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Abstract

In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to
provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to
capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These
ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests,
combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time
video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability,
communication bandwidth, processing time, and power consumption are critical parameters that should be carefully
considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called
modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the
same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a
continuous manner through a 40-Gbit Ethernet point-to-point access.
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1 Introduction
Video compression has been an extremely successful tech-
nology that has found its commercial application across
many areas from scientific and industrial applications as
video archiving, high-quality medical video, surveillance
and security applications to the audiovisual industry (TV
and cinema) and the broad spectrum of video appliances
available in the market, such as digital cameras, DVD,
Blue-Ray, and DVB.
In the last decade, the improvements in VLSI levels and

image sensor technologies have led to a frenetic rush to
provide image sensors with higher resolutions and faster
frame rates. As a result, video devices were designed to
capture real-time video at high-resolution formats with
frame rates above 100 Hz. Nowadays, ultrahigh-speed
video cameras can be found in the market like Phantom
v641 (Vision Research Inc., Wayne, NJ, USA) [1] which is
able to capture high-resolution video (2, 560 × 1, 600 pix-
els) at 1,450 frames per second (fps). These video cameras
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are specially suited for scientific or industrial applica-
tions, such as car crash tests, explosives and pyrotechnics,
ballistics, projectile tracking, combustion research,
materials research and testing, fluid dynamics, flow visu-
alization. which demand real-time video capturing at
extremely high frame rates with high-definition (HD) for-
mats. Therefore, data storage capability, communication
bandwidth, processing time and power consumption are
critical parameters that should be carefully considered in
the design process of high-speed video cameras.
In order to fight against these constraints, most of

nowadays high-speed cameras store the captured images
in a fast synchronous dynamic random access memory
(SDRAM) module of up to 64 GB [1-4] without perform-
ing compression, using pulse code modulation (PCM) [5].
The huge amount of data of the resulting uncompressed
image/video needs to be processed to guarantee its trans-
mission or storage, being a really challenging task. Thus,
the internal communication busmay not be fast enough to
transfer the video out of the camera, or the writing speed
of the storage device may not be high enough to save the
video [6]. So the approach of using fast SDRAM memory
as video storage is feasible since the memory bandwidth
is high enough, but when memory is run out, the camera
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stops recording and needs to save the stored video to a
secondary storage in raw or compressed format. This is
a limitation because depending on the capturing resolu-
tion of the camera, only a few seconds could be recorded
in the random access memory (RAM) module, and so
continuous capturing is not possible.
So as to overcome these restrictions, it would be of

interest to reduce the video storage requirements by
means of hardware encoders that fulfill the application
requirements, i.e., high frame rate and high-definition
and beyond video formats. Therefore, if we were able
to perform some kind of ultrafast encoding, we would
reduce the required storage resources, and real-time
recording like in conventional video cameras would be
possible.
Many hardware coders based on different coding algo-

rithms are used in real systems [7-14]. Most of them are
application-specific integrated circuits dedicated to spe-
cific encoding algorithms that are not designed to work in
real-time with ultrahigh frame rates and high-definition
video formats.
However, several attempts have been made in order to

deal with high-speed camera encoding. In [15] authors
present JPEG field-programmable gate array (FPGA)-
based encoder which is able to compress up to 500
frames/s at a resolution of 1, 280 × 1, 024. Also in [16],
an improved version of the fast boundary adaptation
rule [17] algorithm in conjunction with differential pulse
code modulation is applied to increase the R/D efficiency,
although coding delays were not provided.
In general, the constraints imposed by ultrahigh frame

rate video capture applications discard most of the exist-
ing coding techniques (e.g., predictive coding or transform
coding) since they are much more complex than PCM.
Therefore, a coding algorithm that has properties sim-
ilar to those of PCM (low complexity, random access,
and scalability) but with a better coding efficiency would
be of interest. Modulo-Pulse Code Modulation scheme
(MPCM) [18] image coder fulfills these requirements. To
encode an image, MPCM encoder removes certain bits
from each pixel value which represents a very simple pro-
cessing. The complexity is moved to the decoder side,
where the bits that were removed from each pixel will be
predicted by using its codeword (remaining bits of a pixel)
and side information (SI) that the decoder computes by
interpolating the previously decoded pixels.
In this paper we implement a fast codec based on

MPCM [18] over a XC7Z020-1CLG484CES Xilinx FPGA
device (Xilinx Inc., San Jose, CA, USA). Results show
that FPGA-based MPCM encoder obtains a throughput
of up to 409.84 MBytes/s at high compression rates for
monochromatic images, allowing to store on a nonvolatile
memory 2,501 fps at a 1, 280 × 1, 024 resolution. Further-
more, in this paper we present a hardware implementation

of theMPCMdecoding system, which is able to reproduce
a full-HD (1080p) video at 193 fps.
The rest of the paper is organized as follows. In Section 2

we present a brief overview of the Modulo-PCM encoder.
In Section 3, the description of the proposed architecture
is presented. A detailed evaluation of the architecture pro-
posal is shown in Section 4 in terms of R/D, coding delay,
power consumption, and occupied board area. Finally, in
Section 5 some conclusions are drawn.

2 Encoding system
In this section, we describe theMPCM-based coding algo-
rithm for the encoding of a one-dimensional signal. Let x̃n
(n ∈ N) be a continuous-amplitude discrete-time signal
whose amplitude values lie in [Amin,Amax]. Let xn be the
digital signal that results from the quantization of x̃n with
a fixed-rate uniform quantizer of B bits/sample and step
size:

� = (Amax − Amin) /2B.

The easiest way of reducing the bit rate of x̃n is to
remove the l-least significant bits (LSBs) of each code-
word of x̃n. To achieve a more efficient rate reduction,
we propose the use of a MPCM-based coding algorithm
(Figure 1). The samples of x̃n are divided into sets that
are encoded with different accuracies. For the sake of sim-
plicity, let us consider we divide x̃n into two sets: S0 =
{x2n|n ∈ i = 0, 1, 2, . . .} and S1 = {x2n+1|n = 0, 1, 2, . . .}.
As shown in Figure 1, each sample in S0 is encoded
by removing the l0-LSBs of its codeword (PCM signal)
while each sample in S1 is encoded by removing the m1-
most significant bits (MSBs) and l1-LSBs of its codeword
(MPCM signal). Then, the encoder works at an average
rate R = B − (l0 + l1 + m1)/2 bits/sample.
As the encoding of x2n is equivalent to a quantization

with a uniform quantizer with step size equal to 2l0�, the
decoder can directly reconstruct the samples of S0 from
their codewords (Figure 1). With respect to the encoded
samples in S1 (Figure 2 (a)), removing the l1-LSBs of x2n+1
is equivalent to quantizing its original continuous value
with a uniform quantizer with step size equal to 2l1�
(Figure 2 (b)). After removing the m1-MSBs, the result-
ing codeword identifies a set of 2m1 disjoint intervals
{Ii|i = 0, . . . , 2m1 − 1}, with each interval being of length
2l1� (Figure 2 (c)).
At the decoder, a PCM-coded signal is directly recon-

structed from its received codeword x̂2n. This recon-
structed value is set to the midpoint of its quantization
interval. However, a MPCM-coded signal is decoded by
using its codeword x̂2n+1 and its SI y2n+1. This pro-
cess is divided into two steps: decision and reconstruc-
tion. Consequently, in order to decide which Ii interval
x̂2n+1 belongs to, MPCM decoders exploit the correlation
between the signal samples by furnishing a prediction for
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Figure 1 Block diagram of MPCM coding algorithm.

Figure 2 Quantization intervals and codewords for B = 3, l1 = 1 andm1 = 1. (a) After A/D conversion. (b) After removing l1 bits. (c) After
removingm1 bits. (d) After deciding between I0 and I1. (e) After reconstruction. (f) After final quantization. Symbol X represents the removed bits.
Boldfaced codewords represent the codeword selected in each step for the shown values of x2n and y2n . Marked intervals are the intervals
represented by the selected codeword in each step.
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each sample in S1 based on previously decoded samples in
S0. This prediction y2n+1 acts as SI to decide the interval,
which is obtained by interpolating the previously decoded
samples in S0. Therefore, in this decision step, the decoder
uses y2n+1 to select one of the 2m1 disjoint intervals as
shown in (Figure 2 (d)), choosing the closest interval to the
prediction. If the decision process is done without error
for x2n+1, itsm1-MSBs are properly recovered; otherwise,
the decoder incurs a decision error in which the prob-
ability depends on m1 and the accuracy of the SI. The
accuracy of the SI depends on the degree of correlation
between the samples xn and the distortion introduced in
the encoding of S0. Furthermore, the larger the m1, the
shorter the minimum distance between the codewords of
the same set 2m1 , hence, the higher the probability of deci-
sion error. As a result, in order to limit these impacts in
the encoding algorithm, l0 must be lower than or equal to
l1 (l0 ≤ l1) and m1 must be the minimum possible. Once
the decoder has estimated them1-MSBs of x2n+1 (Figure 2
(d)) in the reconstruction step, it tries to recover its l1-
LSBs which finally provides an estimated signal x̂2n+1
(Figure 2 (e)). This reconstruction is done using the quan-
tization interval Ii where supposedly lies x2n+1 and its SI
(y2n+1) by taking the closest value of the chosen inter-
val to the prediction y2n+1 (Figure 2 (f )). Notably, if the
coding parameters accomplish the following characteris-
tics l0 = l1 and m1 = 0, the MPCM encoder/decoder
will act as a PCM coding system, since in such cases,
the help provided by the SI does not compensate the loss
suffered by encoding each MPCM signal with fewer bits
than the PCM signal. In fact, in these cases, midpoint
reconstruction performs better than MPCM reconstruc-
tion. Nevertheless, in most cases, MPCM performs better
than or the same as PCM, with great gains at 1, 2, 3, and
4 bpp.

For a more detailed description of MPCM encoder, the
reader is referred to [18,19].

3 Hardware implementation
In order to cope with the high throughput bandwidth of
nowadays high-speed cameras, both MPCM encoder and
decoder have been implemented over a hardware archi-
tecture. The description language used to build its design
is VHDL. The proposed hardware implementation has
been developed over a Zynq-7000 FPGA of Xilinx fam-
ily, specifically over the ZC702 model which includes the
XC7Z020-1CLG484CES SoC (System-on-Chip) [20].

3.1 Encoder architecture
The implemented encoder architecture is illustrated in
Figure 3. The original image/frame captured by the cam-
era sensors is stored in a memory block whose reading is
determined by a control block. In that structure, 16 pixels
are read on each cycle so as to speed the encoding pro-
cess as much as possible within the scope of the device’s
internal memory. This memory acts as an internal buffer
of frames to read them in high-speed applications and it
is implemented with block RAMs. In this way, we use 52
dual-port 36-Kb block RAMs with ports configured as
512 × 64 bits, where 64 output bits, namely 8 pixels, are
read in each memory output port. These pixels are pro-
cessed in the following block, without delay, in the same
reading cycle, where they are encoded by removing the
corresponding l0 or lk and mk bits. Finally, we obtain the
coded samples of the image which are sent to the final
storage device.
Our proposed implementation design first divides the

image/frame into N set of pixels, where one of the result-
ing pixels is encoded using PCM and the rest of them with
MPCM. We take the strategy of dividing x [n1, n2] into

Figure 3 Encoder architecture design.
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four (N = 4) sets x0,0 [n1, n2], x0,1 [n1, n2], x1,0 [n1, n2], and
x1,1 [n1, n2] such that

xp,q [n1, n2] = x
[
2n1 + p, 2n2 + q

]
with p and q ∈ [0, 1] as explained in [19]. Then, the first
one is encoded using PCM, removing l0 LSBs, and the
remaining parts using MPCM, removing lk LSBs and mk
MSBs. A diagram of the steps used in our hardware algo-
rithm is shown in Figure 4. Remark that both the reading
and coding of the 16 pixels are performed in the same
clock cycle.

3.2 Decoder architecture
The proposed decoder architecture is shown in Figure 5.
In this approach, the buffer is filled with coded samples
until the first three lines are completed since at least three
rows and three columns of pixels stored are needed (9 pix-
els in total) so as to decode a set N of 4 pixels, then the
decoding process starts. The decoder is divided into two
steps: decision and reconstruction. The recovery of the
original image is performed as follows:

1. Three columns of data are processed in decision
block, where the PCM signal is reconstructed as
shown in Figure 6a. SIs are generated from the
previous PCM samples (Figure 6b), and one of the
possible intervals 2mk is selected in which each
MPCM decoded signal will be placed (Figure 6c).

2. At the decoder reconstruction block, we recover the
LSB removed in the encoding process using its SI and
the interval corresponding to each MPCM sample as
shown in Figure 6d, according to this rule:

x̂ =
⎧⎨
⎩
a if y < a
y if a ≤ y ≤ b
b if y > b

.

After completing these steps, we get four decoded
pixels.

3. In each cycle, two columns of encoded samples leave
the decoder and another two enter into it, keeping
the last previous column, considering that it contains
the necessary PCM samples to decode the next set of
4 pixels. This process is carried out iteratively until all
samples of the three rows from the buffer have been
decoded.

4. Then, the buffer is shifted. Two rows leave the buffer
and two new ones enter into it, keeping the last
previous row, as in case of columns. All the above
operations continue until all the input encoded
samples are decoded.

The proposed decoder design has been completely
pipelined, so this makes each of the aforementioned steps
used for decoding to be performed concurrently. In addi-
tion, as previously mentioned, four decoded pixels are
obtained in each cycle. In this approach, the operating

Figure 4 Example of the encoder algorithmwith l0 = 2, lk = 1 andmk = 1. Blue-colored blocks are samples to be coded using PCM and the
yellow/orange ones are to be coded using MPCM.
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Figure 5 Decoder architecture design.

frequency has been set to get the 4 pixels, but in order
to organize the entire decoded image, a phase-locked-
loop (PLL) module has been used, which generates mul-
tiple clocks for a given input clock. Therefore in each
cycle, 4 pixels are stored in a buffer with a fixed fre-
quency, but these pixels are read with a frequency four
times higher, thus achieving a serial output without
delay. The buffers used in the proposed architecture have
been implemented using single dual-port 18-Kb block
RAMs.

4 Results
Both encoder and decoder architecture designs have been
tested. In this section, we present the performance eval-
uation of the complete system in terms of peak signal-
to-noise ratio (PSNR), encoding/decoding times, board
area usage, maximum frame rate, and speed-ups obtained
when compared to a CPU sequential algorithm. The archi-
tectures have been synthesized, placed and routed using

Xilinx ISE 14.3 tool, and have been simulated and ver-
ified using Matlab/Simulink through System Generator
toolbox. They have been designed into the Zynq AP SoC-
based board previously mentioned. Occupied board area,
maximum frequency, and power consumption estimation
have been measured from the Xilinx ISE 14.3 tool. In our
experiments, we have assessed the results of eight gray-
scale images with 8 bits per sample, five of which (Zelda,
Lena, Peppers, Barbara, and Baboon) with a resolution of
512 × 512 pixels and the rest, a full-HD (1080p) image, a
2, 048× 2, 560 image, and a 4K UHD image. Furthermore,
we have assigned values to the coding/decoding parame-
ters (with N = 4, l1 = l2 = l3, and m1 = m2 = m3)
so as to obtain the best result on average of PSNR for a
given bit-rate, although there may be other combinations
of parameters that would optimize a particular image as
proposed by Marleen Morbee in [19].
In Table 1 the PSNR obtained for all tested images as a

function of the bit rate (R) is presented. As expected, for
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a b

c d

Figure 6 Example of MPCM decoding process with l0 = 2, l1 = 1 andm1 = 1. (a) Reconstruction of PCM signals by taking the midpoint of its
quantization interval. (b) Obtaining of SI (yk) by interpolating the previously decoded PCM signals. (c) Decision step to recover MPCM signals.
Interval selection of the 2m1 potential codewords. (d) Reconstruction step to recover MPCM signals.

higher rates (R), which means removing few bits in the
encoding process, MPCM algorithm generally provides
good PSNR due to the fact that no significant loss occurs
in the coding process, and, consequently, no big errors
are introduced in the decoding process. Therefore, the

lower the rate (R), the lower the PSNR value. Moreover,
as explained in Section 2, in the cases where the chosen
parameters meet l0 = l1 and m1 = 0, a reconstruction
PCM is applied, so the PSNR corresponding to R = 6
bpp and R = 5 bpp, shown in Table 1, is the same for

Table 1 PSNR values for all tested images for a given bit-rate

PSNR (dB)

R = 4 bpp R = 4.5 bpp R = 5 bpp R = 5.5 bpp R = 6 bpp

Image (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1)

(1,4,1) (2,4,0) (3,3,0) (1,3,0) (2,2,0)

Zelda (512 × 512) 39.00 38.90 40.15 41.51 45.04

Lena (512 × 512) 37.74 37.77 39.82 41.06 44.96

Peppers (512 × 512) 33.70 36.92 39.32 40.29 44.62

Barbara (512 × 512) 26.06 35.27 38.91 39.83 44.56

Baboon (512 × 512) 24.45 33.02 37.61 38.20 43.85

Tractor (1, 920 × 1, 080) 38.01 39.67 40.22 42.15 44.73

Woman (2, 048 × 2, 560) 30.53 36.47 39.52 40.70 44.95

Ducks (3, 840 × 2, 160) 35.09 35.00 38.14 38.88 43.72
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Figure 7 PSNR as a function of the rate of image tractor coded using MPCM and only PCM.

a PCM coding. One advantage of the proposed MPCM
algorithm versus PCM is the possibility of compressing
intermediate bit rates (nonintegers) due to the different
numbers of bits removed in a set of pixels (l0 �= l1). In
addition, MPCM algorithm overcomes in quality to PCM

at high levels of compression . An example of comparison
between the MPCM coding and PCM coding is shown in
Figure 7 (tractor image), which shows the PSNR values as
function of the rate for the image full-HD (1080p). As it
can be seen, MPCM obtains the same quality than PCM

Figure 8 A set of four monochromatic images (Zelda 512 × 512) decoded with the following bit rates. (a) Original image. (b) At 6 bpp.
(c) At 5 bpp. (d) At 4 bpp.
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Figure 9 A set of four monochromatic images (Tractor 1, 920 × 1, 080) decoded with the following bit rates. (a) Original image.
(b) At 6 bpp. (c) At 5 bpp. (d) At 4 bpp.

at low compression rates. However, at high compression
rates, MPCM obtains a PSNR improvement up to 15 dB
when compared to PCM.
Furthermore, two images compressed at different bit

rates by the algorithm MPCM proposed are shown in
Figures 8 and 9. As you can see from the pictures, at 6
and 5 bpp, non-perceptual inequality is observed regard-
ing the original image. However, some differences begin
to be appreciated at a rate of 4 bpp, for example, in the set
of images of the tractor, one could see a slight distortion
inside the rear wheel at 4 bpp.

4.1 Encoder evaluation
Regarding coding/decoding delay, the proposed encoder
architecture works at a maximum clock frequency of
204.96 MHz, that is 4.879 ns. Furthermore, the algorithm
requires 16,387 cycles to perform the encoding process
for an image resolution of 512 × 512 pixels. Therefore,
we require 79.952 μs to encode any image for the afore-
mentioned resolution, which is 12 times faster than the
sequential algorithm on an Intel Core 2 CPU at 1.8 GHz
with 5 GBytes RAM. As the encoding process does not
depend on the internal characteristics of the image, but

Figure 10Maximum encoded frames per second for different monochromatic image resolutions.
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Table 2 Area used in the FPGA encoder implementation

Used Available Utilization (%)

Number of slices 14 13,300 1

Number of slice registers
(as flip-flops)

17 106,400 1

Number of slice LUTs 35 53,200 1

Number of RAMB36 52 140 37

FMax (MHz) 204.96 - -

Power consumption
(mW)

305 - -

only on the image resolution, in Figure 10, the maximum
frame rate achievable for the proposed architecture is pre-
sented. As shown, the hardware implemen tation of the
MPCM encoder is able to compress up to 3,558 fps for
HD-ready resolution (720p) or up to 1,581 fps for full-HD
resolution (1080p).
The high-speed encoding process makes high-speed

cameras able to capture continuously and grab without
the restrictions of the internal RAM size. For example,
the proposed MPCM hardware implementation could
compress at 4 bpp rate with a reasonable quality and
a throughput bandwidth of 1,640 MBytes/s which will
extend the capturing time over the internal camera RAM
module up to two times or will permit its transmission
over a 40-Gbit Ethernet point-to-point access.
The basic elements of a FPGA are configurable logic

blocks (CLBs). CLBs architecture includes 6-input look-
up tables (LUTs), memory capability within the LUT and

register, and shift register functionality. The LUTs in the
Zynq-7000 AP SoC can be configured as either one 6-
input LUT (64-bit ROMs) with one output, or as two
5-input LUTs (32-bit ROMs) with separate outputs but
common addresses or logic inputs. Each LUT output can
optionally be registered in a flip-flop. Four of such LUTs
and their eight flip-flops as well as multiplexers and arith-
metic carry logic form a slice, and two slices form a
configurable logic block (CLB). Four of the eight flip-flops
per slice (one flip-flop per LUT) can optionally be config-
ured as latches. Between 25% and 50% of all slices can also
use their LUTs as distributed 64-bit RAMor as 32-bit shift
registers [20].
Table 2 presents the results of the encoder imple-

mentation in terms of hardware resources used, indi-
cating the number of used slices, flip-flops, LUTs and
36-KB block RAMs. In addition, it shows an estima-
tion of the power consumed using XPower of Xilinx ISE
14.3, being only 305 mW, due to the high segmenta-
tion in the encoder design. As shown, only 1% of all
the available area in the FPGA is used, so given the
large amount of unused area on the FPGA, we could use
it to deploy multiple identical encoders that could run
concurrently. Thus, different frames could be encoded
simultaneously so as to increment the available record-
ing time of a high-speed camera. To take advantage of
this, we would only have to consider an external mem-
ory to support the storage of several frames, considering
the blocks RAMs used as intermediate buffers. Another
option would be to divide the images or frames in differ-
ent collections of lines which could be encoded in parallel.

Figure 11Maximum decoder frames per second for different image resolutions.
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Table 3 Area used in the FPGA decoder implementation
for parameters l0 = 2, l1 = 1, andm1 = 1

Used Available Utilization (%)

Number of slices 129 13,300 1

Number of slice registers
(as flip-flops)

415 106,400 1

Number of slice LUTs 208 53,200 1

Number of RAMB18 5 140 4

FMax (MHz) 154.5 - -

Power consumption (mW) 221 - -

In this way, a speed-up of 8× fps would be achieved and
as a result, the MPCM encoder would be able to com-
press up to 12,648 fps for full-HD (1080p)monochromatic
resolution.

4.2 Decoder evaluation
As far as the decoder is concerned, the maximum clock
frequency obtained for the decoder is 160 MHz with a
latency of only 713 cycles. However, the maximum clock
frequency has been set at 100 MHz. This frequency is
taken as a compromise due to the use of other frequency
four times higher provided by the PLL module, as dis-
cussed in Section 3.2, since there is a limited frequency for
the FPGA used. So, the MPCM decoder is able to recover
400 Mpixels per second at that frequency. On the other
hand, the algorithm requires 66,240 cycles to perform the
decoding process for an image resolution of 512 × 512
pixels, so 662 μs are needed to decode any image for
that resolution, being 70 times faster than the sequential
decoding algorithm on an Intel Core 2 CPU at 1.8 GHz
with 5 GBytes RAM.
Figure 11 shows the maximum decoding frame rate

achievable for the proposed architecture. As shown, the
hardware implementation of the MPCM decoder is able
to recover up to 434 fps for HD-ready (720p) resolution or
up to 193 fps for full-HD (1080p) resolution, which cor-
responds to a throughput of 50 MBytes/s, making avail-
able to reproduce high-definition cinema at high frame
rates.
Regarding the occupied board area, Table 3 shows

a summary of the hardware resources required by the
decoder, which, in a similar way with the encoder, is less
than a 1%. The occupied board area could vary depending
on the l0, l1,m1 parameters, but in any case it will be lower
than 1%. As indicated in Section 3.2, the buffers used have
been modeled on single dual-port 18-Kb block RAMs so
as to take advantage of the lower consumption compared
to distributed memories, besides being faster. Note that
the maximum frequency shown in Table 3 is 154.5 MHz,
but in our design, we have set this frequency to 100 MHz
as explained previously.

5 Conclusions
In this paper, we have presented an efficient FPGA imple-
mentation of the MPCM codec. We have shown the
quality of the reconstructed frames in terms of PSNR at
different compression rates and for several frames with
different textures. Regarding coding speed, the results
show that our proposed implementation is able to com-
press a full-HD (1080p) resolution picture at 1,581 fps.
The maximum achievable throughput bandwidth of our
proposed implementation is 409.84 MBytes/s which per-
mits the continuous grabbing of a nowadays high-speed
camera at an image resolution of HD-ready (1, 280×720p)
and a reasonable good quality. But, if the final applica-
tion requires a higher image quality, our encoder is able to
give up to 1,640MBytes/s at a 2:1 compression rate, incre-
menting the capturing time over the high-speed camera
internal RAM memory. The occupied area of the FPGA
used is less than 1% of the total available area, which give
us the possibility to replicate several times the encoding
system and thus, several frames or different collections of
lines of the same image can be compressed in a parallel
way.
We have also developed in hardware a MPCM decoder

module. Our proposed decoder design is able to recover
images at 193 fps for full-HD resolution, with an occupied
board area of less than 1%.
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