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Abstract

In this article, it is proposed that a Hopfield neural network (HNN) can be used to jointly equalize and decode
information transmitted over a highly dispersive Rayleigh fading multipath channel. It is shown that a HNN MLSE
equalizer and a HNN MLSE decoder can be merged in order to realize a low complexity joint equalizer and decoder, or
turbo equalizer, without additional computational complexity due to the decoder. The computational complexity of
the Hopfield neural network turbo equalizer (HNN-TE) is almost quadratic in the coded data block length and
approximately independent of the channel memory length, which makes it an attractive choice for systems with
extremely long memory. Results show that the performance of the proposed HNN-TE closely matches that of a
conventional turbo equalizer in systems with short channel memory, and achieves near-matched filter performance in
systems with extremely large memory.
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1 Introduction
Turbo equalization has its roots in turbo coding, first pro-
posed in [1] for the iterative decoding of concatenated
convolutional codes. In [2,3], the idea of turbo decod-
ing was applied to systems transmitting convolutional
coded information through multipath channels, in order
to improve the bit-error rate (BER) performance, with
great success. Due to the computational complexity of
its constituent maximum a posteriori (MAP) equalizer
and MAP decoder, the computational complexity of these
turbo equalizers are exponentially related to the channel
impulse response (CIR) length as well as the encoder con-
straint length, limiting their effective use in systems where
the channel memory and/or the encoder constraint length
is large, with the MAP equalizer being the main culprit
due to long channel delay spreads.
To mitigate the high computational complexity exhib-

ited by the MAP equalizer, several authors have proposed
suboptimal equalizers to replace the optimal MAP equal-
izer in the Turbo Equalizer structure, with complexity
that is linearly related to the channel memory length. In
[4,5], it was shown how a minimum mean squared error
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(MMSE) equalizer is used in a Turbo Equalizer by modi-
fying it to make use of prior information provided in the
form of extrinsic information. Various authors have also
proposed the use of decision feedback equalizers (DFE)
while using extrinsic information as prior information to
improve the BER performance after each iteration [6-10].
Also, in [11,12] it was proposed that a soft interference
canceler (SIC) be modified to make use of soft informa-
tion in order to be used as a low complexity equalizer
in a turbo equalizer, and in [13] the way in which a SIC
incorporates soft information was modified to improve
performance. The proposed equalizers inherently suffer
from noise enhancement (MMSE) and error propagation
(DFE and SIC) which limit their performance, and hence
the overall performance of the turbo equalizers in which
they are used. Due to the fact that none of the proposed
equalizers are able to produce exact MAP estimates of the
transmitted coded information, the performance of the
Turbo Equalizer in which they are implemented will ulti-
mately be worse than when an optimal MAP equalizer is
utilized, due to the performance loss incurred at the out-
put of these suboptimal equalizers. This trade-off always
exists: If one gains in terms complexity, one loses in terms
of performance.
In this article, we propose to combat the performance

loss due to suboptimal (or non-MAP) equalizer output,
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by combining the equalizer and the decoder into one
equalizer/decoder structure, so that all information can
be processed as a whole, and not be passed between the
equalizer and the decoder. This vision has successfully
been implemented and demonstrated by the authors in
[14] using a dynamic Bayesian network (DBN) as basis. In
this paper, however, we show that using the Hopfield neu-
ral network (HNN) [15] as the underlying structure also
works well, and has a number of advantages as discussed
in [16].
In [16], the authors proposed a maximum likeli-

hood sequence estimation (MLSE) equalizer which is
able to equalize M-ary quadrature amplitude modulation
(M-QAM) modulated signals in systems with extremely
long memory. The complexity of the equalizer proposed
in [16] is quadratic in the data block length and approx-
imately independent of the channel memory length. Its
superior computational complexity is due to the high
parallelism of its underlying neural network structure. It
uses the HNN structure which enables fast parallel pro-
cessing of information between neurons, producing ML
sequence estimates at the output. It was shown in [16]
that the performance of the HNNMLSE equalizer closely
matches that of the Viterbi MLSE equalizer in short chan-
nels, and near-optimally recombines the energy spread
across the channel in order to achieve near-matched filter
performance when the channel is extremely long.
The HNN has also been shown by several authors to be

able to decode balanced check codes [17,18]. These codes,
together with methods for encoding and decoding, were
first proposed in [19], but it was later shown in [17,18] that
single codeword decoding can also be performed using
the HNN. To date, balanced codes is the only class of
codes that can be decoded with the HNN. The ability of
the HNN to detect binary patterns allows it to determine
the ML codeword from a predefined set of codewords. In
this paper it is shown that the HNN ML decoder can be
extended to allow for the ML estimation of a sequence
of balanced check codes. It is therefore extendable to an
MLSE decoder.
In this article, a novel turbo equalizer is developed by

combining the HNN MLSE equalizer developed in [16]
and a HNN MLSE decoder (used to decode balanced
codes, and only balanced codes), resulting in the Hopfield
neural network turbo equalizer (HNN-TE), which can be
used as replacement for a conventional turbo equalizer
(CTE), made up of a equalizer/decoder pair, in systems
with extremely long memory, where the coded symbols
are interleaved before transmission through the multipath
channel. The HNN-TE is able to equalize and decode (bal-
anced codes) in systems with extremely long memory,
since the computational complexity is nearly indepen-
dent of the channel memory length. Like the HNNMLSE
equalizer, its superior complexity characteristics are due

to the high parallelism of its underlying neural network
structure.
This article is structured as follows. Section 2 presents

a brief discussion on Turbo Equalization. Section 3 dis-
cusses the HNN in general, while the HNN MLSE
equalizer and the HNN MLSE decoder are discussed in
Section 4, followed by a discussion on the fusion of the two
in order to realize the HNN-TE. In Section 5, the results of
a computational complexity analysis of the HNN-TE and
a CTE are presented, followed by a memory requirements
analysis in Section 6. Simulation results are presented in
Section 7 and conclusions are drawn in Section 8.

2 Turbo equalization
Turbo equalizers are used in multipath communication
systems that make use of encoders, usually convolutional
encoders, to encoded the source symbol sequence s of
length Nu (using some generator matrix G) at a rate Rc
to produce coded information symbols c of length Nc =
Nu/Rc, after which the coded symbols c are interleaved
with a random interleaver before modulation and trans-
mission. The interleaved coded symbols ć are transmitted
through a multipath channel with a CIR length of L, caus-
ing inter-symbol interference among adjacent transmitted
symbols at the receiver. At the receiver the received inter-
symbol interference (ISI) corrupted coded symbols are
matched filtered and used as input to the turbo equalizer.
The received symbol sequence is given by

r = Hć + n, (1)

where n is a vector containing complex Gaussian noise
samples and ć is the interleaved coded symbols given by

ć = JGTs, (2)

where J is anNc ×Nc interleaver matrix, andH is theNc ×
Nc channel matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 . . . 0 0 0 0
... h0 . . . 0 0 0 0

hL−1
...

. . . 0 0 0 0

0 hL−1
. . . . . . 0 0 0

...
...

. . . . . . h0 0 0
0 0 0 hL−1 . . . h0 0
0 0 0 0 hL−1 . . . h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

The turbo equalizer uses two a maximum a poste-
rior (MAP) algorithms, one to equalize the ISI-corrupted
received symbols and one to decode the equalized coded
symbols, which iteratively exchange information. With
each iteration of the system, extrinsic information is
exchanged between the two MAP algorithms in order to
improve the ability of each algorithm to produce correct
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estimates. This principle was first applied to Turbo Cod-
ing, where both MAP algorithms were MAP decoders [3],
but has since been applied to iterative equalization and
decoding (today known as Turbo Equalization) to reduce
the BER performance of the codedmultipath communica-
tion system [2-5].
Figure 1 shows the structure of the Turbo Equalizer. The

MAP equalizer takes as input the ISI-corrupted received
symbols r and the extrinsic information LDe (ŝ) (where ŝ
the interleaved coded symbol estimates) and produces a
sequence of posterior transmitted symbol log-likelihood
ratio (LLR) estimates LE(ŝ) (note that LDe (ŝ) is zero during
the first iteration). Extrinsic information LEe (ŝ) is deter-
mined by

LEe (ŝ) = LE(ŝ) − LDe (ŝ), (4)

which is deinterleaved to produce LEe (ŝ′), which is used
as input to the MAP decoder to produce a sequence
of posterior coded symbol LLR estimates LD(ŝ′). LD(ŝ′)
is used together with LEe (ŝ′) to determine the extrinsic
information

LDe (ŝ′) = LD(ŝ′) − LEe (ŝ′), (5)

LDe (ŝ′) is interleaved to produce LDe (ŝ). LDe (ŝ) is used
together with the received symbols r in the MAP equal-
izer, with LDe (ŝ) serving to provide prior information on
the received symbols. The equalizer again produces pos-
terior information LE(ŝ) of the interleaved coded symbols.
This process continues until the outputs of the decoder
settle, or until a predefined stop-criterion is met [3]. After
termination, the output L(û) of the decoder gives an
estimate of the source symbols.
The proposed HNN-TE is modeled on one HNN

structure, implying that there is no exchange of extrin-
sic information between its constituent parts. Rather,
all information is intrinsically processed in an iterative
fashion.

3 The Hopfield neural network
The HNN was first proposed in [15] and it was shown
in that the HNN can be used to solve combinatorial
optimization problems as well as pattern recognition

problems. In [15] Tank and Hopfield derived an energy
function and showed how the HNN can be used to
minimize this energy function, thus producing near-ML
sequence estimates at the output of the neurons. To enable
the HNN to solve an optimization problem, the cost
function of that problem is mapped to the HNN energy
function, where after the HNN iteratively minimizes its
energy function and performs near-MLSE. Also, to enable
the HNN to solve a binary pattern recognition problem,
the autocorrelation matrix of the set of patterns is used as
the weights between the HNN neurons, while the noisy
pattern to be recognized is used as the input to the HNN.
Again, the HNN iteratively performs pattern recognition
in order to produce the near-ML patter at the output of
the HNN.

3.1 Energy function
The Hopfield energy function can be written as [16]

L = −1
2
sTXs − ITTs, (6)

where I is a column vector withN elements,X is anN×N
matrix. Assuming that s, I, and X contain complex values,
these variables can be written as [16]

s = si + jsq,
I = Ii + jIq,
X = Xi + jXq,

(7)

where s and I are column vectors of length N, and X is an
N ×N matrix, where subscripts i and q are used to denote
the respective in-phase and quadrature components. X
is the cross-correlation matrix of the complex received
symbols such that

XH = XT
i − jXT

q = Xi + jXq, (8)

implying that it is Hermitian. Therefore XT
i = Xi is

symmetric and XT
q = −Xq is skew symmetric [16]. By

using the symmetric properties of Xi and Xq, (6) can be
expanded and rewritten as

L = −1
2

[
sTi Xisi + sTq Xqsq + 2sTq Xqsi

]
−

[
sTi Ii + sTq Iq

]

-1
MAP Equalizer MAP Decoder

)ˆ( 'D s
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e s
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Figure 1 Turbo equalizer. Shows the structure of the turbo equalizer.
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which in turn can be rewritten as [16]

L = −1
2

[
sTi |sTq

] [
Xi XT

q
Xq Xi

] [
si
sq

]
−

[
ITi |ITq

] [
si
sq

]
. (9)

It is clear that (9) is in the form of (6), where the variables
in (6) are substituted as follows:

sT =
[
sTi |sTq

]
,

IT =
[
ITi |ITq

]
,

X =
[
Xi XT

q
Xq Xi

]
.

(10)

Equation (9) is used to derive the HNN MLSE equalizer,
decoder, and eventually the HNN-TE.

3.2 Iterative system
The HNN minimizes the energy function (6) with the
following iterative system:

u(i) = Ts(i) + I

s(i+1) = g
(
β(i)u(i)

)
,

(11)

where u = {u1,u2, . . . ,uN }T is the internal state of the
HNN, s = {s1, s2, . . . , sN }T is the vector of estimated sym-
bols, g(.) is the decision function associated with each
neuron and i indicates the iteration number. β(.) is a
function used for optimization as in [14].
The estimated symbol vector

[
sTi |sTq

]
is updated with

each iteration.
[
ITi |ITq

]
contains the best blind estimate

for s, and is therefore used as input to the network, while[
Xi XT

q
Xq Xi

]
contains the cross-correlation information of

the received symbols. The system produces the MLSE
estimates in s after Z iterations.

4 The Hopfield neural network turbo equalizer
In this section, the derivation of the HNN-TE is discussed,
by first deriving its constituent parts—the HNN MLSE
equalizer and the HNN MLSE decoder—and then show-
ing how the HNN-TE is finally realized by combining the
two.

4.1 HNNMLSE equalizer
The HNN MLSE equalizer was developed by the authors
in [16]. The HNN MLSE equalizer was applied to single-
carrier M-QAM modulated system with extremely long
memory, where the CIR length was as long as L = 250,
even though this is not a limit. The ability of the HNN
MLSE equalizer to equalize signals in systems with highly
dispersive channels is due to the fact that its complexity
grows quadratically with an increase in transmitted data

block size, and that it is approximately independent of the
channel memory length. In the following the HNNMLSE
equalizer developed in [16] will be presented, without
spending time on the derivation.
It was shown in [16] that the correlation matricesXi and

Xq in (10), for a single carrier system transmitting a data
block of length N through a multipath channel of length
L with the data block initiated and terminated by L − 1
known tail symbols, with values 1 for BPSK modulation
and 1√

2
+j 1√

2
forM-QAMmodulation, can be determined

by

Xi = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 . . . αL−1 . . . 0

α1 0 α1 . . .
. . .

...
... α1 0

. . .
... αL−1

αL−1
...

. . . . . . α1
...

...
. . . . . . α1 0 α1

0
. . . αL−1 . . . α1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

and

Xq = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ1 . . . γL−1 . . . 0

γ1 0 γ1 . . .
. . .

...
... γ1 0

. . .
... γL−1

γL−1
...

. . . . . . γ1
...

...
. . . . . . γ1 0 γ1

0
. . . γL−1 . . . γ1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where α = {α1,α2, . . . ,αL−1} and γ = {γ1, γ2, . . . , γL−1}
are respectively, determined by

αk =
L−k−1∑
j=0

h(i)
j h(i)

j+k +
L−k−1∑
j=0

h(q)
j h(q)

j+k , (14)

and

γk =
L−k−1∑
j=0

h(q)
j h(i)

j+k −
L−k−1∑
j=0

h(i)
j h(q)

j+k , (15)

where k = 1, 2, 3, . . . , L−1 and i and q denote the in-phase
and quadrature components of the CIR coefficients.
Upon inspection it is easy to see from (12) through

(15) that Xi and Xq can be determined using the respec-
tive in-phase and quadrature components of the N × N
channel matrix, with the in-phase and quadrature
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components of the CIR, h(i) = {h(i)
0 , h(i)

1 , . . . , h(i)
L−1}T and

h(q) = {h(q)
0 , h(q)

1 , . . . , h(q)
L−1}T , on the diagonals such that

H(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(i)
0 0 . . . 0 0 0 0
... h(i)

0 . . . 0 0 0 0

h(i)
L−1

...
. . . 0 0 0 0

0 h(i)
L−1

. . . . . . 0 0 0
...

...
. . . . . . h(i)

0 0 0
0 0 0 h(i)

L−1 . . . h(i)
0 0

0 0 0 0 h(i)
L−1 . . . h(i)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

and

H(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(q)
0 0 . . . 0 0 0 0
... h(q)

0 . . . 0 0 0 0

h(q)
L−1

...
. . . 0 0 0 0

0 h(q)
L−1

. . . . . . 0 0 0
...

...
. . . . . . h(q)

0 0 0
0 0 0 h(q)

L−1 . . . h(q)
0 0

0 0 0 0 h(q)
L−1 . . . h(q)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Using H(i) and H(q) the correlation matrices in (12) and
(13) can be determined by

Xi = −
(
H(i)TH(i) + H(q)TH(q)

)
(18)

which is simply

Xi = −Re{HTH}. (19)

Also

Xq = −
(
H(q)TH(i) − H(i)TH(q)

)T
, (20)

which is

Xq = −Im{HTH}. (21)

Xi and Xq are then used to construct the combined
correlation matrix in (10).

X =
[
Xi XT

q
Xq Xi

]
. (22)

It was also shown in [16] that the input vectors Ii and Iq
in (10) are determined by

Ii =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 − ρ(α1 + γ1 + · · · + αL−1 + γL−1)
λ2 − ρ(α2 + γ2 + · · · + αL−1 + γL−1)
λ3 − ρ(α3 + γ3 + · · · + αL−1 + γL−1)

...
...

...
λL−1 − ρ(αL−1 + γL−1)

λL
...

...
...

λN−L+1
λN−L+2 − ρ(αL−1 − γL−1)

...
...

...
λN−2 − ρ(α3 − γ3 + · · · + αL−1 − γL−1)
λN−1 − ρ(α2 − γ2 + · · · + αL−1 − γL−1)
λN − ρ(α1 − γ1 + · · · + αL−1 − γL−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

and

Iq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1 − ρ(α1 − γ1 + · · · + αL−1 − γL−1)
ω2 − ρ(α2 − γ2 + · · · + αL−1 − γL−1)
ω3 − ρ(α3 − γ3 + · · · + αL−1 − γL−1)

...
...

...
ωL−1 − ρ(αL−1 − γL−1)

ωL
...

...
...

ωN−L+1
ωN−L+2 − ρ(αL−1 + γL−1)

...
...

...
ωN−2 − ρ(α3 + γ3 + · · · + αL−1 + γL−1)
ωN−1 − ρ(α2 + γ2 + · · · + αL−1 + γL−1)
ωN − ρ(α1 + γ1 + · · · + αL−1 + γL−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(24)

where ρ = 1/
√
2 for M-QAM modulation, ρ = 1

in Ii and ρ = 0 in Iq for BPSK modulation, and
� = {λ1, λ2, . . . , λN } is determined by

λk =
L−1∑
j=0

r(i)j+kh
(i)
j +

L−1∑
j=0

r(q)j+kh
(q)
j , (25)

and � = {ω1,ω2, . . . ,ωN } is determined by

ωk =
L−1∑
j=0

r(q)j+kh
(i)
j −

L−1∑
j=0

r(i)j+kh
(q)
j , (26)

where k = 1, 2, 3, . . . ,N with i and q again denoting the
in-phase and quadrature components of the respective
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elements. The combined input vector in (10) is therefore
constructed as

I =
[
Ii
Iq

]
. (27)

Note that � and � can easily be determined by

� = H(i)Tr(i) + H(q)Tr(q), (28)

and

� = H(i)Tr(q) − H(q)Tr(i), (29)

where r(i) and r(q) are the respective in-phase and
quadrature components of the received symbols
r = {r1, r2, . . . , rN+L−1}T .
By deriving the cross-correlation matrixX and the input

vector I in (10), the model in (9) is complete, and the itera-
tive system in (11) can be used to equalize M-QAMmod-
ulated symbols transmitted through a channel with large
CIR lengths. The HNN MLSE equalizer was evaluated in
[16] for BPSK and 16-QAM with performance reaching
the matched-filter bound in extremely long channels.

4.2 HNNMLSE decoder
The HNN has been shown to be able to decode balanced
codes [17,18]. A binary word of length m is said to be
balanced if it contains exactly m/2 ones and m/2 zeros
[19]. In addition, balanced codes have the property that
no codeword is contained in another word, which simply
means that positions of ones in one codeword will never
be a subset of the positions of ones in another codeword
[19].
The encoding process is described in [19] where the first

k bits of the uncoded word is flipped in order to ensure the
resulting codedword is “balanced,” whereafter the position
k is appended to the balanced codeword before transmis-
sion. This encoding process is not followed here, as the
set of m = 2n balanced codewords are determined before
hand, after which encoding is performed by mapping a set
of n bits to 2n balanced binary phase-shift keying (BPSK)
symbols of length 2n, or by mapping a set of 2n bits to
2n balanced quaternary quadrature amplitude modulation
(4-QAM) symbols of length 2n.
The HNN decoder developed here uses the set of

predetermined codewords to determined the connection
weights describing the level of connection between the
neurons. It has previously been shown how a HNN can be
used to decoded one balanced code at a time, but theHNN
MLSE decoder we derive here is able to simultaneously
decode any number of concatenated codewords in order
to provide the ML transmitted sequence of codewords.
After the HNNMLSE decoding, the ML BPSK or 4-QAM
codewords of length 2n are demapped to n bits (or 2n bits
for 4-QAM), which completes the decoding process.

4.2.1 Codeword selection
The authors have found that Walsh-Hadamard codes,
widely used in code division multiple access (CDMA) sys-
tems [20], are desirable codes for this application, due
to their seeming balance and orthogonality characteris-
tics. Walsh-Hadamard codes are linear codes that map n
bits to 2n codewords, where each set of codewords have
a Hamming distance of 2n−1 and a Hamming weight of
2n−1.
Walsh-Hadamard codes are not “balanced” as described

above. The first codeword is always all-ones, while subsets
of some codewords are contained in others, violating both
restrictions for balance. Instead of using the complete
set of Walsh-Hadamard codes to map n bits to 2n code-
words, a subset of codes in the Walsh-Hadamard matrix
is selected, duplicated and modified so as to construct a
new set of 2n codewords of length 2n. Consider the set of
length 2n = 8 Walsh-Hadamard codes

H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
1 0 0 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (30)

To construct a set of balanced codewords from H8, a
subset of 2n−1 codewords is selected, which is used as the
first 2n−1 codewords in the new set of codewords. The
second set of 2n−1 codewords are constructed as follows:

1. Reverse the order in which the first 2n−1 codewords
appear in the new set.

2. Flip the bits of the reversed set of 2n−1 codewords.

Assuming the subset selected from H8 above is the set
H8,4:7 (implying that codewords in rows 4 through 7 are
selected), the resulting set of 2n balanced codewords is

C8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0 0 1
1 1 1 1 0 0 0 0
1 0 1 0 0 1 0 1
1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (31)

It is clear that C8 is balanced in the sense that the
rows (codewords) as well as the columns are balanced. It
has been found that the HNN decoder performs better if
the rows as well as the columns are balanced. The Ham-
ming weight of C8 is still 2n−1 = 22, while the Hamming
distance increases slightly larger than 2n−1 = 22.
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By following the steps described above, any set of
Walsh-Hadamard codes of length 2n can be used to create
a new set of 2n balanced codes of lengthm = 2n.

4.2.2 Encoding
Encoding is performed by mapping a group of n bits to 2n
BPSK symbols, or a group of 2n bits to 2n 4-QAM sym-
bols. Before encoding, the set of codewords C2n derived
from the set of Walsh-Hadamard codes H2n is made
bipolar by converting the 0’s to −1.

BPSK encoding When BPSK modulation is used, n bits
are mapped to 2n BPSK symbols. The n bits are used to
determine an index k in the range 1–2n, which is then
used to select a codeword from the set of codewords in
C2n such that the selected codeword c = C2n(k). Table 1
shows the number of uncoded bits, codeword length,
uncoded bit to coded symbol rate Rs and the uncoded bit
to coded bit rate Rc (code rate) for different n.

4-QAM encoding When 4-QAMmodulation is used, 2n
bits are mapped to 2n 4-QAM symbols. The first and sec-
ond groups of n bits (out of 2n bits) are used to determine
two indices, k(i) and k(q), in the range 1–2n, one for the
in-phase part, and the other for the quaternary part of
the codeword. The first index k(i) selects a codeword from
C(i)
2n , where C

(i)
2n is derived as before, and the second index

k(q) selects a codeword from C(q)
2n , which can be equal

to C(i)
2n or can be uniquely determined as explained ear-

lier. The 4-QAM “codeword” is then calculated as c =
C(i)
2n (k(i)) + jC(q)

2n (k(q)), which is much like the result of
codedmodulation where groups of coded bits (in this case
uncoded bits) are mapped to signal constellation points to
improve spectral efficiency [20]. Table 2 shows the num-
ber of uncoded bits, codeword length, the uncoded bit to
coded symbol rate Rs and code rate Rc for different 2n.
Even though the code rate remains the same as with BPSK
modulation, the throughput doubles as expected.

4.2.3 Decoder
The HNN is known to be able to recognize input patterns
from a set of stored patterns [15,21]. In the context of the
HNN decoder, the patterns are the balanced codewords,
and the HNN is able to determine the ML codeword from
a set of codewords. This has been demonstrated before

Table 1 Input-output relationship for BPSK encoder

n 2n Rs Rc

1 2 1/2 1/2

2 4 1/2 1/2

3 8 3/8 3/8

4 16 1/4 1/4

Table 2 Input-output relationship for 4-QAM encoder

2n 2n Rs Rc

2 2 1 1/2

4 4 1 1/2

6 8 3/4 3/8

8 16 1/2 1/4

but only for one codeword at a time [17]. Therefore, if a
received data block contains P codewords, the HNN will
have to be applied P times in order to determine P ML
codewords. However, the HNNMLSE decoder developed
here is able to determine the most likely sequence of code-
words using a single HNN. The HNN MLSE decoder is
therefore applied once to a received data block containing
any number of codewords.
After the HNN MLSE decoder has determined the

sequence of most likely transmitted codewords, the code-
words are demapped by calculating the Euclidean distance
between each ML codeword and each codeword in C2n
for BPSK modulation, and each codeword in C(i)

2n + jC(q)
2n

for 4-QAM modulation. The indices(s) corresponding
to the codeword(s) that have the lowest Euclidean dis-
tance/distances is/are converted to bits, which completes
the decoding phase.
The derivation of the HNN MLSE decoder entails the

calculation of the cross-correlation matrices Xi and Xq,
and the input vectors Ii and Iq in (10). The HNN MLSE
decoder is first derived for the decoding of a single code-
word, after which it will be extended to enable the decod-
ing of any number of codewords simultaneously. Deriva-
tions are performed for 4-QAM only, since the BPSK
HNN MLSE decoder is a simplification of its 4-QAM
counterpart.

Single codeword decoding To enable the HNN to store
a set of codewords, the average correlation between all
pattern must be stored in the weights between the neu-
rons. According to Hebb’s rule of auto-associative mem-
ory [22], the connection weight matrix, or correlation
matrix, is calculated by taking the cross-correlation of the
patterns to be stored. Since we are working with complex
symbols, there are two weight matrices to be calculated.
The cross-correlation matrices in (9) are calculated as

Xi = Re{CTC}
= C(i)T

2n C(i)
2n + C(q)T

2n C(q)
2n

(32)

and

Xq = Im{CTC}
= C(q)T

2n C(i)
2n − C(i)T

2n C(q)
2n ,

(33)
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where C = C(i)
2n + jC(q)

2n , and C(i)
2n and C(q)

2n are the matrices
containing the generated codewords as before, respec-
tively, used for the in-phase and quadrature components
of the codeword. Note the similarities between the cor-
relation matrices in (32) and (33) and those in (18) and
(20). Also, the two input vectors are simply the real and
imaginary components of the noise-corrupted received
codeword, such that

Ii = Re{c} + Re{n} (34)

and

Iq = Im{c} + Im{n} (35)

where c is of length 2n and n is a vector containing com-
plex samples from the distributionN (μ, σ 2), whereμ = 0
and σ is the noise standard deviation. After the ML code-
word is detected, each detected codeword (of length 2n)
can be mapped back to n bits for BPSKmodulation and 2n
bits for 4-QAMmodulation.

Multiple codeword decoding It was shown how the
HNN can be used to decode single codewords, but the
HNN decoder can be extended in order to detect ML
transmitted sequences of codewords. This step is crucial
in our quest of merging the HNN decoder with the HNN
MLSE equalizer, since the HNN MLSE equalizer detects
ML sequences of transmitted symbols. If the transmitted
information is encoded, these sequences contain multi-
ple codewords, and hence the HNN decoder must be
extended to detect not only single codewords, but code-
word sequences.
This extension is easily achieved by using the HNN

parameters already derived in (32) through (35). Consider
a system transmitting a sequence of P balanced code-
words of length 2n, where n is the length of the uncoded
bit-words. The new correlation matrix is constructed by
copying X in (10) along the diagonal according to the
number of transmitted codewords P, such that

X(P) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xi XT
q

Xq Xi
Xi XT

q ∅
Xq Xi

. . . . . .

∅ . . . . . .
Xi XT

q
Xq Xi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

where X =
[
Xi XT

q
Xq Xi

]
is repeated on the diagonal P times

and ∅ implies that the rest of X(P) is empty, containing
only 0’s.

Also the input vector I in (10), consisting of Ii and Iq,
is also extended according to the number of transmitted
codewords P such that

I(P) =
[
I(P)
i

I(P)
q

]
, (37)

where

I(P)
i = [

Re{c1}, Re{c2}, . . . , Re{cp}
]T + Re{n} (38)

and

I(P)
q = [

Im{c1}, Im{c2}, . . . , Im{cp}
]T + Im{n}, (39)

where cp is the pth codeword of length 2n, where p =
1, 2, . . . ,P, and n is of length 2nP and contains complex
samples from the distributionN (μ, σ 2), where μ = 0 and
σ is the noise standard deviation.
The extended cross-correlation matrix and input vec-

tor in (36) and (37) can now be used to estimate the
ML sequence of transmitted codewords, after which each
detected codeword (of length 2n) can be mapped back
to n bits for BPSK modulation and 2n bits for 4-QAM
modulation.

4.3 HNN turbo equalizer
The HNN-TE is an amalgamation of the HNN MLSE
equalizer and the HNN MLSE decoder, which were dis-
cussed in the previous sections. In this section it is
explained how the HNN MLSE equalizer and the HNN
MLSE decoder are combined in order to perform iterative
joint equalization and decoding (turbo equalization) using
a single HNN structure. The HNN-TE is able to jointly
equalize and decode BPSK and 4-QAM coded modu-
lated signals in systems with highly dispersive multipath
channels, with extremely low computational complexity
compared to traditional turbo equalizers which employ a
MAP equalizer/decoder pair.

4.3.1 Systemmodel
Since we already have complete models for the HNN
MLSE equalizer and decoder, the combination of the two
is fairly straight-forward. In order to distinguish between
equalizer and decoder parameters a number of redefi-
nitions are in order. For the HNN MLSE equalizer the
correlation matrix and input vector relating to (10), as
derived in (22) and (27), are now XE and IE , respectively,
and will henceforth be referred to as “equalizer correlation
matrix” and “equalizer input vector”. Similarly the HNN
MLSE decoder correlation matrix and input vector relat-
ing to (10), as derived in (36) and (37), are now XD and ID,
respectively, and will henceforth be referred to as “decoder
correlation matrix” and “decoder input vector”.
When a coded data block of length Nc is transmitted

through a multipath channel, XE and XD are determined
according to (22) and (36), where both matrices are of
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size Nc × Nc. Since the function of the equalizer and
the decoder has to be merged, it makes sense to somehow
combine XE and XD to enable the equalizer to perform
decoding, or to enable the decoder to perform equaliza-
tion. This combination is performed by first normalizing
XD with respect toXE , because of varying energy in amul-
tipath fading channel between received data blocks. XD is
therefore normalized with respect to XE such that

X(norm)
D =

( ‖XE‖
‖XD‖

)
XD. (40)

Next the new correlation matrix is determined as

XTE = XE + X(norm)
D . (41)

The rationale behind the addition of the equalizer cor-
relation matrix and the normalized decoder correlation
matrix is that the connection weights in the decoder
correlation matrix should bias those of the equalizer cor-
relation matrix. Since XTE contains XE offset by X(norm)

D ,
joint equalization and decoding is made possible.
The new input vector also needs to be calculated. ID

contains the noise-corrupted coded symbols, while IE
contains not only received coded symbol information, but
also the ISI information. Note that when there is no mul-
tipath or fading (L = 1 and h0 = 1), IE reduces to ID. The
new input vector used in the HNN-TE is therefore simply

ITE = IE . (42)

With the new correlationmatrixXTE and input vector ITE,
the HNN-TE model is complete, and the iterative system
in (11) can be used to jointly equalize and decode (turbo
equalize) the transmitted coded information.

4.3.2 Transformation
Upon reception the received symbol vector has to be dein-
terleaved to restore the one-to-one relationship between
each element in r and c with respect to the first coefficient
h0 of the CIR h = {h0, h1, . . . , hL−1}T . Deinterleaving r
transforms the transmission model in (1). Substituting (2)
in (1) and applying the deinterleaver, which is simply the
Hermitian transpose of the interleaver matrix J, gives

JHr = JHHHGHs + JHn, (43)

which is equivalent to transmitting the coded symbol
sequence c = GTs through a channel

Q = JHHH. (44)

Therefore (43) can be written as

JHr = QGHs + JHn. (45)

Consequently the new channel matrix Q, rather than the
conventional channel matrix H in (3), is used in the cal-
culation of the equalizer correlation matrix XE derived in

(22). Due to the above transformation,Q does not contain
the CIR h on the diagonal as inH. Rather, each column in
Q (of lengthNc) contains a unique random combination of
all CIR coefficients (where the rest of the Nc − L elements
in a column are equal to 0), dictated by the randomiza-
tion effect exhibited in Q due to the random interleaver.
This randomization effect results from first multiplying
the channel H with the interleaving matrix J and then
deinterleaving by multiplying the result with JT (see (44)).
Deinterleaving places the first CIR coefficient (h0) on
the diagonal of Q, restoring the one-to-one relationship
between each element in r and each corresponding coded
transmitted symbol in c.
To illustrate this concept, consider the three-

dimensional representations of |HJ| and |Q| in Figures
2a, b, 3a,b, 4a,b, and 5a,b, for a hypothetical system trans-
mitting coded information through a multipath channel
with CIR lengths of L = 1, L = 5, L = 10, and L = 20,
respectively, with a block length Nc = 80. Figure 2a,b
show |HJ| and |Q| for channels of length L = 1, where
Figure 2a is clearly interleaved. It is also clear that the new
channel Q in Figure 2b is deinterleaved, since the first
coefficient h0 of the CIR has been restored to the diagonal
of Q. Figure 3a and 5a show the interleaved channels for
L = 5, L = 10, and L = 20, where Figure 3b and 5b show
the new channels Q, again with the first CIR coefficient
h0 restored to the diagonal. Even though h0 is restored
to the diagonal of Q, it is clear that the rest of the CIR
coefficients h1, h2, . . . , hL−1 are scattered throughout Q.
As stated before, each column in Q contains a unique
random combination of all CIR coefficients (with h0 on
the diagonal for each column), dictated by the random-
ization effect exhibited in Q, where the rest of the Nc − L
elements in each column are equal to 0.

5 Computational complexity analysis
The computational complexity of the HNN-TE is com-
pared to that of the CTE by calculating the number of
computations performed for each received data block, for
a fixed set of system parameters. The number of computa-
tions are normalized by the coded data block length so as
to factor out the effect of the length of the transmitted data
block, which allows us to present the computational com-
plexity in terms of the number of computations required
per received coded symbol. The complexity of the HNN-
TE is quadratically related to the coded data block length,
so a change inNc will still have an effect on the normalized
computational complexity.
The computational complexity of the HNN-TE was cal-

culated as

CCHNN−TE = 2N2.376
c + 8(Nc + L − 1) + ZHNN−TE((NcM/2)2

+ (NcM/2)) + 4Nck2 + 2(Nc + L − 1)2.376,
(46)
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Figure 2 |HJ| and |Q| for systems with L = 1 CIR coefficients. (a) |HJ| (b) |Q|.

where Nc is the coded data block length, L is the CIR
length, M is the modulation constellation alphabet size
(2 for BPSK and 4 for 4-QAM), ZHNN−TE is the number
of iterations and k is the codeword length, which was cho-
sen as k = 8 for a code rate of Rc = 3/8. The first term in
(46) is associated with the calculation of Xi in (19) and Xq
in (21). The second term is associated with the calculation
of � in (28) and � in (29). The third term is for the itera-
tive calculation of the ML coded symbols in (11) while the
second to last term in (46) is for the trivial ML detection

of codewords after joint iterative MLSE equalization and
decoding. The last term is due to the transformation in
(43) through (45). Note that in the first and last terms of
(46) the exponent is 2.376. It has been shown in [23] that
the complexity of multiplication of two N × N matrices
can be reduced fromO(N3) toO(N2.376). However, due to
the fact that cubic complexity matrix multiplication is still
preferred in practical applications due to ease of imple-
mentation, (46) serves as a lower bound on the HNN-TE
computational complexity.
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Figure 3 |HJ| and |Q| for systems with L = 5 CIR coefficients. (a) |HJ| (b) |Q|.

Therefore, the computational complexity of the HNN-
TE is approximately quadratic at best, or more realistically
cubic in the coded data block length (Nc), quadratic in the
modulation constellation alphabet size (M), quadratic in
the codeword length k, and approximately independent of
the channel memory length (L).
The complexity of the CTE was determined as

CCCTE = ZCTE
(
4NcLQ + 4Nck2

)
, (47)

where ZCTE is the number of iterations and Q is the
number of equalizer states, determined by 2L−1 for BPSK
modulation and 4L−1 for 4-QAM. The first term in
(47) is associated with the equalizer while the second
term is associated with MAP decoding. The computa-
tional complexity of the CTE is therefore linear in the
coded data block length (Nc), exponential in the chan-
nel memory length (L) and quadratic in the codeword
length (k).
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Figure 4 |HJ| and |Q| for systems with L = 10 CIR coefficients. (a) |HJ| (b) |Q|.

Figure 6 and shows the normalized computational com-
plexity of the HNN-TE and the CTE for coded data block
lengths of Nc = 80, Nc = 160, Nc = 320, Nc = 640,
Nc = 1280, and Nc = 2560, where ZHNN−TE = 25
and ZCTE = 5, for BPSK and 4-QAM modulation when
O(N2.376) matrix multiplication complexity is considered.
Figure 7 shows the same information as Figure 6, but with
O(N3)matrixmultiplication complexity. It is clear that the
computational complexity of the HNN-TE increases with
an increase in coded data block length, but for realistic

data block lengths the complexity of the HNN-TE is supe-
rior to that of the CTE for channels with long memory.
The HNN-TE is computationally less complex for BSPK
modulation than for 4-QAM, but only slightly so. On
the other hand, the complexity of the CTE grows expo-
nentially with and increase in modulation order. From
Figure 6 it is clear that the complexity of the HNN-TE is
almost quadratically related to the coded data block length
and approximately independent of the channel memory
length, which is more evident when L is increased. The
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Figure 5 |HJ| and |Q| for systems with L = 20 CIR coefficients. (a) |HJ| (b) |Q|.

normalized computational complexity of the HNN-TE
and the CTE (for O(N2.376) and O(N3) matrix multiplica-
tion complexity) for Nc = 1280 using BPSK and 4-QAM
for extremely long channels is shown in Figure 8, where
there is no comparison between the complexity of the
HNN-TE and that of the CTE, for both BSPK and 4-QAM
modulation.

6 Memory requirements analysis
The memory requirements of the HNN-TE and the
CTE are closely related to their respective computational

complexities due to the structures employed by these algo-
rithms. Table 3 describes the memory requirements of the
HNN-TE for each received data block. The total mem-
ory requirement for the HNN-TE is 2N2

c + 6Nc + Nc +
L − 1 + 2(Nc + L − 1)2 where each variable is of type
float, which uses 32 bits. The memory requirements of
the CTE per data block is shows in Table 4. The total
memory requirement of the CTE is NcML−1 + 4Nc + L.
Figure 9 shows the memory requirement of the HNN-TE
and the CTE in bytes (32 bits = 8 bytes) for coded data
block sizes of Nc = 160, Nc = 640, and Nc = 2560
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Figure 6 HNN-TE and CTE normalized computational complexity for short channels and varying coded block length assumingO(N2.376
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matrix multiplication complexity. Blue circle: CTE (BPSK); Black square: CTE (4-QAM); Red circle: HNN-TE - Nc = 80 (BPSK); Red square: HNN-TE -
Nc = 160 (BPSK); Red diamond: HNN-TE - Nc = 320 (BPSK); Red down triangle: HNN-TE - Nc = 640 (BPSK); Red left triangle: HNN-TE - Nc = 1280
(BPSK); Red right triangle: HNN-TE - Nc = 2560 (BPSK); Green circle: HNN-TE - Nc = 80 (4-QAM); Green square: HNN-TE - Nc = 160 (4-QAM); Green
diamond: HNN-TE - Nc = 320 (4-QAM); Green down triangle: HNN-TE - Nc = 640 (4-QAM); Green left triangle: HNN-TE - Nc = 1280 (4-QAM); Green
right triangle: HNN-TE - Nc = 2560 (4-QAM).

and CIR lengths increasing from L = 1 to L = 25. From
Figure 9 it is clear that the memory requirement of the
HNN-TE remains constant over all channel lengths and
modulation alphabet sizes, with less than 1 MB of mem-
ory required for Nc = 160, 6.6 MB for Nc = 640 and
100 MB for Nc = 2560. The memory requirements of
the CTE, however, grows exponentially with the channel
memory length, since the size of the trellis structure used
in the MAP equalizer grows according to the same mea-
sure. The break-even point between the BPSK CTE and
the HNN-TE (for both BPSK and 4-QAM) is L = 10.40
for Nc = 160, L = 12.35 for Nc = 640 and L = 14.30 for
Nc = 2560, beyond which the HNN-TE require less mem-
ory than the CTE. Also, the break-even point between the
4-QAM CTE and the HNN-TE is L = 5.68 for Nc = 160,
L = 6.66 for Nc = 640 and L = 7.66 for Nc = 2560.
The memory requirements of the HNN-TE are therefore
more favorable when higher order modulation alphabets
are employed.

7 Simulation results
The proposed HNN-TE was evaluated in a mobile fad-
ing environment for BPSK and 4-QAM modulation at a
code rate of Rc = n/k = 3/8. To simulated the fading

effect of mobile channels, the Rayleigh fading simulator
proposed in [24] was used to generate uncorrelated fading
vectors. When imperfect channel state information (CSI)
was assumed, least squares channel estimation was used
using various amounts of training symbols in the trans-
mitted data block. On the other hand, when perfect CSI
was assumed, the CIR coefficients were “estimated” by
taking the mean of the uncorrelated fading vectors. Sim-
ulations were performed for short and long channels at
various mobile speeds. Simulations were also performed
to compare the performance of the HNN-TE and a CTE in
short mobile fading channels for BPSKmodulation. For all
simulations the uncoded data block length was Nu = 480
and the coded data block length was Nc = 1280. In all
simulations the frequency was hopped four times during
each data block in order to further reduce the BER. For
the CTE the number of iterations were Z = 5, and instead
of using a fixed number of iterations for the HNN-TE,
we use the function Z(Eb/N0) = 2(5(Eb/N0)/5) (which
produces Z(Eb/N0) = {2, 4, 8, 10, 22, 55} for Eb/N0 =
{0, 2.5, 5, 7.5, 10}) to determine the number of iterations to
be used given Eb/N0.
Figure 10 show the performance of the HNN-TE and the

CTE for channel lengths of L = 4, L = 6, and L = 8 at a
fixed mobile speed of 20 km/h, assuming perfect CSI. The
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Figure 7 HNN-TE and CTE normalized computational complexity for short channels and varying coded block length assumingO(N3
c )

HNN-TE matrix multiplication complexity. Blue circle: CTE (BPSK); Black square: CTE (4-QAM); Red circle: HNN-TE - Nc = 80 (BPSK); Red square:
HNN-TE - Nc = 160 (BPSK); Red diamond: HNN-TE - Nc = 320 (BPSK); Red down triangle: HNN-TE - Nc = 640 (BPSK); Red left triangle: HNN-TE -
Nc = 1280 (BPSK); Red right triangle: HNN-TE - Nc = 2560 (BPSK); Green circle: HNN-TE - Nc = 80 (4-QAM); Green square: HNN-TE - Nc = 160
(4-QAM); Green diamond: HNN-TE - Nc = 320 (4-QAM); Green down triangle: HNN-TE - Nc = 640 (4-QAM); Green left triangle: HNN-TE - Nc = 1280
(4-QAM); Green right triangle: HNN-TE - Nc = 2560 (4-QAM).
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Figure 8 HNN-TE and CTE normalized computational complexity for long channels andNc=1280 for bothO(N2.376
c ) andO(N3

c ) HNN-TE
matrix multiplication complexity. Blue circle: CTE - BPSK; Black square: CTE - 4-QAM; Red circle: HNN-TE - BPSK (O(N2.376

c )); Green square: HNN-TE -
4-QAM (O(N2.376

c )); Red square: HNN-TE - BPSK (O(N3
c )); Green circle: HNN-TE - 4-QAM (O(N3

c )).
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Table 3 HNN-TEmemory requirements

Description Size (float)

Correlation matrices Xi , Xq 2N2
c

Input vectors Ii , Iq 2Nc

HNN internal state u 2Nc

HNN output s 2Nc

Channel matrix HJ (Nc + L − 1)2

Interleaver matrix J (Nc + L − 1)2

Received vector r Nc + L − 1

Table 4 CTEmemory requirements

Description Size (float)

Equalizer forward and backward messages NcML−1

Decoder forward and backward messages ( Nck )k = Nc

Equalizer output LE (ŝ) Nc

Decoder output LD(ŝ’) Nc

Channel impulse response h L

Received vector r Nc

performance of the HNN-TE is slightly better than that of
the CTE for high SNR levels.
Figure 11 shows the performance of the HNN-TE and

the CTE for a channel of length L = 6 at mobile speeds
of 3 km/h, 50 km/h, 80 km/h, 140 km/h, and 200 km/h,

assuming perfect CSI. It is clear that the HNN-TE out-
performs the CTE at mobile speeds greater than 20 km/h,
with the advantage of performance increasing with an
increase in mobile speeds. It seems that the HNN-TE is
less affected by increasing mobile speeds, which suggests
that the HNN-TE is able to perform well in fast-fading
mobile environments.
Figure 12 shows the performance of the HNN-TE and

the CTE for a channel of length L = 6 at a mobile speed of
20 km/h, assuming imperfect CSI. To estimate the chan-
nel training sequences of length 4L, 6L, 8L, and 10L were
used. From Figure 12 it is clear that the HNN-TE is supe-
rior to the CTE at high SNR levels when perfect CSI is
not available. The HNN-TE seems to be less sensitive to
channel estimation errors.
It is clear from Figures 10, 11, and 12 that the perfor-

mance of the HNN-TE is superior to that of a CTE in
short channels at varying mobile speeds, for both per-
fect and imperfect CSI. The HNN-TE outperforms the
CTE in short channels, but with higher computational
complexity. Figure 6 shows that the HNN-TE is more
computationally complex than the CTE for short channels
(L < 10), when the coded data block length is relatively
small (Nu < 1280). However, the complexity of the HNN-
TE is vastly superior to that of the CTE for long channels.
It might be argued that the HNN-TE will perform better
than the CTE since more iterations are used, but that is
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Figure 9 HNN-TE and CTEmemory requirements per coded data block in bytes. Blue circle: CTE - Nc = 160 (BPSK); Blue square: CTE - Nc = 640
(BPSK); Blue diamond: CTE - Nc = 2560 (BPSK); Blue circle: CTE - Nc = 160 (4-QAM); Blue square: CTE - Nc = 640 (4-QAM); Blue diamond: CTE -
Nc = 2560 (4-QAM); Red circle: HNN-TE - Nc = 160 (BPSK); Red square: HNN-TE - Nc = 640 (BPSK); Red diamond: HNN-TE - Nc = 2560 (BPSK); Green
circle: HNN-TE - Nc = 160 (4-QAM); Green square: HNN-TE - Nc = 640 (4-QAM); Green diamond: HNN-TE - Nc = 2560 (4-QAM).



Myburgh and Olivier EURASIP Journal on Advances in Signal Processing 2013, 2013:15 Page 17 of 22
http://asp.eurasipjournals.com/content/2013/1/15

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

Figure 10 HNN-TE and CTE BPSK performance in short channels at a fixedmobile speed assuming perfect CSI. Shows the HNN-TE and CTE
performance in systems with CIR lengths of L = 4, L = 6, and L = 8 at a mobile speed of 20 km/h. Red diamond: CTE - L = 4; Red square: CTE - L = 6;
Red circle: CTE - L = 8; Blue diamond: HNN-TE - L = 4; Blue square: HNN-TE - L = 6; Blue circle: HNN-TE - L = 8; Black dashed: coded AWGN bound.
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Figure 11 HNN-TE and CTE BPSK performance in a short channel at various mobile speeds assuming perfect CSI. Shows the HNN-TE and
CTE performance in a system with CIR length L = 6 at mobile speeds of 3 km/h, 20 km/h, 50 km/h, 80 km/h, and 110 km/h. Red circle: CTE -
v = 3 km/h; Red square: CTE - v = 50 km/h; Red diamond: CTE - v = 80 km/h; Red down triangle: v = 140 km/h; Red left triangle: CTE -
v = 200 km/h; Blue circle: HNN-TE - v = 3 km/h; Blue square: HNN-TE - v = 50 km/h; Blue diamond: HNN-TE - v = 80 km/h; Blue down triangle:
HNN-TE - v = 140 km/h; Blue left triangle: HNN-TE - v = 200 km/h; Black dashed: coded AWGN bound.



Myburgh and Olivier EURASIP Journal on Advances in Signal Processing 2013, 2013:15 Page 18 of 22
http://asp.eurasipjournals.com/content/2013/1/15

0 1 2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

Figure 12 HNN-TE and CTE BPSK performance in a short channel at a fixedmobile speed for various amounts of training symbols for
channel estimation. Shows the HNN-TE and CTE performance in systems with CIR length L = 6 at a fixed mobile 20 km/h using 4L, 6L, 8L, and 10L
symbols for channel estimation. Red circle: CTE - 4L pilots; Red square: CTE - 6L pilots; Red diamond: CTE - 8L pilots; Red down triangle: CTE -
10L pilots; Red left triangle: CTE - Perfect CSI; Blue circle: HNN-TE - 4L pilots; Blue square: HNN-TE - 6L pilots; Blue diamond: HNN-TE - 8L pilots; Blue
down triangle: HNN-TE - 10L pilots; Blue left triangle: HNN-TE - Perfect CSI; Black dashed: coded AWGN bound.
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Figure 13 HNN-TE BPSK and 4-QAM performance in a long channel at a fixed speed assuming perfect CSI. Shows the HNN-TE BPSK and
4-QAM performance in systems with CIR lengths of L = 10, L = 20, L = 50, and L = 100 at a mobile speed of 20 km/h. Blue circle: BPSK HNN-TE -
L = 10; Blue square: BPSK HNN-TE - L = 20; Blue diamond: BPSK HNN-TE - L = 50; Blue down triangle: BPSK HNN-TE - L = 100; Red circle: 4-QAM
HNN-TE - L = 10; Red square: 4-QAM HNN-TE - L = 20; Red diamond: 4-QAM HNN-TE - L = 50; Red down triangle: 4-QAM HNN-TE - L = 100; Black
dashed: coded AWGN bound.
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Figure 14 HNN-TE BPSK and 4-QAM performance in a long channel at various mobile speeds assuming perfect CSI. Shows the HNN-TE
BPSK and 4-QAM performance in a system with CIR length L = 50 at mobile speeds of 20 km/h, 80 km/h, 140 km/h, and 200 km/h. Blue circle: BPSK
HNN-TE - v = 20 km/h; Blue square: BPSK HNN-TE - v = 80 km/h; Blue diamond: BPSK HNN-TE - v = 140 km/h; Blue down triangle: BPSK HNN-TE -
v = 200 km/h; Red circle: 4-QAM HNN-TE - v = 20 km/h; Red square: 4-QAM HNN-TE - v = 80 km/h; Red diamond: 4-QAM HNN-TE - v = 140 km/h;
Red down triangle: 4-QAM HNN-TE - v = 200 km/h; Black dashed: coded AWGN bound.
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Figure 15 HNN-TE BPSK and 4-QAM performance in a long channel at a fixed speed for various amounts of training symbols for channel
estimation. Shows the HNN-TE BPSK and 4-QAM performance in systems with CIR length L = 50 at a fixed mobile 20 km/h using 4L, 6L, 8L, and 10L
symbols for channel estimation. Blue circle: BPSK HNN-TE - 10L; Blue square: BPSK HNN-TE - 8L; Blue diamond: BPSK HNN-TE - 6L; Blue down triangle:
BPSK HNN-TE - 4L; Red circle: 4-QAM HNN-TE - 10L; Red square: 4-QAM HNN-TE - 8L; Red diamond: 4-QAM HNN-TE - 6L; Red down triangle: 4-QAM
HNN-TE - 4L; Black dashed: coded AWGN bound.
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Figure 16 HNN-TE BPSK and 4-QAM performance in a long channel at a fixed speed for various numbers iterations. Shows the HNN-TE
BPSK and 4-QAM performance in systems with CIR length L = 50 at a fixed mobile 20 km/h using Z = 5, Z = 10, Z = 20, and Z = 50 iterations.

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

Figure 17 HNN-TE BPSK and 4-QAM performance in a long channel for different code rates, at a fixed speed assuming perfect CSI. Shows
the HNN-TE BPSK and 4-QAM performance in systems with CIR length L = 25 at a fixed mobile 20 km/h for code rates of Rc = 2/4, Rc = 3/8,
Rc = 4/16, and Rc = 5/32. Blue circle: BPSK HNN-TE - Rc = 2/4; Blue square: BPSK HNN-TE - Rc = 3/8; Blue diamond: BPSK HNN-TE - Rc = 4/16; Blue
down triangle: BPSK HNN-TE - Rc = 5/32; Red circle: 4-QAM HNN-TE - Rc = 2/4; Red square: 4-QAM HNN-TE - Rc = 3/8; Red diamond: 4-QAM HNN-
TE - Rc = 4/16; Red down triangle: 4-QAM HNN-TE - Rc = 5/32; Black dashed circle: coded AWGN bound - Rc = 2/4; Black dashed square: coded
AWGN bound - Rc = 3/8; Black dashed diamond: coded AWGN bound - Rc = 4/16; Black dashed down triangle: coded AWGN bound - Rc = 5/32.
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not true. It is stated in [3] that the performance of the CTE
cannot be improved significantly beyond Z = 3 iterations
in Rayleigh fading channels, so the performance gain of
the HNN-TE compared to the CTE is probably due to the
fact that HNN-TE is able to process all the available infor-
mation internally as a whole, without having to exchange
information between the equalizer and the decoder, as is
the case in a CTE.
Figure 13 shows the performance of the HNN-TE for

channels of length L = 10, L = 20, L = 50, L = 100
at a fixed mobile speed of 20 km/h for BPSK and 4-
QAM modulation, assuming perfect CSI. It is clear that
the performance for BPSK modulation is better than the
performance for 4-QAM, which is due to the fact that
Gray coding cannot be applied in the encoding process
described in Section 4.2.2. The performance loss is there-
fore warranted.
Figure 14 shows the performance of the HNN-TE for a

channel of length L = 50 at mobile speeds of 20 km/h,
80 km/h, 140 km/h, and 200 km/h for BPSK and 4-
QAM modulation, assuming perfect CSI. It is clear that
an increase in mobile speed leads to a performance degra-
dation, although not as much as expected. Again BPSK
modulation performs better than 4-QAMmodulation.
Figure 15 shows the performance of the HNN-TE for a

channel of length L = 50 at a mobile speed of 20 km/h for
BPSK and 4-QAM modulation, assuming imperfect CSI.
To estimate the channel, training sequences of length 4L,
6L, 8L, and 10L were used. As expected, a performance
loss is incurred with a decrease in the number of training
symbols. Again BPSK modulation outperforms 4-QAM
modulation.
Figure 16 shows the performance of the HNN-TE for a

channel of length L = 25 at a mobile speed of 20 km/h
for BPSK and 4-QAM modulation, assuming perfect CSI,
for different numbers of iterations. The number of itera-
tions were chosen to be Z = 5, Z = 10, Z = 20, and
Z = 50. The BER performance increases with an increase
in the number of iterations. Since the performance degra-
dation due to a decrease in the number of iterations is low
at low signal levels, we adopt an iteration schedule that is
dependent on the signal level. As stated before, we use the
following function to determine the number of iterations:
Z(Eb/N0) = 2(5(Eb/N0)/5).
Figure 17 shows the performance of the HNN-TE for a

channel of length L = 50 at a mobile speed of 20 km/h for
BPSK and 4-QAM modulation, assuming perfect CSI, for
different code rates. The code rates were Rc = 1/2 (2/4),
Rc = 3/8, Rc = 1/4 (4/16), and Rc = 5/32. From Figure 17
it is clear that the performance of the HNN-TE increases
with a decrease in the code rate, with 4-QAMmodulation
performing worse than BPSK modulation.
From Figures 13, 14, 15, 16 and 17 it is clear that the

HNN-TE is able to jointly equalize and decode BPSK and

4-QAM modulated signals, transmitted trough extremely
long mobile fading channels. While the data rate using 4-
QAM modulation is twice that using BPSK modulation,
the performance is worse for 4-QAM modulation, due to
the fact that Gray coding cannot be applied during coded
modulation.

8 Conclusion
In this article, a low complexity turbo equalizer was
developed which is able to jointly equalize and decode
BPSK and 4-QAM coded-modulated signals in systems
transmitting interleaved information through a multipath
fading channels. It uses the Hopfield neural network as
framework and hence it was fittingly named the Hop-
field Neural Network Turbo Equalizer, or HNN-TE. The
HNN-TE is able to turbo equalize coded modulated BPSK
and 4-QAM signals in short as well as long multipath
channels, slightly outperforming the CTE for short chan-
nels, although at higher computational cost. However, the
HNN-TE computational complexity in long channels is
vastly superior to that of CTE. The computational com-
plexity of the HNN-TE is almost quadratically related to
the coded data block length, while being approximately
independent of the CIR length. This enables it to turbo
equalize signals in systems with multiple hundreds of
multipath elements. It was also demonstrated that the
HNN-TE is less susceptible than the CTE to channel esti-
mation errors, and it also outperforms the CTE in fast
fading channels. The performance of the HNN-TE for
BPSK modulation is better than for 4-QAM modulation,
since Gray coding cannot be employed due to the coded
modulation explained in this paper, while the complexity
for 4-QAM is slightly higher.
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