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Abstract

In this paper, we present two differential fault analyses on PRESENT-80 which is a lightweight block cipher. The first
attack is a basic attack which induces a fault on only one bit of intermediate states, and we can obtain the last subkey
of the block cipher, given 48 faulty cipher texts on average. The second attack can retrieve the master key of the block
cipher, given 18 faulty cipher texts on average. In the latter attack, we assume that we can induce faults on a single
nibble of intermediate states. Given those faulty cipher texts, the computational complexity of attacks is negligible.
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1 Introduction
Boneh et al. introduced the fault attack in September 1996
[1]. Later, in October 1996, Biham and Shamir published
an attack on secret key cryptosystems called differential
fault analysis (DFA) which combined the ideas of fault
attack and differential attack [2]. Given a plaintext, the
DFA attack derived information about the secret key by
examining the differences between a related cipher text
resulting from a correct encryption and a cipher text
of the same plaintext resulting from a faulty encryption.
Normally, a faulty cipher text is taken by giving external
impact on a device with voltage variation, glitch, laser,
etc. A fault may be induced with these external impacts;
however, we know neither the location nor the value
of the fault. This attack is commonly used to analyze
the security of cryptosystems. DFA have been employed
to attack several block ciphers where DES [3,4], AES
[5-11], PRINTCIPHER [12], Camellia [13], CALEFIA
[14,15], RC4 [16], SMS4 [17], and ARIA [18] are examples.
In general, there are two techniques to apply a DFA attack
on a block cipher. The first one assumes that the inter-
mediate states were corrupted by the fault injection and
tries to recover the key, while the second form assumes
that the key schedule algorithm was corrupted by the fault
injection and tries to recover the key.
PRESENT is an ultra-lightweight block cipher proposed

at CHES 2007 by Bogdanov et al. This block cipher is
an SP network-based cipher and consists of 31 rounds.
The block length is 64 bits, and two key lengths of 80
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and 128 bits are supported [19], denoted by PRESENT-
80 and PRESENT-128, respectively. Several basic attacks
such as differential cryptanalysis, linear cryptanalysis, and
their variants have been applied on PRESENT already
[20-23]. In this paper, we concentrate on the security of
PRESENT-80 against DFA attack.

1.1 Previous works
A DFA on PRESENT-80 key schedule has been pro-
posed by Wang et al. [24]. They assumed that the key
schedule was corrupted by the fault injection and tried
to recover the key. They have reduced the master key
search space of PRESENT-80 to 229 with 64 pairs of cor-
rect and faulty cipher texts on average. In addition, Zhao
et al. [25] proposed a fault propagation pattern-based DFA
on PRESENT-80/128. They reduce the master key search
space of PRESENT-80/128 to 214.7 and 221.1, respectively,
with 8 and 16 pairs of correct and faulty cipher texts on
average.

1.2 Paper contributions
In this paper, we present two differential fault analy-
ses on PRESENT-80. For the first attack, we assume
that the fault occurs on only one bit of the intermedi-
ate states. In the second attack, we induce a fault on a
single nibble of the intermediate states and we employ
our first attack to retrieve the master key. Our attack
can recover the master key, given 18 faulty cipher texts
on average.

© 2013 Bagheri et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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2 Paper organization
The notations used in the paper are presented in Section 3.
PRESENT is briefly described in Section 3.2. In Section 4,
we describe our basic attack. We present another DFA
attack based on the basic attack in Section 5. Finally, we
conclude the paper in Section 6.

3 Notations and preliminaries
3.1 Notations
Throughout the paper, we use the following notations:

• P : denotes the plaintext.
• K : denotes the master key.
• Si: denotes the correct state before ith round’s S-box

layer and Sij denotes the jth bit of Si.
• Si∗: denotes the faulty state before ith round’s S-box

layer.
• SiNj: denotes the jth nibble of state before ith round’s

S-box layer and SiNj
n denotes its nth bit of the nibble.

• Bi: denotes the state after ith round’s S-box layer and
BiNj denotes the jth nibble of Bi.

• Bi∗: denotes the faulty state after ith round’s S-box
layer and Bi∗Nj denotes the jth nibble of Bi∗.

• Ki: denotes ith subround key and Ki
j denotes the jth

bit of Ki.
• C : denotes the correct cipher text.
• D : denotes the faulty cipher text.

3.2 Description of PRESENT
The PRESENT block cipher, depicted in Figure 1, is an
ultra-lightweight substitution-permutation network and
consists of 31 rounds. The block length is 64 bits. The
cipher supports 80 and 128-bit secret keys. Each round
of PRESENT consists of three stages: key addition, non-
linear substitution layer, and bit-wise permutation layer.

Figure 1 PRESENT encryption algorithm.

3.2.1 Key addition
As the first step of ith round, for 1 ≤ i ≤ 32, the current
state is combined using bit-wise XOR with the ith round
subkey.

Sij → Sij ⊕ Ki
j , for 0 ≤ j ≤ 63 and 1 ≤ i ≤ 32

where K32 is used for postwhitening.

3.2.2 Substitution layer (S-box)
The output of the key addition stage goes through the
S-box layer (Table 1) which is the non-linear operation of
the round. The S-box used in PRESENT is a single 4-bit
to 4-bit S-box which is applied 16 times in parallel. The
action of the S-box is shown by the following table.

3.2.3 Permutation layer P
Finally, the output of the S-box layer is rearranged to the
permutation layer (Table 2). Following this operation, bit i
of the current state is moved to the bit position P(i).
The key schedule algorithm supports two key lengths

of 80 and 128 bits. However, we do not explain the key
schedule algorithm here because it is not directly rele-
vant to our attack. For more information about the key
schedule, the interested reader can refer to [19].

4 The basic DFA attack
In this section, we introduce a basic DFA attack against
PRESENT-80 which is based on the injection of a fault on
only one bit of intermediate states at the beginning of the
last round’s S-box layer. The given attack requires a single-
bit fault in the last round of the cipher which may sound
difficult in practice. However, the recent results [26] show
the feasibility of this type of DFA attacks.
The main idea of the given attack is to obtain S31

by searching in the differences distribution table of the
S-box (see Appendix 1), then we can obtain K32. Injec-
tion of a single-bit fault on the jth nibble of S31, S31Nj, can
be on S31Nj

0, S31N
j
1, S31N

j
2, or S31N

j
3. We denote the dif-

ference between the jth nibble of the correct state S31Nj

and the jth nibble of the faulty state S31∗Nj by a, i.e.,
a = S31Nj ⊕ S31∗Nj. Hence, there are four possible fault
differences for this nibble, a ∈ {1, 2, 4, 8}. In Figure 2, an
example of the fault required for the basic attack is given
where the first bit of the first nibble of S31 is corrupted.
Through the attack, we assume that the master key

and the input plaintext remain fixed. Moreover, for each
faulty cipher text, exactly one bit of S31 is randomly mod-
ified. To recover the last round key, following this attack,

Table 1 The substitution layer (S-box)

S-box action

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
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Table 2 The permutation layer

i and P(i)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

the adversary processes each nibble of intermediate state
independently. To implement this attack, the adversary
should obtain each nibble of S31, S31Nj for 1 ≤ j ≤ 16.
Obtaining each nibble would be possible if we are given,
on average, three distinct faulty cipher texts, assuming
that the faults are injected on different bits of the nibble.
To find out the nibble of S31 which is involved in the
faults, the adversary may reverse the difference output of
P layer (P layer−1(C ⊕ D)) following the approaches pre-
sented in Algorithms 1 and 2 to obtain one nibble of
S31. Algorithm 1 arranges the faulty cipher texts and cor-
rect the cipher text in 16 groups of difference outputs of
last round’s S-box layer, i.e., �B31Nj for 1 ≤ j ≤ 16.
In each specific group, the bits of faults occurred on the
bits of the same nibble and the related nibble of S31,
S31Nj, can be obtained following Algorithm 2. On the
other hand, Algorithm 1 determines for each faulty cipher
text, which the nibble has been corrupted. Hence, at the
end of Algorithm 1, we expect to receive three difference
outputs of last round’s S-box layer for each nibble. It is
possible to repeat Algorithm 2 and retrieve whole nibbles
of S31. Given S31 and the correct cipher text C, K32 can be
extracted as follows:

K32 = P − Layer(S − Layer(S31)) ⊕ C

Hence, following the given attack, it is possible to
retrieve K32 given on average 48 faulty cipher texts and
related correct cipher text for the fixed value of input mes-
sage P (Additional details of the basic attack are given in
Appendix 2).
If we can induce a fault on one bit of several nib-

bles of S31 for each fault experiment, we can reduce the
required number of faulty cipher texts to obtain S31 and
K32. In this case, we can still use Algorithms 1 and 2 for
obtaining S31 and K32. Obviously, the injection of a sin-
gle bit fault for a nibble of S31 generates a faulty nibble
at the output of last round’s S-box layer, and single bit
faults injection on several nibbles of S31 generates sev-
eral faulty nibbles at the output of last round’s S-box
layer.

Algorithm 1 Determining the faulty output of last
round’s S-box layer
Step 1. Consider the correct and faulty cipher text, and

compute the difference output of last round’s
S-box layer by �B31 = P − Layer−1(C ⊕ D).

Step 2. Find the nibble(s) of S31 which is (are) involved
in the fault(s), and save this (these) nibble(s) of
the difference output(s) of last round’s S-box
layer, �B31Nj, in related group(s).

Step 3. Consider another faulty cipher texts, and repeat
step1 and step 2 till when there are at least 3
distinct recodes for each nibble of the difference
output(s) of last round’s S-box layer.

Step 4. Apply Algorithm 2 on each group.

Algorithm 2 Obtain one nibble of S31

Step 1. Consider a member of this group (�B31Nj). Then
set up a list L containing all pairs that makes this
difference output of S-box by searching in the
differences distribution table of the S-box
(remember that difference input can be
a ∈ {1, 2, 4, 8}).

Step 2. Repeat step 1 with another member of this group,
and store candidates in the new list M.

Step 3. Consider L and M Then remove non-member
common of L.

Step 4. Go to step 2 until there remains only one
candidate in L.

In Figure 3, the flowchart of this attack is depicted.
Given K32, a similar attack can be used to retrieve S30

and K31 and finally recover the master key. However, the
number of required faulty cipher texts would be increased
(96 faulty cipher texts on average), but in the next section,
we show an approach to obtain the master key given 18
faulty cipher texts on average.

Remarks 1. It must be noted that sometimes faulty cipher
texts will be repeated (if we inject a fault on the same bit
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Figure 2 An example of an injection of a single bit fault on S31.

of S31), and we exclude this faulty cipher text. We collect
three unique faulty cipher texts on average for obtaining
each nibble of S31.

5 The second DFA attack
In the previous section, we described a basic attack that,
on each experiment, induces a fault on a single bit of inter-
mediate state of the last round. In this section, to retrieve
the whole master key, we extend the previous attack such
that the adversary can inject a fault on one nibble rather
than a bit.
In the design criteria of PRESENT, it has been stated

that:

1. The four input bits to an S-box come from four
distinct S-boxes of the same group.

2. The input bits to a group of 4 S-boxes come from 16
different S-boxes.

3. The four output bits from a particular S-box enter
four distinct S-boxes, each of which belongs to a
distinct group of S-boxes in the subsequent round.

4. The output bits of S-boxes in distinct groups go to
distinct S-boxes.

Following the above criteria, we state that:

• Inducing a fault on only one nibble of intermediate
states at the beginning of the ith round’s S-box layer,
Si, leads to fault occurrence on one bit of some
S-boxes of the next round, where on average, the
inputs of two S-boxes would be corrupted at the
beginning of Si+1.

• Inducing a fault on only one nibble of intermediate
states at the beginning of the ith round’s S-box layer,
Si, leads to fault occurrences on one bit of some
S-boxes of the next round, Si+1, where on average the
inputs of two S-boxes would be corrupted at the
beginning of Si+1. These differences are propagated

to extra S-boxes in (i + 2)th round. However,
following the designing criteria, for any corrupted
input of S-boxes at (i + 1)th and (i + 2)th round, we
have difference on one bit. Therefore, the injection of
a fault on a nibble of intermediate states at the
beginning of the 29th round’s S-box layer, on average,
provides the adversary with faults on single bits of
four nibbles of S31.

Now, following the above argument, we assume that a
fault on only one nibble of intermediate states at the
beginning of the 29th round’s S-box layer has occurred.
We can use this approach to reduce the number of
required faulty cipher texts in the basic attack (same as
when we can induce the single bit faults on several nibbles
of S31 in the basic attack). An example of fault injection at
the beginning of the 29th round’s S-box layer and its prop-
agation toward 31st round has been depicted in Figure 4.
In this picture, for the sake of simplicity, we have assumed
that the first nibble of S29 is corrupted. It can be seen that
eight nibbles of S31 have been corrupted, and also, only
one bit of inputs of each faulty S-boxes at 31st round is
corrupted. Therefore, we can apply the basic attack on the
received data. However, in the new fault model, we receive
on average four faulty nibbles at the output 31st round in
each fault injection (four nibbles of the output of the last
round’s S-box layer were corrupted). Hence, the required
number of faulty cipher texts to obtain the S31 is reduced
to 12.
Whenever we obtained S31 andK32, we can also retrieve

K31. To retrieve K31, from the first phase of attack which
retrieves K32, we have 24 nibbles of the faulty output of
the 30th round’s S-box layer (B30∗Nj) on average, and we
require extra 24 nibbles of the faulty output of the 30th
round’s S-box layer to obtain S30 and K31. We can obtain
those faulty states by inducing six extra faults on nibbles
of intermediate state at the beginning of the 28th round’s
S-box layer on average.
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Figure 3 The flowchart of DFA on present.

Therefore, we can obtainK32 given 12 faulty cipher texts
on average, where we have injected faults on the nibbles of
S29. To retrieveK31, we require also to induce faults on the
nibbles of intermediate state at the beginning of the 28th
round’s S-box layer. Following the basic attack (with some
change in notation and extent formula, see Appendix 1), to
retrieve K31, we require additional six faulty cipher texts
on average. Given the round keys K31 and K32, it is possi-
ble to determine the master key uniquely. Hence, in total,
it is possible to recover the master key of PRESENT-80
given 18 faulty cipher texts on average (An toy example of
attacks are given in Appendix 3).
To compare our approach with [25], it must be noted

that they have injected fault on the 29th round and tried
to find the difference input of S-box 31st round where
they have got some candidates for S-box inputs of 31st
round and then recovered K32 and K31. On the other
hand, the given attack in this paper does not require to
find the difference input of S-box 31st round, and it recov-
ers the S-box input of 31st round by searching in the
differences distribution table of S-box and then obtains
K32.
Any secure cryptosystems should be protected against

DFA attacks. So, any implementation of PRESENT also
requires to protect the last round of encryption against the
basic DFA attack and protect the 29th and 30th rounds of
encryption against the second DFA attack. Therefore, an
implementation of PRESENT requires to protect the three
last rounds against our DFA attacks.

Remarks 2. Sometimes, we may receive useless faulty nib-
bles of cipher texts through the experiments which increase
the attack complexity, i.e., number of required faulty cipher
texts. Based on the random nature of the faults, and also
the faults propagation property, it is possible to receive
same errors on the same nibbles of the 31st round in dif-
ferent experiments. It should be noted that the errors that
we induce in different experiments could be in different
nibbles or even in the same nibble. These errors are propa-
gated through the remaining rounds. However, if we receive
several errors in a same bit of a nibble at the beginning
of the 31st round, then only one of them is useful and the
rest do not include new information. For example, follow-
ing Figure 4 which is drawn for a fault on the first nibble
of the internal state of 29th round, if we induce another
fault on the same nibble in the next experiment and assume
that the output difference of the related S-box at round
29 is 3, it has overlapped with the previous fault and it
does not provide us with new information. It must be noted
that we collect the unique nibble of faulty cipher texts and
unique nibbles of faulty cipher texts on average to obtain
one nibble of S31.
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Figure 4 The example of our fault model.

6 Conclusions
In this paper, we introduced two new DFAs on PRESENT-
80. Our attacks are based on the injection of the faults on
the intermediate state of the cipher and can retrieve the
last round key and the master key efficiently. The basic
attack which requires to induce a fault on a single bit of
nibbles at the input of the last round requires 48 faulty
cipher texts on average, and the extended attack which
retrieves the master key induces a fault on a nibble of the
intermediate states and requires 18 faulty cipher texts on
average.

Appendix 1
The difference distribution table of the S-box and the
categorization algorithm for the faulty cipher texts
The difference distribution table of the S-box is shown in
Table 3. The categorization algorithm for the faulty cipher
texts is shown in Algorithm 3.

Algorithm 3 Categorize the faulty cipher texts and
cipher text in 16 groups based on the difference output
of the 30th round’s S-box layer

Step 1. Consider the correct and faulty cipher text, and
compute difference output of 30th round’s S-box
layer by �B30 = P − Layer−1[ S − Layer−1

(P − Layer−1(C ⊕ D)) ⊕ K32].
Step 2. Find nibble(s) of S30 which is (are) involved in the

fault, and save this (these) nibble(s) of the
difference output of 30th round’s S-box layer,
�B30Nj, in the related group(s).

Step 3. Consider another faulty cipher text, and repeat
step1 and step 2 till when there are at least 3
distinct recodes for each nibble of difference
output(s) of 30th round’s S-box layer.

Step 4. Do Algorithm 4 for each group.
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Algorithm 4 Obtain one nibble of S30, given that
K31=P- Layer(S-Layer(S30))⊕ S31

Step 1. Consider a member of this group, �B30Nj, then
set up a list L containing all pairs that makes this
difference output of S-box by searching in the
differences distribution table of the S-box
(remember that difference input can be
a ∈ {1, 2, 4, 8}).

Step 2. Repeat step 1 with another member of this group,
and store candidates in the new list M.

Step 3. Consider L and M then remove non-common
members from L.

Step 4. Go to step 2 until there remains only one
candidate in L.

Appendix 2
Additional details of the basic attack
For each faulty cipher text, we have got a difference output
of the last round’s S-box layer, and we can determine pos-
sible inputs of the last round’s S-box layer by searching in
the differences distribution table of the S-box. In Table 4,
all possible inputs of the last round’s S-box layer for each
difference output of the last round’s S-box layer are shown
(remember that difference input can be a ∈ {1, 2, 4, 8}).
In Table 4, it can be seen that given a faulty cipher text,

eight candidates for S-box input with probability 5
11 have

been determined or four candidates for S-box input with
probability 6

11 have been determined.
In Table 5, all S-box difference outputs for each S-box

input, with one bit difference in S-box input, are depicted.

Given in Table 5, we see that the sets of S-box differ-
ence outputs for each specific input are different. Hence,
we can obtain the exact value of the S-box input with four
faulty cipher texts. In the following, we explain the states
that two and three faulty cipher texts are given.

• When two faulty cipher texts are given, these states
can occur:

– Two faulty cipher texts determine eight
candidates for S-box input. In this state, when
we apply Algorithm 2, we obtain two, three,
four, or five candidates for S-box input.

– The first faulty cipher text determined eight
candidates for S-box input, and the second
faulty cipher text determined four candidates
for S-box input. If we denote by A the sets of
the candidates obtained with the first faulty
cipher text except the correct value of S-box
input and by B the sets of the candidates
obtained with the second faulty cipher text
except the correct value of S-box input, we
can identify the correct value with probability:

P = P(A ∩ B = ∅) = P(|A ∩ B| = 0)

=
(16
7
) × (16−7

3
)

(16
7
) × (16

3
) � 15%

– The first faulty cipher text determined four
candidates for S-box input, and the second

Table 3 The differences distribution table of the S-box

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1x 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2x 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3x 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4x 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5x 0 2 0 0 2 0 0 0 0 2 2 2 4 0 0 0

6x 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

7x 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8x 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9x 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

Ax 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

Bx 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

Cx 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

Dx 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

Ex 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

Fx 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4
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Table 4 All possible inputs of last round’s S-box layer for each difference output of last round’s S-box layer

Difference output of the S-box 0011 0101 0110 0111 1001 1010 1011 1100 1101 1110 1111

All possible S-box inputs

1100 1100 0011 0111 0000 0010 0001 0010 0010 0001 0111

1101 1110 0111 0110 0001 0000 1001 0110 0011 0011 1111

1110 1101 1001 1010 0100 1011 0110 1000 1001 1010 1000

1111 1111 1011 1011 0101 1111 1110 1010 1000 1110 0000

that make this difference output

0100 0001 1000 1001 0101

0110 0101 1100 1101 0111

1011 0000 0101 0010 1100

0011 0100 1101 1010 1000

faulty cipher text determined four candidates
for S-box input.
In this state, we can identify the correct value
with probability:

P = P(A ∩ B = ∅) = P(|A ∩ B| = 0)

=
(16
3
) × (16−3

3
)

(16
3
)2 � 51%

• When three faulty cipher texts are given, these states
can occur:

– All faulty cipher texts determined eight
candidates for S-box input.
If we denote by C the sets of the
candidates obtained with the third faulty
cipher text except the correct value of S-box
input, we can identify the correct value
with probability:

P = P(A ∩ B ∩ C = ∅) = P(|A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k, |A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k) × P(|A ∩ B ∩ C| = 0 / |A ∩ B|=k)

=
(16
7
) × (7

k
) × (16−7

7−k
)

(16
7
)2 ×

(16
k
) × (16−k

7
)

(16
k
) × (16

7
) � 18%

– The first and second faulty cipher texts
determine eight candidates for S-box input,

and the third faulty cipher text determine four
candidates for S-box input.
In this state, we can identify the correct value
with probability:

P = P(A ∩ B ∩ C = ∅) = P(|A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k, |A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k) × P(|A ∩ B ∩ C| = 0 / |A ∩ B|=k)

=
(16
7
) × (7

k
) × (16−7

7−k
)

(16
7
)2 ×

(16
k
) × (16−k

3
)

(16
k
) × (16

3
) � 50%

– The first faulty cipher texts determine eight
candidates for S-box input, and the second
and third faulty cipher texts determine four
candidates for S-box input.
In this state, we can identify the correct value
with probability:

P = P(A ∩ B ∩ C = ∅) = P(|A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k, |A ∩ B ∩ C| = 0)

=
4∑

k=1
P(|A ∩ B| = k) × P(|A ∩ B ∩ C| = 0 / |A ∩ B|=k)

=
(16
7
) × (7

k
) × (16−7

3−k
)

(16
7
) × (16

3
) ×

(16
k
) × (16−k

3
)

(16
k
) × (16

3
) � 62%

Table 5 All possible S-box difference outputs for each S-box input

S-box input 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

All possible difference
0011 1010 1001 0011 0011 0101 0011 0110 0111 0110 0111 0011 0011 0011 0011 0011

1001 1001 1101 0110 0101 0111 0111 0111 1100 1001 1001 0111 0101 0101 0101 1010

output of the S-box
1110 1110 1010 1110 1001 1001 1011 1111 1111 1101 1100 0110 0111 0111 1110 0101

1111 1011 1100 1101 1101 1101 1100 1101 1101 1011 1110 1010 1101 1001 1011 1111
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Table 6 The details of our toy example

Cipher text xxx0xxx1xxx0xxx1

Fault location S31N0
0 S31N0

1 S31N0
2 S31N0

3

Faulty cipher texts xxx0xxx0xxx1xxx0 xxx1xxx0xxx0xxx1 xxx1xxx0xxx1xxx1 xxx1xxx1xxx0xxx0

P − Layer−1(C ⊕ D) 0000000000000111 0000000000001100 0000000000001110 0000000000001001

Table 7 The details of Algorithm 2

Lists L M Update L NewM Update L

Difference output of the S-box 0111 1001 1100

All pairs of S-box input

0111 0001 1010 1010 1010

0110 0000 0101 1000

1010 0100 1101 0001

1011 0101 0110

that make this difference output

1000 1001

1100 1101

0101 0010

1101 1010

Table 8 The key andmore details of our example

Plaintext FFFFFFFFFFFFFFFF

Key 00000000000000000000

S29 D79F5742CEE5A802

S30 60991D31835A96DD

S31 DE21CD50C1FDB05F

K31 8BA27A0EB8783AC9

K32 6DAB31744F41D700

Cipher text A112FFC72F68417B

Table 9 The value of fault in S29Nj

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The value of fault in S29Nj 3 B 1 A 2 6 C D 8 7 5 3 F 9 4 B

Table 10 The details of Algorithms 1 and 2

Algorithm j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Algorithm 1 �B31Nj

3 9 9 3 5 A 5 3 A 5 3 D B 9 E 3

5 D 5 6 7 3 E 5 5 7 5 5 5 A 3 7

A 5 A 7 9 5 B 7 9 9 7 7 9 C B 5

F 7 F A D F D 9 D 5 9

Algorithm 2 S31Nj F 5 0 B D F 1 C 0 5 D C 1 2 E D

5 E 5
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Appendix 3
A toy example of attacks
Assume that a message M is encrypted by PRESENT-80,
the basic attack works as follows. For the sake of simplic-
ity, we assume that the first nibble of S31, S31N0, is A in
hexadecimal ((1010)2 in binary). So, if we inject a single-
bit fault on S31N0, we obtain a faulty cipher text D. If
we do this fault injection to other bits of S31N0, we have
four faulty cipher texts that is shown in the following table
(Table 6, note that throughout the attack, we do not know
the fault location, and we put this value in this table only
for the reader):
So we show each step of Algorithm 2 in the following

table (Table 7):
After we obtain S31N0, we obtain 4 bits of K32.
For verifying the second attack, we present an exam-

ple that the message, key, and some details are shown in
Table 8. We injected 16 faults on S31 in random and have
got 16 faulty cipher texts. In Table 9, the value and loca-
tion of faults were given (this table was given just for the
reader); then, in Table 10, the results of Algorithms 1 and
2 were given.
In Table 10, two candidates existed for nibbles 4, 6, and

11 of S31, so for obtaining the exact value of these nib-
bles, we have to inject at least three faults on S29. In
total, we obtain 13 nibbles of K32, 9 nibbles of K31, and
two candidates for some nibbles of K32 and K31 with 16
faulty cipher texts (in this example). For recovering whole
of K31, we have to inject some faults as mentioned in
Section 5.
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