the article.

2. Problem formulation
We assume that data are collected from sensors and de-
note the complex vector of the primary data by x, with
dimension N. As customary, we assume that a secondary
dataset, xl, l = 1,. . .,L, is available, that each of them does
not contain any useful signal, and shares the same co-
variance matrix with the primary data. The detection
problem can be formulated as the following binary hy-
pothesis test:

H0 :
x ¼ n;

xl ¼ nl; l ¼ 1; . . . ; L

�
H1 :

x ¼ asþ n;

xl ¼ nl; l ¼ 1; . . . ; L
ð1Þ

�
where E{xlxl

H} = R, E{nnH} = R + qqH. The signal ampli-
tude a, the covariance matrix R, and the noise-like inter-
ferer q are all unknown. For notational convenience, let
S = XXH, which is L times the sample covariance matrix,
with X = [x1, x2,. . .,xL].

3. The Wald test
Denote by θ∈C 1þNþN2ð Þ�1 the parameter vector, namely,

θ ¼ θr; θ
T
s

� � ¼ a; qT ; vecT Rð Þ� �T ð2Þ

where θr ¼ a∈C1�1 and θs ¼ qT ; vecT Rð Þ½ �T∈C N Nþ1ð Þ½ ��1,
the notation vec(∙) stands for vectorization operator.
Note that θs is the so-called nuisance parameter.
The Fisher information matrix (FIM) for real-valued
signal is well known, see, for example, [15]. In fact, we
can analogically obtain the complex FIM described as
followsa

I θð Þ ¼ E ∂lnf
x;X θj Þ
∂θ

� �
∂lnf

x;X θj Þ
∂θ�

� �H
 # "

ð3Þ

where f(x, X|θ) is the joint probability density function
(PDF) of x and X, under hypothesis H1, with θ fixed.
Then we partition the Fisher information matrix (FIM)

I(θ) as follows

I θð Þ ¼ Iθrθ�r Iθrθ�s
Iθsθ�r Iθsθ�s

� �
ð4Þ

The Wald test for real-valued signal is well known [15].
For complex-valued signal, the Wald test is analogously
given by

tWald ¼ θ̂r1 � θr0
	 
�

I�1 θ̂1

	 
h i
θrθ

�
r

� ��1

θ̂r1 � θr0
	 


ð5Þ

where θ̂r1 is the maximum likelihood estimate (MLE) of
θr under hypothesis H1,θr0 is the value of θr under hypoth-

esis H0, and I�1 θ̂1

	 
h i
θrθ

�
r

� ��1

is the Schur complement

of Iθsθ�s evaluated at θ̂1 namely,

I�1 θ̂1

	 
h i
θrθ

�
r

� ��1

¼ Iθrθ�r ��Iθrθ�s I
��1
θsθ

�
s
Iθsθ�r

	 

θ¼θ̂1

���
ð6Þ

In order to calculate (6), we need the joint probability
density function (PDF) of x and X under H1, which is
found to be

f x;Xjθð Þ ¼
exp �tr R�1 S þ x� asð Þ x� asð ÞH

	 
h in o
πN Lþ1ð ÞjRjLþ1 1þ qHR�1qð Þ

exp
j x� asð ÞHR�1qj2

1þ qHR�1qð Þ

" # ð7Þ

Take the gradient with respect to a, and equate to
zero, we obtain the MLE of a described as

â ¼ sHR�1qqHR�1x� 1þ qHR�1qð ÞsHR�1x

sHR�1q 2 � 1þ qHR�1q

 �

sHR�1s
���� ð8Þ

According to (7), we have

∂2lnf
∂a∂a�

¼ jsHR�1qj2
1þ qHR�1q

� sHR�1s ð9Þ
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Note that Iθrθ�r ¼ � ∂2lnf =∂a∂a . Consequently, we
arrive at

Iθrθ�r ¼ sHR�1s� jsHR�1qj2 1
1þ qHR�1q

ð10Þ

Iθrθ�s is found to be a null row vector, thus,

I�1 θ̂1

	 
h i
θrθ

�
r

� ��1

¼ Iθrθ�r . Notice that θ̂r1 ¼ â and

θr0 = 0, consequently, the intermediate Wald test is
given by

tWald ¼ jsHR�1qqHR�1x� 1þ qHR��1qð ÞsHR��1xj2
1þ qHR�1qð Þ 1þ qHR�1qð ÞsHR�1s� sHR�1q 2j �j½

ð11Þ
In order to obtain the explicit Wald test, we need the

MLE’s of R and q, which are given by [13]

R̂ ¼ 1
Lþ 1

S þ xxH

LxHS��1x

� �
; q̂ ¼ γ0x; ð12Þ

respectively, with γ0 satisfying the following equation

γ0
�� ��2 ¼ xHR̂

�1
x� 1

	 

=xHR̂

�1
x ð13Þ

Plugging (12) and (13) into (11), after some algebraic
manipulations, yields the final Wald test as

tWald ¼ tACE
xHS�1x: 1� tACEð Þ þ tACE

ð14Þ

in which tACE is the ACE statistic with expression as

tACE ¼ jsHS�1xj2
sHS�1s:xHS�1x

ð15Þ

One can easily verify that this Wald test possesses con-
stant false alarm rate (CFAR) property in homogeneous
environments.

4. The equivalence of the Wald and Rao tests
Dividing the numerator and denominator of (14) by the
quantity (1 – tACE), we have

tWald ¼
etACE

xHS�1xþetACE ð16Þ

where etACE ¼ tACE= 1� tACEð Þ
Let ex ¼ S�1=2x; es ¼ S�1=2s, then etACE can be rewritten

as

etACE ¼ exHPs~exexHPs~
⊥ex ¼ Ps~ex2

Ps~
⊥ex2 ð17Þ

where Ps~ is the projection matrix onto es, and P s~
⊥ is the

orthogonal complement of Ps~.
Using (17), Equation (16) can be rewritten as

tWald ¼ 1

1þ ex2Ps~⊥ex2=Ps~ex2 ð18Þ

Therefore, tWald is statistically equivalent to

etWald ¼
Ps~ex2

Ps~
⊥ex2ex2 ð19Þ

which is exactly the Rao test of [14].

5. Conclusions
We have considered the design of a detector with
improved mismatched signals rejection capabilities. To
this end, at the design stage it is assumed that the CUT
contains a random interferer with its steering vector un-
known. Under the above assumption, a Wald test has
been designed, which is found equivalent to the Rao test
proposed by Orlando and Ricci, which, in turn, is found
to yield better performance in terms of mismatched sig-
nals rejection.

Endnotes
aA different but equivalent complex FIM is given in [16].
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