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Abstract

When optimizing a wavelet image coder, the two main targets are to (1) improve its rate-distortion (R/D) performance
and (2) reduce the coding times. In general, the encoding engine is mainly responsible for achieving R/D performance.
It is usually more complex than the decoding part. A large number of works about R/D or complexity optimizations
can be found, but only a few tackle the problem of increasing R/D performance while reducing the computational
cost at the same time, like Kakadu, an optimized version of JPEG2000. In this work we propose an optimization of the
E_LTW encoder with the aim to increase its R/D performance through perceptual encoding techniques and reduce
the encoding time by means of a graphics processing unit-optimized version of the two-dimensional discrete wavelet
transform. The results show that in both performance dimensions, our enhanced encoder achieves good results
comparedwith Kakadu and SPIHT encoders, achieving speedups of 6 times with respect to the original E_LTW encoder.
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1 Introduction
Wavelet transforms have been reported to have good
performance for image compression; therefore, many
state-of-the-art image codecs, including the JPEG2000
image coding standard, use the discrete wavelet trans-
form (DWT) [1,2]. The use of wavelet coefficient trees and
successive approximations was introduced by the embed-
ded zerotree wavelet (EZW) algorithm [3] with a bitplane
coding approximation. SPIHT [2], an advanced version of
EZW, processes the wavelet coefficient trees in a more
efficient way by partitioning the coefficients depend-
ing on their significance. Both EZW and SPIHT need
the coefficient tree construction to search for significant
coefficients through a multiple iterative process at each
bitplane, which involves high computational complexity.
Bitplane coding is implemented by the JPEG2000

encoding codeblocks with three passes per plane, so the
most important information, from a rate-distortion (R/D)
point of view, is first encoded. It also uses an optional
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and low-complexity post-compression optimization algo-
rithm, based on the Lagrange multiplier method. Besides,
it uses a large number of contexts for the arithmetic
encoder. This post-compression rate-distortion optimiza-
tion algorithm selects the most important coefficients by
weighting them, based on the mean square error (MSE)
distortion measurement.
Wavelet-based image processing systems are typically

implemented with memory-intensive algorithms and with
higher execution time than other encoders based on
other transforms like discrete cosine transform. In usual
two-dimensional (2D)-DWT implementations [4], image
decomposition is computed by means of a convolution
filtering process, and so its complexity rises as the filter
length does. The image is transformed at every decom-
position level, first column by column and then row by
row.
In [5], the authors proposed the E_LTW codec with

sign coding, precise rate-control, and some optimizations
to avoid bitplane processing, at the cost of not being
embedded, but with low memory requirements and simi-
lar R/D performance than the one obtained by embedded
encoders like JPEG2000 and SPIHT.
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Part II of the JPEG2000 standard includes visual pro-
gressive weighting [6] and visual masking by setting the
weights based on the human visual system (HVS) using
contrast sensitivity function (CSF). Many other image
encoders have included much of the knowledge of the
human visual system in order to obtain a better percep-
tual quality of the compressed images. The most widely
used characteristic is the contrast adaptability of the HVS,
because HVS is more sensitive to contrast than to abso-
lute luminance [7]. The CSF relates the spatial frequency
with the contrast sensitivity.
This perceptual coding will improve the perceptual

quality of the reconstructed images, so that for a desired
rate range, a better perceptual R/D behavior is achieved.
Although most studies employ the peak signal-to-noise

ratio (PSNR) metric to measure image quality perfor-
mance, it is well known that this metric does not always
capture the distortion perceived by the human being.
Therefore, we decided to use objective quality assessment
metrics whose design is inspired by the HVS, since our
proposal includes perceptual-based encoding techniques
that may not be properly evaluated by the PSNR metric.
In this work, we propose the PE_LTW (perceptually

enhanced LTW) as an enhanced version of the E_LTW
encoder by including perceptual coding based on the CSF
and the use of graphics processing unit (GPU)-optimized
2D-DWT algorithms based on the methods described in
[4,8].
After improving the perceptual R/D behavior of our pro-

posal, we proceed to optimize the 2D-DWT transform
module by GPU processing to reduce the overall encod-
ing time. From previous work, we have defined a CUDA
implementation of the 2D-DWT transform that is able to
considerably reduce the 2D-DWT computation time.
So as to test the behavior of our proposal, we have com-

pared the performance of our PE_LTW encoder in terms
of perceptual quality and encoding delays with the Kakadu
implementation of the JPEG2000 standard, with and with-
out enabling its perceptual weighting mode, and with the
SPIHT image encoder.

2 Encoding system
2.1 Encoder
The basic idea of this encoder is very simple: after comput-
ing the 2D-DWT transform of an image, the perceptually
weighted wavelet coefficients are uniformly quantized and
then encoded with arithmetic coding.
As mentioned, the 2D-DWT computation stage runs on

a GPU and includes the perceptual weighting based on
the CSF and implemented as an invariant scaling factor
weighting (ISFW) [9] that weights the obtained coeffi-
cients depending on the importance that the frequency
subband has for theHVS contrast sensitivity.We detail the
CSF and the ISFW later in the next sections.

The uniform quantization of the perceptually weighted
coefficients is performed by means of two strategies: one
coarser and another finer. The finer one consists of apply-
ing a scalar uniform quantization (Q) to the coefficients.
The coarser one is based on removing the least significant
bitplanes (rplanes) from coefficients.
For the coding stage, if the absolute value of a coef-

ficient and all its descendants (considering the classic
quad-tree structure from [2]) is lower than a threshold
value (2rplanes), the entire tree is encoded with a single
symbol, which we call LOWER symbol (indicating that all
the coefficients in the tree are lower than 2rplanes and so
they form a lower tree). However, if a coefficient is lower
than the threshold and not all its descendants are lower
than it, that coefficient is encoded with an ISOLATED
LOWER symbol. On the other hand, for each wavelet
coefficient higher than 2rplanes, we encode a symbol indi-
cating the number of bits needed to represent that coeffi-
cient, along with a binary-coded representation of its bits
and sign (note that the rplanes less significant bits are not
encoded).
The encoder exploits the sign neighborhood correla-

tion of wavelet subband type (HL,LH,HH) as Deever and
Hemami assessed in [10] by encoding the prediction of the
sign (success of failure).
The proposed encoder also includes the rate control

algorithm presented in [11] but taking into account the
sign coding and the intrinsic error model of the rate con-
trol. As the rate control underestimates the target rate, the
required bits to match the target bitrate are added to the
bitstream. The selected bits correspond to the bitplanes
(lower or equal to the rplanes quantization parameter) of
significant coefficients added to the output bitstream fol-
lowing a particular order, from low-frequency subbands
to the highest one.
More details about the coding and decoding algorithms,

along with a formal description and an example of use, can
be found in [5,12].

2.2 The contrast sensitivity function
In [9], the authors explained how the sensitivity to con-
trast of the HVS can be exploited by means of the CSF
curve to enhance the perceptual or subjective quality of
the DWT-encoded images. A comprehensive review of
HVS models for quality assessment/image compression
is found in [7]. Most of these models take into account
the varying sensitivity over spatial frequency, color, and
the inhibiting effects of strong local contrasts or activity,
called masking.
Complex HVS models implement each of these low-

level visual effects as a separate stage. Then the overall
model consists of the successive processing of each stage.
One of the initial HVS stages is the visual sensitivity as a
function of spatial frequency that is described by the CSF.
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Figure 1 Contrast sensitivity function.

A closed-form model of the CSF for luminance images
[13] is given by

H( f ) = 2.6(0.0192 + 0.114 f )e−(0.114 f )1.1 (1)

where spatial frequency is f = ( f 2x + f 2y )1/2 with units
of cycles/degree ( fx and fy are the horizontal and vertical
spatial frequencies, respectively). The frequency is usually
measured in cycles per optical degree, which makes the
CSF independent of the viewing distance.
Figure 1 depicts the CSF curve obtained with

Equation 1, and it characterizes luminance sensitivity as
a function of normalized spatial frequency (CSF =
1/Contrast threshold). As shown, CSF is a band-pass
filter, which is most sensitive to normalized spatial fre-
quencies between 0.025 and 0.125 and less sensitive to
very low and very high frequencies. The reason why we
cannot distinguish patterns with high frequencies is the
limited number of photoreceptors in our eyes. CSF curves
exist for chrominance as well. However, unlike luminance
stimuli, human sensitivity to chrominance stimuli is
relatively uniform across spatial frequency.
One of the first works that demonstrate that the MSE

cannot reliably predict the difference of the perceived
quality of two images can be found in [13]. They propose,
by way of psychovisual experiments, the aforementioned
model of the CSF, which is well suited and widely used
[6,14-16] for wavelet-based codecs; therefore, we adopt
this model.

2.3 Using the CSF
In [9], the authors explained how the CSF can be imple-
mented in wavelet-based codecs. Some codecs, like the
JPEG2000 standard Part II, introduce the CSF as a visual
progressive single factor weighting, replacing the MSE by

the CSF-weighted MSE (WMSE) and optimizing system
parameters to minimize WMSE for a given bitrate. This
is done in the post-compression rate-distortion optimiza-
tion algorithm where the WMSE replaces the MSE as
the cost function which drives the formation of quality
layers [6].
CSF weights can be obtained also by applying to each

frequency subband the appropriate contrast detection
threshold. In [15], subjective experiments were performed
to obtain a model that expresses the threshold DWT
noise as a function of spatial frequency. Using this model,
the authors obtained a perceptually lossless quantization
matrix for the linear phase 9/7 DWT. By the use of
this quantization matrix, each subband is quantized by a
value that weights the overall resulting quantized image
at the threshold of artifacts visibility. For suprathreshold
quantization, a uniform quantization stage is afterward
performed.
However, we introduce the CSF in the encoder using

the ISFW strategy proposed also in [9]. So from the CSF
curve, we obtain the weights for scaling the wavelet coeffi-
cients. This weighting can be introduced after the wavelet
filtering stage and before the uniform quantization stage

Table 1 Proposed CSF weightingmatrix

LL LH HH HL

L1 1.0 1.1795 1.0000 1.7873

L2 1.0 3.4678 2.4457 4.8524

L3 1.0 6.2038 5.5841 6.4957

L4 1.0 6.4177 6.4964 6.1187

L5 1.0 5.1014 5.5254 4.5678

L6 1.0 3.5546 3.9300 3.1580



Martínez-Rach et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:141 Page 4 of 10
http://asp.eurasipjournals.com/content/2013/1/141

NBLOCKS
rows

 =image_width / (BLOCKSIZE+1)

BLOCKSIZE

4

im
ag

e_
he

ig
ht

   
 T

ile
s

9

Apron Apron

row 1
row 2

row n

row i

row j

(a)

image_width Tiles

N
B

L
O

C
K

S co
ls

=
im

ag
e_

he
ig

ht
/ (

B
L

O
C

K
SI

Z
E

+
1)

Apron

Apron

3
7 B

L
O
C
K
SIZ

E

Apron

1loc
2loc co

l m

i l oc

j l oc

(b)
Figure 2 Shared memory for the Daubechies 9/7 filter. (a) Shared memory for the row filter. (b) Shared memory for the column filter.

is applied. The weighting is a simple multiplication of
the wavelet coefficients in each frequency subband by the
corresponding weight. At the decoder, the inverse of this
weight is applied. The CSF weights do not need to be
explicitly transmitted to the decoder. This stage is inde-
pendent to the other encoder modules (wavelet filtering,
quantization, etc).
The granularity of the correspondence between

frequency and weighting value is a key issue. As
wavelet-based codecs obtain a multiresolution signal
decomposition, the easiest association is to find a unique
weighting value (or contrast detection threshold) for each
wavelet frequency subband. If further decompositions

of the frequency domain are done, for example, a finer
association could be done between frequency and weights
using packet wavelets [17].
We perform the ISFW implementation based on [18]

but increasing the granularity at the subband level. This
is done in the wavelet transform stage of the PE-LTW
encoder multiplying each coefficient in a wavelet sub-
band by its corresponding weighting factor. In spite of the
fact that CSF (Equation 1) is independent of the view-
ing distance, in order to introduce it as a scaling factor,
the resolution and the viewing distance must be fixed.
Although an observer can look at the images from any
distance, as stated in [9], the assumption of ‘worst case
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Table 2 GPU vs. SEQ PE_LTW speedup and total encoding time comparison with SPIHT and Kakadu

Rates PE_LTW SPIHT Kakadu

(bpp) SEQ-DWT GPU-DWT Rate & Coder T.SEQ T.GPU Speedup Total Total

Lena 1.00 17.08 0.85 31.80 48.88 32.65 1.50 93.04 13.00

0.5 17.23 0.86 16.15 33.38 17.01 1.96 185.74 9.00

0.25 17.17 0.86 10.39 27.56 11.25 2.45 198.64 8.00

0.125 17.57 0.88 7.73 25.30 8.61 2.94 220.15 7.00

Barbara 1.00 17.89 0.89 27.26 45.15 28.16 1.60 77.80 15.00

0.5 17.42 0.87 17.04 34.46 17.91 1.92 72.37 9.00

0.25 17.45 0.87 11.53 28.98 12.40 2.34 42.59 8.00

0.125 17.49 0.87 8.38 25.87 9.25 2.79 35.04 7.00

Goldhill 1.00 17.61 0.88 30.62 48.23 31.50 1.53 99.46 12.00

0.5 18.13 0.91 18.21 36.34 19.12 1.90 52.72 24.00

0.25 17.30 0.86 11.51 28.81 12.38 2.33 45.51 8.00

0.125 17.42 0.87 7.97 25.39 8.84 2.87 28.86 7.00

Boat 1.00 17.02 0.85 27.44 44.46 28.29 1.57 79.05 11.00

0.5 17.35 0.87 17.13 34.49 18.00 1.92 51.22 9.00

0.25 17.03 0.85 11.35 28.37 12.20 2.33 41.98 7.00

0.125 17.13 0.86 7.95 25.07 8.80 2.85 59.12 8.00

Mandrill 1.00 17.99 0.90 32.85 50.84 33.75 1.51 94.06 19.00

0.5 17.89 0.89 19.98 37.87 20.87 1.81 51.86 11.00

0.25 17.59 0.88 13.11 30.69 13.99 2.19 40.83 8.00

0.125 17.87 0.89 8.59 26.46 9.48 2.79 47.26 8.00

Balloon 1.00 16.89 0.84 26.86 43.75 27.71 1.58 104.25 12.00

0.5 17.27 0.86 16.39 33.67 17.26 1.95 45.25 9.00

0.25 16.89 0.84 10.92 27.81 11.77 2.36 36.91 8.00

0.125 16.89 0.84 8.06 24.95 8.90 2.80 29.03 7.00

Horse 1.00 17.60 0.88 31.81 49.42 32.69 1.51 86.45 13.00

0.5 17.34 0.87 18.49 35.83 19.36 1.85 56.35 9.00

0.25 17.33 0.87 11.38 28.71 12.25 2.34 36.74 9.00

0.125 17.55 0.88 8.25 25.80 9.12 2.83 43.10 8.00

Zelda 1.00 17.11 0.86 35.36 52.48 36.22 1.45 57.56 11.00

0.5 17.08 0.85 16.58 33.65 17.43 1.93 34.68 9.00

0.25 17.39 0.87 10.48 27.87 11.35 2.46 25.36 8.00

0.125 17.25 0.86 7.40 24.65 8.26 2.98 26.44 7.00

Cafe 1.00 419.10 20.95 521.75 940.85 542.71 1.73 719.54 197.00

0.5 418.50 20.92 325.41 743.91 346.34 2.15 1,854.99 129.00

0.25 418.97 20.95 217.20 636.17 238.15 2.67 1,104.76 105.00

0.125 418.73 20.94 150.93 569.66 171.86 3.31 733.09 90.00

Bike 1.00 412.87 20.64 508.61 921.48 529.26 1.74 1265.46 171.00

0.5 413.13 20.66 296.34 709.47 317.00 2.24 1867.98 121.00

0.25 415.15 20.76 191.44 606.59 212.20 2.86 943.82 101.00

0.125 414.18 20.71 134.58 548.76 155.29 3.53 762.22 88.00

Woman 1.00 414.49 20.72 527.83 942.31 548.55 1.72 819.65 169.00

0.5 414.12 20.71 321.25 735.36 341.95 2.15 1,528.94 137.00

0.25 418.81 20.94 215.76 634.57 236.70 2.68 913.84 95.00

0.125 417.78 20.89 151.65 569.43 172.54 3.30 699.80 89.00
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viewing conditions’ can produce CSF weighting factors
that work properly for all different viewing distances and
media resolutions. So after fixing viewing conditions, we
obtain the weighting matrix, presented in Table 1. For
each wavelet decomposition level and frequency orien-
tation, the weights are directly obtained from the CSF
curve, by normalizing the corresponding values so that the
most perceptually important frequencies are scaled with
higher values, while the less important are preserved. This
scaling process augments the magnitude of all wavelet
coefficients, except for those in the LL subband that are
neither scaled nor quantized in our coding algorithm. Our
tests reveal that, thanks to the weighting process, the uni-
form quantization stage preserves a very good balance
between bitrate and perceptual quality in all the quanti-
zation range, from under-threshold (perceptually lossless)
to suprathreshold quantization (lossy).

2.4 GPU 2D-DWT optimization
In order to develop the 2D-DWT-optimized version, we
will use an NVIDIA GTX 280 GPU that contains 30 mul-
tiprocessors with eight cores in each multiprocessor, 1 GB
of global memory, and 16 kB of shared memory (SM) by
block.
Firstly, we will define our GPU-based 2D-DWT algo-

rithm, named as CUDA Conv 9/7, as the reference algo-
rithm. It will only use the GPU shared memory space
to store the buffer that will contain a copy of the work-
ing row/column data. The constant memory space is
used to store the filter taps. We call each CUDA ker-
nel with a one-dimensional number of thread blocks,
NBLOCKS, and a one-dimensional number of threads by
block, NTHREADS.
In the horizontal DWT filtering process, each image

row is stored in the threads shared memory. After that, in
the vertical filtering, each column is processed in the same
way. The row or column size determines the NBLOCKS
parameter, which must be greater or equal to the image

width in the horizontal step or the image height in the ver-
tical step. One of the goals in the proposed CUDA-based
methods is not to increase memory requirements, so we
will store the resulting wavelet coefficients in the original
image memory space.
For computing the DWT, the threads use the shared

memory space, where latency access is extremely low. The
CUDA-Sep 9/7 algorithm stores the original image in the
GPU global memory but computes the filtering steps from
the shared memory.
Execution in the GPU is composed by threads grouped

in a number of 32 threads called warp. Each warp must
load a block of the image from the global memory into
a shared memory array with BLOCKSIZE pixels. As it
can be seen in Figure 2, the number of thread blocks,
NBLOCKS, or tiles depends on BLOCKSIZE and image
dimensions. Moreover, pixels located in the border of the
block also need neighbor pixels from other blocks to com-
pute the convolution. These regions are called apron and
are shadowed in the last row and column of Figure 2a, b.
The size of the apron region depends on the filter radius
(the filter radius being the half of the filter lengthminus 1).
In both figure panels, the values of the filter radius and the
filter length corresponding to the Daubechies 9/7 filter are
presented.
We can reduce the number of idle threads by reducing

the total number of threads per block and also using each
thread to load multiple pixels into the shared memory.
This ensures that all threads of each warp are active during
the computation stage. Note that the number of threads in
a block must be a multiple of the warp size (32 threads on
GTX 280) for optimal efficiency.
To achieve higher efficiency and higher memory

throughput, the GPU attempts to coalesce accesses from
multiple threads into a single memory transaction. If all
threads within a warp (32 threads) simultaneously read
consecutive words, then a single large read of the 32 values
can be performed at optimum speed. In the CUDA-Sep

Table 3 Speedup comparison by target bitrate

Rates PE_LTWmean times SPIHT Kakadu Speedup comparison

(bpp) T.GPU Total Total vs. SPIHT vs. Kakadu

512 × 512 1 31.4 86.5 13.3 2.76 0.42

0.5 18.4 68.8 11.1 3.74 0.61

0.25 12.2 58.6 8.0 4.80 0.66

0.125 8.9 61.1 7.4 6.86 0.83

2, 048 × 2, 560 1 540.2 934.9 179.0 1.73 0.33

0.5 335.1 1,750.6 129.0 5.22 0.38

0.25 229.0 987.5 100.3 4.31 0.44

0.125 166.6 731.7 89.0 4.39 0.53
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Figure 3 PSNR R/D comparison of the Woman image encoded
with PE_LTW, SPIHT, and Kakadu. Rates are in bits per pixel.

9/7 algorithm, the convolution process is separated in two
stages:

1. The row filtering stage
2. The column filtering stage

Each row/column filtering stage is separated into two
substages: (a) the threads load a block of pixels of one
row/column from the global memory into the shared
memory, and (b) each thread computes the filter over the
data stored in the shared memory and the result is sent to
the global memory. For the column filtering, the resulting
coefficient is stored in the global memory after perform-
ing the perceptual weighting, i.e., multiplying the final
coefficient by the perceptual weight corresponding to the
wavelet subband of the coefficient.
In the row or column filtering, the pixels located in the

image block borders also need adjacent pixels from other
thread blocks to compute the DWT. The apron region
must also be loaded in the shared memory, but only for
reading purposes, because the filtered value of the pixels
located there is computed by other thread blocks.
The speedup achieved by the DWT GPU-based algo-

rithm is up to 20 times relative to the sequential imple-
mentation in one core. Note that wavelet transform is only
a single first step in an image/video encoder.

3 Performance evaluation
All evaluated encoders have been tested on an Intel Pen-
tium Core 2 CPU at 1.8 GHz with 6 GB of RAMmemory.
We use an NVIDIA GTX 280 GPU that contains 30 mul-
tiprocessors with eight cores in each multiprocessor, 1 GB
of global memory, and 16 kB of shared memory by block
(or SM).
The proposed encoder is compared with Kakadu 5.2.5

and SPIHT (Sphit 8.01) encoders with two sets of test
images: (a) a 512 × 512 image resolution set including

(a)

(b)

(c)

Figure 4 Subjective comparison of the Woman image encoded
at 0.25 bpp. (a) SPIHT (PSNR = 29.95 dB). (b) Kakadu
(PSNR = 30.01 dB). (c) PE_LTW (PSNR = 29.11 dB).
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Figure 5 VIF R/D comparisons for different images from the test
set. (a) Lena. (b) Barbara. (c) Zelda. (d)Woman.

Lena, Barbara, Balloon, Horse, Goldhill, Boat, Mandrill,
and Zelda, and (b) a 2, 048 × 2, 560 image resolution
set including Cafe, Bike, and Woman. When comparing
with Kakadu, we perform two comparisons: one labeled
as Kakadu_csf, which has enabled its perceptual weight-
ing mode (with the perceptual weights presented in [6]),
and the other one, labeled as Kakadu, without perceptual
weights.
First, we analyze the speedup of the GPU-based encoder

using 2D-DWT described in the previous section with
respect to the traditional convolution algorithm running
in a single core processor.
In Table 2, we show for each test image, at different

bitrates, the encoding times for SPIHT, Kakadu, and our
proposal in milliseconds. The first six columns are related
to our proposal: The SEQ-DWT column shows the time
required by the DWT when running on a single core. The
GPU-DWT column shows the time of the CUDA-Sep 9/7
DWT version when running on GPU. The Rate & Coder
column shows the time required by the rate control and
the encoding stage, this time being common for both the
sequential and GPU 2D-DWT versions. The T.SEQ col-
umn shows the total time for the sequential version and
the T.GPU the total time for the GPU version. Finally, the
Speedup column shows the speedup of the GPU version
compared to the sequential version. The last two columns
are the total execution time, also in milliseconds, for the
other encoders, SPIHT and Kakadu.
When the target bitrate is low, i.e., high compression

rate, the uniform quantization of the wavelet coefficients
produces a great number of nonsignificant coefficients in
low decomposition levels, the root of the zero tree being
located at higher decomposition levels. This fact reduces
the computation cost because only the root of a zero
tree needs to be encoded. As a consequence, the over-
all number of operations is reduced and the gain of GPU
optimized version is reduced too.
Table 3 shows the comparison of the average execu-

tion times (milliseconds) of each image in the test set
at different compression rates. The PE_LTW is faster
than SPIHT regardless of the target rate for any image
size. However, the Kakadu encoder is still faster than the
PE_LTW. Although the PE_LTW runs its DWT stage
over the GPU, it is the only optimized stage in the whole
encoder. By contrast, all encoding stages in the Kakadu
5.2.5 are fully optimized. Besides the use of multithread
and multicore hardware capabilities, Kakadu uses pro-
cessor intrinsics capabilities like MMX/SSE/SSE2/SIMD
and uses a very fast multicomponent transform, i.e., block
transform, which is well suited for parallelization.

4 R/D evaluation
For evaluating image encoders, the most common per-
formance metric is the well-known R/D, the trade-off
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between encoder bitrate (bpp) and the reconstructed
quality typically measured in decibels through the PSNR
of luminance color plane. However, it is also well known
that the PSNR quality measurement is not close to the
human perception of quality and sometimes it gives wrong
quality scores, leading to erroneous conclusions when
evaluating different encoding strategies.
Figure 3 shows the R/D comparison of the Woman

(2, 048 × 2, 560) image compressed with the PE_LTW
encoder, SPIHT, Kakadu, and Kadadu_csf, using PSNR as
quality metric. A misleading conclusion after looking at
R/D curves for the PE_LTW and Kakadu_csf is that the
encoding strategy of those proposals are inappropriate,
since their quality results are always lower than those of
the other encoders, specially at high bitrates.
There are several studies about the convenience of

using other image quality assessment metrics than PSNR
that better fit to human perceptual quality assessment
(i.e., subjective test results) [14,17,19,20]. One of the best
behaving objective quality assessment metrics is visual
information fidelity (VIF) [7], which has been proven
[17,19] to have a better correlation with subjective per-
ception than other metrics that are commonly used for
encoder comparisons [14,20]. The VIF metric uses statis-
tic models of natural scenes in conjunction with distortion
models in order to quantify the statistical information
shared between the test and reference images.
As an example of how measuring the perceptual quality

of images with PSNR is misleading, we show in Figure 4
a subjective comparison of the three encoders with a
cropped region of the Woman test image compressed

at 0.25 bpp. In this case the third image, encoded with
PE_LTW, seems to have better subjective quality than
the other two. This observation contradicts the conclu-
sion obtained from Figure 3 that suggests that at this rate
PE_LTW is worse than SPIHT and Kakadu. The same
behavior can be observed as well with the other test
images. So it is better not to trust on how PNSR ranks
quality and use instead a perceptually inspired quality
assessment metric like VIF that, as stated in [17,19], has
a better correlation with the human perception of image
quality.
So we will use the VIF metric in our R/D compar-

isons. Figure 5 shows some of the R/D results for some
test images. As shown, the PE_LTW encoder can achieve
higher compression rates while maintaining the same per-
ceptual quality than the other encoders, i.e., a bitrate
saving is obtained while using the PE_LTW instead of
Kakadu or SPIHT at a desired quality.
Table 4 shows the rate savings obtained with PE_LTW

vs. Kakadu, SPIHT, and Kakadu_csf. The VIF interval
varies from 0.1 to 0.95 VIF quality units, 0.1 being the
worst quality. This table groups the results by image reso-
lution. Results are expressed as percentages of saved rate
in the aforementioned VIF interval.

5 Conclusions
We have presented a perceptual image wavelet encoder
whose 2D-DWT stage is implemented using CUDA
running on a GPU. Our proposed perceptual encoder
reveals the importance of exploiting the contrast sensitiv-
ity function behavior of the HVS by means of an accurate

Table 4 Rate savings of PE_LTW vs. Kakadu, SPIHT, and Kakadu with perceptual weightsKakadu_csf
P_ELTW vs. Kakadu vs. SPIHT vs. Kakadu_csf

images (% rate saved, mean) (% rate saved, mean) (% rate saved, mean)

512 × 512

Lena 13.87 16.83 5.23

Barbara 11.39 17.44 −2.61

Goldhill 7.76 13.07 0.09

Boat 8.58 12.02 0.47

Mandrill 19.13 22.01 3.08

Balloon 10.45 10.75 2.16

Horse 14.96 14.91 3.74

Zelda 17.22 20.43 8.46

Mean 512 × 512 12.92 15.93 2.58

2, 048 × 2, 560

Cafe 9.63 12.34 1.43

Bike 9.24 15.57 −0.80

Woman 5.21 11.46 3.75

Mean 2, 048 × 2, 560 8.03 13.12 1.46
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perceptual weighting of wavelet coefficients. PE_LTW is
very competitive in terms of perceptual quality, being able
to obtain important bitrate savings regardless of the image
resolution and at any bitrate when compared with SPIHT
and Kakadu with and without its perceptual weighting
mode enabled. The PE_LTW encoder is able to produce
a quality-equivalent image with respect to the other two
encoders with a reduced rate.
As the 2D-DWT transform runs on a GPU, the overall

encoding time is highly reduced compared to the sequen-
tial version of the same encoder, obtaining maximum
speedups of 6.86 for 512×512 images and 4.39 for 2, 048×
2, 560 images. Compared with SPIHT and Kakadu, our
proposal is clearly faster than SPIHT but needs additional
optimizations to outperform Kakadu times.
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