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Abstract

For unmanned air vehicles (UAVs) to survive hostile operational environments, it is always preferable to utilize all
wireless positioning sources available to fuse a robust position. While belief propagation is a well-established method
for all source data fusion, it is not an easy job to handle all the mathematics therein. In this work, a comprehensive
mathematical framework for belief propagation-based all-source positioning of UAVs is developed, taking wireless
sources including Global Navigation Satellite Systems (GNSS) space vehicles, peer UAVs, ground control stations, and
signal of opportunities. Based on the mathematical framework, a positioning algorithm named Belief propagation-
based Opportunistic Positioning of UAVs (BOPU) is proposed, with an unscented particle filter for Bayesian
approximation. The robustness of the proposed BOPU is evaluated by a fictitious scenario that a group of formation
flying UAVs encounter GNSS countermeasures en route. Four different configurations of measurements availability are
simulated. The results show that the performance of BOPU varies only slightly with different measurements availability.
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1 Introduction
Unmanned air vehicles (UAVs) require an accurate esti-
mate of their positions, velocities, and attitudes in order
to control themselves, navigate, and reason about their
environment. The way this is achieved varies greatly from
systems to systems. While most current UAV navigation
systems rely on a combination of the Global Navigation
Satellite Systems (GNSS) and an inertial measurement
unit (IMU), there is a trend towards the use of all naviga-
tion sources available to meet the endless pursuit of nav-
igation robustness in the face of new threats and mission
challenges [1-3].
For UAVs, besides GNSS signals, ranging with ground

control stations and peer UAVs is readily achievable.
Recently, signals of opportunities (SoOPs) from existing
RF background infrastructure, such as digital terrestrial
wireless TV signal, have also aroused much interests in
the research community [4-6]. Under such a context, an
innovative positioning algorithm is needed to fuse a right
position utilizing all these measurements.
Existing positioning algorithms in the literature are enor-

mous. Early pseudorange-only positioning algorithms for
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GNSS were based on iterative least square and Kalman
filtering [7,8]. Extended Kalman filtering is a natural
extension to Kalman filtering for solving nonlinear prob-
lems using one-order linearization [9]. A big step forward
for Kalman-based filtering is the invention of unscented
Kalman filtering [10-12]. In cooperative positioning
[13-20], nodes have not only pseudoranges from naviga-
tion satellites but also ranging information with wireless
peers. Existing algorithms such as iterative least square
and Kalman filters can be extended to cooperative posi-
tioning, which leads to cooperative least square and coop-
erative Kalman filtering algorithm [21]. In recent years,
convex optimizations, including semidefinite program-
ming (SDP) [22-25], sum of squares (SOS) relaxation
[26,27], and distributed gradient algorithm, also found
their place in cooperative positioning. Another category
of positioning algorithms are Bayesian approaches with
belief propagation as an outstanding representative. Belief
propagation-based cooperative positioning was studied
for wireless sensor networks, mobile ad hoc networks,
vehicle ad hoc networks, etc. [28-31]. By jointly using
ranges with peer nodes and pseudoranges from satel-
lites, cooperative positioning dramatically improves the
availability and accuracy of positioning, especially in
GNSS-challenged environments.
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Despite that positioning has been treated in various set-
tings, there lack a study for positioning of UAVs with all
wireless sources available, which is of fatal importance
for UAVs to survive hostile operational environments. In
fact, the US Defense Advanced Research Projects Agency
(DARPA) had already initiated its All Source Positioning
and Navigation (ASPN) program as emerging threat sce-
narios becomemore sophisticated and widespread. Under
all-source positioning context, flexibility and robustness,
which allow for run-time join and leave of measurements,
are of the first concern. Accuracy, however, is of the sec-
ond concern. In existing work, algorithms based on belief
propagations have proved to be the best candidate to meet
the above requirements. While belief propagation is a
well-established algorithm, it is not an easy job to han-
dle the mathematics therein when all wireless positioning
sources are considered.
For the above motivations, all-source positioning of

UAVs based on belief propagations is studied in this
work. The positioning sources include (1) pseudoranges
and carrier phases from GNSS satellites, (2) ranges and
closed-loop Doppler from peer UAVs, (3) ranging infor-
mation and closed-loop Doppler with ground control
stations [32], and (4) time difference of arrival (TDoA)
from the signal of opportunities of background wireless
infrastructure. The contributions are as follows: (1) A uni-
fied mathematical framework for position and velocity
estimation is developed, taking all the above measure-
ments and their statistical characteristics. (2) Based on
the mathematical framework, a positioning algorithm,
named Belief propagation-based Opportunistic Position-
ing of UAVs (BOPU), is proposed. (3) The factor products,
which are mathematically intractable, are solved by an
unscented particle filtering. For the accuracy performance
of belief propagation with particle filters over Kalman fil-
ters and cooperative least square algorithms has already
been proved by existing work such as [28,29], we focused
on evaluating the robustness of BOPU. Simulations are
conducted with a fictitious scenario that a group of forma-
tion flying UAVs are under the support of ground control
stations but encounter GNSS countermeasures en route.
Four different configurations of measurements are sim-
ulated and compared. The results show that the perfor-
mance of BOPU varies only slightly with measurements
availability.
The rest of the paper is organized as follows: Section 2

formulates the problem, Section 3 gives the details of the
proposed positioning algorithm, Section 4 presents simu-
lation results and discussions, and Section 5 concludes the
paper.

2 Problem formulation
Consider a group of formation flying UAVs that are car-
rying out a mission. All UAVs, together with their ground

control stations, form a wireless network. The set of UAVs
is defined by a wireless node set M of cardinality |M|.
Without loss of generosity, it is assumed that only one
GNSS constellation is available with a set of satellites S of
cardinality |S|. There is also a set of SoOP signal sources
G of cardinality |G|. The epoch sequence is denoted by
t(0), t(1), . . ., t(k). For a selected wireless node m ∈ M,
denote by M(k)

m the nodes that node m ranges with, by
S(k)
m the subset of satellites m is in view, and by G(g,k)

m
the nodes that m shares TDoA about SoOP signal source
g ∈ G. The location of node m at epoch k is denoted by
�(k)
m = [ �(k)

mx, �(k)
my, �(k)

mz]T . The velocity of node m at epoch
k is denoted by v(k)

m = [ v(k)
mx, v(k)

my, v(k)
mz]T . The clock bias of

nodem with reference to the selected GNSS constellation
is denoted as b(k)

m in meters, which notionally equals the
product of the speed of light multiplying the clock bias of
nodem in seconds. Define the state of nodem as the vec-
tor x(k)

m � [ (�(k)
m )T , (v(k)

m )T , b(k)
m ]T . Node m performs the

following measurements:

1. Pseudorange ρ
(k)
s→m from satellite s ∈ S, which is in

the form

ρ(k)
s→m = ‖�(k)

s − �(k)
m ‖ + b(k)

m + b(k)
s + ε(k)

ρs (1)

where b(k)
s represents the sum of correlated errors

which generally include tropospheric error,
ionospheric error, and ephemeris error, while ε

(k)
ρs

represents all uncorrelated errors following a
Gaussian distribution.

2. Carrier phase elapsed φ
(k)
s→m during epoch k and

k − 1 from satellite s ∈ S, which is in the form

φ(k)
s→m = |φ|m + ε

(k)
φs (2)

where |φ|m is the true value and ε
(k)
φs is the carrier

phase observation Gaussian error.
3. Ranges r(k)n↔m with neighbors n ∈ M(k)

m , which is in
the form

r(k)n↔m = ‖�(k)
n − �(k)

m ‖ + ε(k)
r (3)

where n is the index of the neighbor and ε
(k)
r is the

ranging error following a Gaussian distribution. A
neighbor can be a peer UAV or a ground control
station. The position of a UAV is unknown, but that
of a ground control station is assumed to be known.
Note r(k)n↔m = r(k)m↔n.

4. Closed-loop Doppler measurement f (k)
n↔m with

neighbors n ∈ M(k)
m . By closed-loop Doppler

measurement [32], the clock differential of wireless
neighbors is eliminated and the resulting f (k)

n↔m
contains the Doppler that is only related to the
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relative movement of the neighbor nodes involved,
specifically,

f (k)
n↔m =

(
v(k)
n − v(k)

m
)

• 1n→m

λ
+ ε

(k)
f (4)

where λ is the wavelength of the carrier used in
Doppler measurement, and

1n→m �

(
�(k)
n − �(k)

m

)
‖�(k)

n − �(k)
m ‖ (5)

From Equation 4, we have f (k)
n↔m = f (k)

m↔n.
5. TDoA d(g,k)

n→m in meters with neighbors n ∈ G(g,k)
m

referring to g, which is in the form

d(k)
n→m =

(
‖�(k)

g − �(k)
n ‖ − ‖�(k)

g − �(k)
m ‖

)
+ ε

(k)
d

(6)

In (6), c is the speed of light and ε
(k)
d is the error in

meters, following a Gaussian distribution. Attaining
TDoA measurement requires synchronization of
nodes n and m. Nowadays, one way to achieve this is
to use high-quality atomic clock re-synchronized at
every departure. In such case, ε(k)

d increases slowly as
clock drift accumulates with time.

For brevity, we further define the following notations:
X̃(k)
M � {x(k)

m |∀m ∈ M}; P(k)
m � {ρ(k)

s→m|∀s ∈ S(k)
m },

P̃(k)
M � {P(k)

m |∀m ∈ M}; R(k)
m � {r(k)n↔m|∀n ∈ M(k)

m },
R̃(k)
M � {R(k)

m |∀m ∈ M}; F(k)
m � {f (k)

n↔m|∀n ∈ M(k)
m },

F̃(k)
m � {F(k)

M |∀m ∈ M}; D(g,k)
m � {d(g,k)

n→m|∀n ∈ G(g,k)
m },

D̃(g,k)
M � {D(g,k)

m |∀m ∈ M}, D̃(k)
M � {D̃(g,k)

M |∀g ∈ G};
Φ

(k)
m � {ϕ(k)

s→m|∀s ∈ S(k)
m }, Φ̃

(k)
M � {Φ(k)

m |∀m ∈ M};
Õ(k)
M = {P̃(1:k)

M , R̃(1:k)
M , D̃(k)

M , Φ̃(1:k)
M , F̃(1:k)}

M }.
The goal of the positioning is to find the a posteriori dis-

tribution of x(k)
m at each epoch k, given all the available

observations Õ(k)
M :

p
(
x(k)
m |Õ(1:k)

M

)
,∀m ∈ M (7)

where (1 : k) denotes the epochs from 1 to k. At epoch
k, the final estimation μ

(k)
m is the statistical expectation of

x(k)
m as

μ(k)
m =

∫
x(k)
m p

(
x(k)
m |Õ(k)

M

)
(8)

3 The proposed BOPU
3.1 The Bayesian inference
It is reasonable to assume that ranges with peer UAVs
and the control stations are independent, and it is also
often the case that the nodes in M move independently.
The pseudoranges are independent when ignoring b(k)

s .

The error induced by ignoring b(k)
s will be discussed later.

While the movement of a node can be measured read-
ily by IMUs in many cases, it is not the case in all-source
positioning because IMUs and wireless measurement are
loosely coupled for flexibility. In this work, the movement
of node m ∈ M is modeled as a second-order Markov
process. With these assumptions, (7) can be rewritten as

p
(
x(k)
m |Õ(1:k)

M

)
=

∫
p

(
X̃(k−2:k)
M |Õ(1:k)

M

)
∂X̃(k−2:k)

M\m (9)

where M\m denotes all variables in X̃(k−1:k)
M except x(k)

m .
To determine the marginal (7) recursively at each epoch k,
the integrand of (9) can be further decomposed as

p
(
X̃(k−2:k)
M |Õ(1:k)

M

)
∝ p

(
P̃(k)
M |X̃(k)

M , Φ̃(1:k)
M

)
×

p
(
R̃(k)
M |X̃(k)

M , F̃(1:k)
M

)
p

(
G̃(k)
M |X̃(k)

M

)
×

p
(
Φ̃

(k)
M |X̃(k)

M

)
p

(
F̃(k)
M |X̃(k)

M

)
×∏

m∈M
p

(
x(k)
m |x(k−2:k−1)

m

)
p

(
x(k−2:k−1)
m |Õ(1:k−1)

M

))
(10)

Ignoring the backward smoothing of Õ(k−1)
M on x(k−2)

m , it
holds that

p
(
x(k−2:k−1)
m |Õ(1:k−1)

M

)
= p

(
x(k−1)
m |Õ(k−1)

M

)
× p

(
x(k−2)
m |Õ(k−2)

M

) (11)

Given the state X̃(k)
M , all the measurements are statisti-

cally independent, so

p
(
P̃(k)
M |X̃(k)

M , Φ̃(1:k)
M

)
=

∏
m∈M

∏
s∈S(k)

m

p
(
ρ(k)
s→m|x(k)

m ,φ(1:k)
s→m

)

(12)

p
(
R̃(k)
M |X̃(k)

M , F̃(1:k)
M

)
= ∏

m∈M
∏

n∈M(k)
m ,n>m

p
(
r(k)n↔m|x(k)

m , x(k)
n , f (1:k)

n↔m
) (13)

p
(
G̃(k)
M |X̃(k)

M

)
=

∏
g∈G

∏
m∈M

∏
n∈G(g,k)

m ,n>m

p
(
d(g,k)
n→m|x(k)

m , x(k)
n

)

(14)

p
(
Φ̃

(k)
m |X̃(k)

M

)
=

∏
m∈M

∏
s∈S(k)

m

p
(
φ(k)
s→m|x(k)

m

)
(15)

p
(
F̃(k)
m |X̃(k)

M

)
=

∏
m∈M

∏
n∈M(k)

m ,n>m

p
(
f (k)
n↔m|x(k)

m

)
(16)



Chen et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:150 Page 4 of 11
http://asp.eurasipjournals.com/content/2013/1/150

Now for each nodem ∈ M, we define the following:

1. Υs,m(x(k)
m ) � p(ρ(k)

s→m|x(k)
m ,φ(1:k)

s→m), denoting the
pseudorange measurement model of node m at
epoch k.

2. Θs,m(x(k)
m ) � p(φ(k)

s→m|x(k)
m ), representing carrier

phase measurement model of node m at epoch k.
3. Γn,m(x(k)

n , x(k)
m ) � p(r(k)n↔m|x(k)

m , x(k)
n , f (1:k)

n↔m), denoting
the range measurement model of node m with node
n at epoch k.

4. Ω
g
n,m(x(k)

n , x(k)
m ) � p(d(g,k)

n→m|x(k)
m , x(k)

n ), denoting the
TDoA measurement model of node m to n with
reference to SoOP source g at epoch k.

5. Ψn,m(x(k)
n , x(k)

m ) � p(f (k)
n↔m|x(k)

m , x(k)
n , f (1:k)

n↔m), denoting
the peer-to-peer Doppler measurements of nodes m
and n at epoch k.

6. Δm(x(k)
m , x(k−2:k−1)

m ) � p(x(k)
m |x(k−2:k−1)

m ), denoting
dead reckoning of node m from epoch k − 2 : k − 1
to k.

With the above definitions, we have

p
(
X̃(k−1:k)
M |Õ(1:k)

M

)
∝

∏
m∈M

⎛
⎜⎝ ∏

s∈S(k)
m

Υm
(
x(k)
m

)
×

∏
n∈M(k)

m ,n>m

Γn,m
(
x(k)
n , x(k)

m

)
×

∏
g∈G

∏
n∈G(g,k)

m ,n>m

Ω
g
n,m

(
x(k)
n , x(k)

m

)
×

∏
s∈S(k)

m

Θs,m
(
x(k)
m

) ∏
n∈M(k)

m ,n>m

Ψn,m
(
x(k)
n , x(k)

m

)
×

∏
n∈M(k)

m

(
Δm

(
x(k)
m , x(k−2:k−1)

m

)
p

(
x(k−2:k−1)
m |Õ(k−1)

M

))⎞
⎟⎠
(17)

With Equation 17, we have the factor subgraph of node
m as given in Figure 1. The factor subgraphs of all nodes
m ∈ M, when interconnected, make up the complete fac-
tor graph. Figure 2 illustrates the complete factor graph of
nodes of the simulation scenario given by Figure 3.

3.2 The sum product update rule
A belief propagation algorithm defines the sum product
messages and their update rules over the factor graph. In
our case, there are six classes of messages:

1. Dead-reckon message hΔm→xm , associated to the
state of node m from epoch k − 2 : k − 1 to k

2. Satellite pseudorange factor messages hΥs,m→xm ,
associated to the pseudorange measurements, useful
only in estimating l(k)m and b(k)

m

3. Satellite carrier phase factor messages hΘs,m→xm ,
associated to the pseudorange measurements, useful
only in estimating l(k)m and v(k)

m
4. Messages from range neighbors hΓn,m→xm ,

representing the positioning information from
neighbors with range and closed-loop Doppler
measurements

5. Messages from SoOP neighbors hΩ
g
n,m→xm ,

representing the positioning information from
neighbors with TDoA measurement with reference
to the SoOP source g

6. Messages to peers hxm→xn , where n ∈ M(k)
m which

node m sends to all neighbors including range
neighbors and SoOP neighbors

The proposed positioning algorithm, named BOPU,
includes two steps. The first step is to obtain p(x(0)

m ) at
epoch 0, which is done by a cooperative least square
positioning. The second step is to obtain p(x(k)

m |Õ(1:k)
M ) at

epoch k ≥ 1. Using all the above message definitions,
the sum product update rule of the proposed positioning
algorithm can be given as in Algorithm 1.

Algorithm 1 Belief propagation-based Opportunistic
Positioning of UAVs

Require: Initial beliefs p(x(0)
m ) at epoch 0, ∀m ∈ M.

Ensure: Updated beliefs p(x(k)
m |Õ(1:k)

M ), ∀m ∈ M
1: for epoch k = 1 to K do
2: Acquire all observables Õ(1:k)

M available
3: Compute:
4: hΔm→xm using Equations 19 and 20, ∀m ∈ M
5: hxm→xn using Equation 26, ∀m ∈ M
6: Broadcast hxm→xn to all neighbors ∀m ∈ M
7: for iteration i = 1 to I do
8: for nodesm ∈ M in parallel do
9: Receive hxn→Δn,m from all neighbors.

10: Compute:
11: hΓs,m→xm using Equations 21 and 22;
12: hΘs,m→xm using Equation 24;
13: hxm→xn , ∀n ∈ M(k)

m using Equation 25.
14: Communicate hxm→xn to n, ∀n ∈ M(k)

m .
15: Compute:
16: hΓn,m→xm using Equations 34 and 35;
17: hΩn,m→xm using Equation 40;
18: Update:
19: p(x(k)

m |Õ(1:k)
M ) using Equation 41

20: end for
21: end for
22: end for
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,s m
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( )k
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( , )g k
mn G
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Figure 1 The factor subgraph of nodem. The factor subgraphs of
all nodesm ∈ M make up the complete factor graph.

3.3 The messages in parametric form
A compact parametric form of the messages involved in
the proposed algorithm is needed to make it permis-
sible to transmit over a wireless network with limited
bandwidth, which are given below:

1. Dead-reckon message hΔm→xm is associated to the
state of node m from epoch k − 2 : k − 1 to k. From
Figure 1, we have

hΔm→xm ∝
∫

Δm
(
x(k)
m , x(k−2:k−1)

m

)
p

(
x(k−2:k−1)
m |Õ(1:k−1)

M

)
∂x(k−2:k−1)

m

(18)

N1

N5

N0 N4

N2

N3

S0

N0'
S0-5 : GNSS satellites
N0-5 :Wireless nodes
N0'-1':Ground control stations

N1'

To node 
0~5

GNSS 
jam
source

S4S3S2S1

G0

Figure 3 The simulation scenario. A group of six UAVs are flying
from a start point under the control of ground control station N′

0 to a
destination with ground control station N′

1, but experience a GPS
countermeasure in the midway.

From its definition, the dead-reckon message is a
Gaussian probability density function with mean
μx(k)

m
and covariance Σx(k)

m
. The mean μx(k)

m
and

covariance Σx(k)
m

can be derived from μx(k−1)
m

and
Σx(k−1)

m
, respectively. Among the many ways for dead

reckoning, we set

μx(k)
m

= 2μx(k−1)
m

− μx(k−2)
m

(19)
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Figure 2 The complete factor graph of the simulation scenario.
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Following (19), it is trivial to derive

Σx(k)
m

= 4Σx(k−1)
m

+ Σx(k−2)
m

(20)

2. Satellite factor messages hΥs,m→xm are associated to
the pseudoranges of node m. The pseudorange of
node m from satellite s is assumed to be bias free
except the receiver clock bias; thus, we have

hΥs,m→xm ∝exp
(
− 1
2σ 2

s→m

(
‖l(k)m − l(k)s ‖+b(k)

m −ρ̂(k)
s→m

)2)
(21)

where σ 2
s→m is the pseudorange error power of

satellite s at node m and ρ̂
(k)
s is the carrier phase

smoothed pseudorange, which can be expressed in a
recursive form as [33]

ρ̂(k)
s→m = ρ

(k)
s→m
k

+ k − 1
k

(
ρ̂(k−1)
s→m + φ(k)

s→m

)
(22)

We note here that hΥs,m→xm is only contributable to
lm and bm.

3. Satellite carrier phase factor messages hΘs,m→xm are
associated to satellite carrier phase measurements.
For(

λφ(k)
s→m

)
/Te =

(
v(k)
s − v(k)

m

)
•1m→s+δf (k)

m −δf (k)
s

(23)

where 1m→s is the unit vector directed from node m
to satellite s, δf (k)

s is the clock drift rate of satellite s.
So we have

hΘs,m→xm ∝ exp
(

1
2σ 2

φ

(
φ(k)
s→m

−
((

v(k)
s − v(k)

m

)
• 1m→s + δf (k)

m − δf (k)
s

)
t/λ

) )

(24)

We note here that hΘs,m→xm is only contributable to
vm.

4. Messages to peers hxm→xn are messages that node m
sends to all neighbors, in the following form:

hxm→xn ∝ hΔm→xm
∏

s∈S(k)
m

hΥs,m→xm×
∏

g∈G,n∈G(g,k)
m

hΩ
g
n,m→xm

∏
s∈S(k)

m

hΘs,m→xm×
∏

n′∈M(k)
m \n

hΓn′ ,m→xm

(25)

At the initialization stage of each epoch, hΩ
g
n,m→xm

and hΔn′ ,m→xm are not available; then we have

hxm→Δm,n ∝ hΔm→xm
∏

s∈S(k)
m

hΥs,m→xm
∏

s∈S(k)
m

hΘs,m→xm

(26)

It is hard to find the exact expression of Equations 25
and 26, so we approximate the result of message
multiplication as a Gaussian distribution:

hxm→Δm,n ≈

1
z
exp

[
−1
2

(
x(k)
m − μx(k)

m→n

)

×Σ−1
x(k)
m→n

(
x(k)
m − μx(k)

m→n

)T] (27)

where z is the normalization factor. In practice, the
values of μx(k)

m→n
and Σx(k)

m→n
are approximated by an

unscented particle filtering as Algorithm 2, which
will be disposed of later.

5. Messages from range neighbors hΓn,m→xm represent
the contribution of ranging information from
wireless neighbors. For the position of ground
control stations are known, hΓn,m→xm associated to
the ranging information of node m to a control
station n can be expressed as

hΓn,m→lm ∝ exp
(

− 1
2σ 2

n→m

(
‖l(k)m − l(k)n ‖ − r̂(k)n↔m

)2)
(28)

where σ 2
n→m is the ranging error power and r̂(k)n is

the Doppler smoothed range, which can be expressed
in a recursive form as

r̂(k)n↔m = r(k)n↔m
k

+ k − 1
k

(
r̂(k−1)
n↔m + λ

(
f (k)
n↔m − f (k−1)

n↔m

))
(29)

Ground control stations’ Doppler messages hΨn,m→xm
are associated to the Doppler information of node m
to ground control stations. Similar to hΘs,m→xm , we
have

hΨn,m→xm ∝ exp
(

1
2σ 2

f

(
f (k)
m↔g + v(k)

m • 1m→n/λ
)2)

(30)

Messages from other UAVs whose positions are not
known can be expressed as

hΓn,m→xm ∝
∫

Γn,m
(
x(k)
n , x(k)

m

)
hxn→xm∂x(k)

n

(31)

To find out the parametric form of this distribution,
we follow a divide-and-conquer approach. First, we
can see that the mean of position l(k)m in this
distribution is a ball with radius r(k)n↔m and center
μl(k)m→n

, and its covariance is Σx(k)
n→m

+ σ 2
n→mI . Any

valid point on the surface of the ball is restricted by

�(k)
r = μl(k)m→n

+ r(k)m→n • 1′
n→m (32)
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thus, we have

hΓn,m→lm ∝ exp
[
−1
2

(
l(k)m − �(k)

r

) (
Σx(k)

m→n
+ σ 2

n→mI
)−1

×
(
l(k)m − �(k)

r

)T]
(33)

where

1′
m→n =

l(k)m − μl(k)m→n

‖l(k)m − μl(k)m→n
‖ (34)

Similarly,

hΓn,m→vm ∝ exp
[
−1
2

(
v(k)
m − v(k)

r

) (
Σv(k)m→n

+ σ 2
v I

)−1

×
(
v(k)
m − v(k)

r

)T]
(35)

where

vr = μv(k)m→n
+ λf (k)

m→n1′
m→n (36)

6. Messages from SoOP neighbors hΩ
g
n,m→xm represent

the contribution of TDoA measurements referencing
SoOP source g, which can be expressed as

hΩ
g
n,m→xm ∝

∫
Ω

g
n,m

(
x(k)
n , x(k)

m

)
hxn→xm∂x(k)

n

(37)

The mean position l(k)m in this distribution is a ball
with center lg and radius ||lg − μn→m|| − d(k)

n→m, and
its covariance isΣx(k)

n→m
+σ 2

d I . We now define a vector

�
′
g = l(k)m − lg −

(
d(k)
m→n + ‖μl(k)m→n

− lg‖
)

• 1′
m→g

(38)

where

1′
m→g = l(k)m − lg

‖l(k)m − lg‖
(39)

thus, we have

hΩn,m→lm ∝ exp
(

−1
2
�

′
g

(
Σx(k)

m→n
+ σ 2

d I
)−1

(�
′
g)

T
)

(40)

Finally, we have p
(
x(k)
m |Õ(1:k)

M

)
as

p
(
x(k)
m |Õ(1:k)

M

)
∝ hΔm→xm

∏
s∈S(k)

m

hΓs,m→xm∏
g∈G(k)

m

∏
s∈S(k)

m

hΘs,m→xm
∏

g∈G,n∈G(g,k)
m

hΩ
g
n,m→xm∏

n∈M(k)
m

hxn→xm

(41)

With Gaussian approximation, we can also calculate
p(x(k)

m |Õ(1:k)
M ) using Algorithm 2.

Algorithm 2 Message calculation using unscented parti-
cle filter
Require: Initial estimate μ̂x and Σ̂x; Distributions of all

incoming messages; N particles {z(0)
i }Ni=1 ∼ p(x(0));∀i,

z(0)
i = [ (z̃(0)

i )T , 0, 0]
T
, z̃(0)

i = E[ z(0)
i ], Σ

(0)
i = E[ (z(0)

i −
z̃(0)
i )(z(0)

i − z̃(0)
i )T ], w(0)

i = 1.
Ensure: Updated μ̂x, Σ̂x after product
1: for i from 1 to N do
2: Update the particle with UKF:
3: - Calculate 2na + 1 sigma points:
4: Z(k−1)

i = [ z̃(k−1)
i , z̃(k−1)

i ±
√

(na + η)Σ
(k−1)
i ]

5: - Propagate the particle into future:
6: Z(k|k−1)

i = hs(Z(k−1)
i )

7: z̃(k|k−1)
i = ∑2na

j=0W
c0
j Z(j,k|k−1)

i

8: Σ
(k|k−1)
i = ∑2na

j=0W
c1
j [Z(j,k|k−1)

i − z̃(k|k−1)
i ]

[Z(j,k|k−1)
i − z̃(k|k−1)

i ]T

9: Y (k|k−1)
i = hm(Z(k|k−1)

i , z̃(k−1)
i )

10: ỹ(k|k−1)
i = ∑2na

j=0W
c0
j Y (j,k|k−1)

i
11: -Incorporate new observations:
12: Σ ỹk ,ỹk = ∑2na+1

j=0 Wc1
j [Y (j,k|k−1)

i − ỹ(k|k−1)
i ]

[Y (j,k|k−1)
i − ỹ(k|k−1)

i ]T

13: Σ z̃k ,ỹk = ∑2na+1
j=0 Wc1

j [Z(j,k|k−1)
i − z̃(k|k−1)

i ]
[Y (j,k|k−1)

i − ỹ(k|k−1)
i ]T

14: Kk = Σ z̃k ,ỹkΣ
−1
ỹk ,ỹk

15: z(k)
i = z̃(k|k−1)

i + Kk(y(k) − ỹ(k|k−1)
i )

16: Σ̂
(k)
i = Σ

(k|k−1)
i − KkΣ

−1
ỹk ,ỹkK

T
k

17: Sample (̂z(k)
i ) ∼ N({z̃(k)

i ,Σ (k)
i )

18: Calculate q(z(k)
i ) according to Equation 18;

19: Evaluate the p.d.f.s at the new particle pj′(z(k)i ) for
each factor using Equations 21, 22, 28, 29, 24, 30,
and 25

20: Evaluate the importance weights of the new
particle: w(k)

i = Πj′pj′(z(k)
i )/q(z(k)

i )

21: end for
22: Normalize the importance weights of all particles so

that Σiw(k)
i = 1

23: Estimate new mean and covariance using weighted
particles:

24: μ̂x = ∑N
i=1 w

(k)
i z(k)

i
25: Σ̂x = ΣN

i=1w
(k)
i (z(k)

i − μ̂x)
T (z(k)

i − μ̂x)

26: Resample with replacement N particles {z(k)
i }Ni=1 from

all particles {z(k)
i }Ni=1 according to {w(k)

i }Ni=1
27: Save {z(k)

i }Ni=1 and their corresponding {Σ (k)
i }Ni=1 for

next call
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3.4 Calculating the factor products
The products of factors, i.e., Equations 25, 26, and 41, are
mathematically intractable. This is a problem that per-
meates in many disciplines of sciences. The most widely
known methods are importance sampling [31], bootstrap
particle filter [34], and unscented particle filters [35,36].
While importance sampling is convenient and attractive,
it suffers from the sample degeneracy problem. Boot-
strap filter and unscented particle filter try to avoid this
degeneracy by context-aware resampling, which elimi-
nates the particles having low importance weights and
proliferates particles having high importance weights. A
bootstrap particle filter uses state update information
for resampling, while an unscented particle filter further
improves the bootstrap particle filter by estimating the
first- and second-order moments of the new state incor-
porating new observations using unscented transform
before resampling.
We present the variation of unscented particle fil-

ter for calculating the factor products of this work in
Algorithm 2. In Algorithm 2, na, η, Wc0

j , and Wc1
j are

parameters related to unscented transform. na = 7 is the
number of states, which is 7 in our case. η = 3α2 − na,
Wc0

0 = η/(na + η), andWc1
0 = η/(na + η) + (3 − α2) for

Gaussian distributions. For j = 1 to 2na, Wc0
j = Wc1

j =
1/[ 2(na + η)].

4 Simulations and discussions
4.1 Setup
For belief propagation combined with varied linear and
nonlinear filters is widely available in the literature, we
focused on evaluating the robustness of BOPU with some
discussions on the appropriateness of the approximations
in BOPU. Simulations are conducted by MATLAB with a
fictitious scenario as given in Figure 3. In Figure 3, a group
of six UAVs indexed by 0 to 5 are flying in a formation from
a start point under the control of ground station N0′ to a
destination with ground stationN1′ and a SoOP sourceG0
in view, but experience a GPS countermeasure en route.

The positions of satellites in view are given in Table 1. All
UAVs follow the same velocity but with a different point of
departure as also given in Table 1. The velocity of the for-
mation flying is given in Figure 4a, and the route of node
0 is given in Figure 4b. The simulated cases include the
following:

• Case 0 : Whenever a node has at least four satellites in
view, it will not participate in the belief propagation
but will offer the statistics of its own position. In
addition, the measurements with the two ground
control stations N0′ and N1′ and the SoOP source G0
signal are not utilized. Case 0 reduces the positioning
traffic over the wireless network to a minimum but is
expected to have the poorest positioning
performance.

• Case 1 : All nodes take part in the belief propagation
process as stated in Algorithm 1 but do not utilize the
measurements with the two ground control stations
N0′ and N1′ and the SoOP source G0 signal.

• Case 2 : All nodes take part in the belief propagation
process as stated in Algorithm 1, and the
measurements with the two ground control stations
N0′ and N1′ and the SoOP source G0 signal are used.

• Case 3 : All nodes take part in the belief propagation
process. Besides, the control stations also provide
pseudorange differential corrections at each epoch
and broadcast to other nodes. The differential
corrections help effectively remove b(k)

s .

In the simulations, ground control stations 0 and 1
are placed at ENU(0, 0, 10) and ENU(50,000, 50,000, 10),
respectively. The raw pseudorange observation error
power σ 2

s→M = (3 m)2. The mean of b(k)
s is 6 m, and the

error power of b(k)
s is (1 m)2. The error power of λ(δf )

is (0.2 m/s)2, the error power of λ(δφ)/(δt) is (0.1 m/s)2,
the ranging error power with peers and ground con-
trol stations is (3 m)2, and the TDoA measurement error
power is set to (3 m)2, with α = 0.5. The SoOP source

Table 1 Satellites and UAV departure points in the simulation setup, where ENU(0,0,0) corresponds to
LLH(116.3328,40.0018,100)

0 1 2 3 4 5

Satellite

x[s] 26,559,995 −13,815.86 −26,559,995 13,815.86 13,278,763 N/A

y[s] 1,425.03 15,232,692 1,425.03 15,232,692 23,002,343 N/A

z[s] 15,867.57 21,757,722 15,867.57 21,757,722 15,867.57 N/A

User

E[d] 19,900 −600 20,500 20,500 19,800 19,900

N[d] 19,200 20,100 20,020 20,500 19,800 19,900

U[d] 2,000 1,020 1,050 1,100 900 1,200

N/A, not applicable.
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G0 is placed at midway ENU(25,000, 25,000, 10). Nodes
exchange time of arrival with wireless neighbors; thus,
TDoA is also available between neighbors and D(G0,k)

m =
R(k)
m \{N ′

0,N ′
1}. Te = 1s.

4.2 Results and discussions
Figure 4 gives the simulation results. As can be seen, from
case 0 to case 3, the positioning performance improves
almost steadily. In case 0, node 0 and node 1 have at least
four satellites, and they determine their position using a
traditional weighted least square positioning algorithm in
order to save communication bandwidth. Without itera-
tions with node 0 and node 1, the positioning performance
of other nodes is being restrained. In case 1, all nodes
take part in the belief propagation process, which is help-
ful in improving the positioning performance of all nodes
(especially nodes 2 to 5), so the overall performance of
case 1 is better than that of case 0. The outperformance
of case 2 over case 1 comes from the full usage of all
available observations, especially ranges and closed-loop
Doppler with ground control stations, and TDoA observa-
tions from SoOP source G0. The measurements with the
ground control stations N0′ , N1′ and SoOP source G0 help
improve geometric dilution of positioning in a big way. In
case 3, ground control stations also generate corrections
for pseudoranges, which directly improves the quality of
pseudoranges, thus the positioning precision.
The positioning performance of all nodes is given in

Figure 4e,f in terms of root mean square error (RMSE). It
follows the fact that the more observables, the better pre-
cision. In case 0, node 1 uses only the observation from
four satellites in view, so its horizonal RMSE is even less
than those of node 2 and node 3. Nodes 2 to 5, which have
less than four satellites in view under some given GNSS
interference, can still achieve positioning by utilizing the
peer to peer measurements and the measurements with
control stations. Node 5 experienced the strongest inter-
ference. Without any satellite in view but with a better
geometric position, node 5 achieved even better position-
ing performance than nodes 3 and 4 that have satellites in
view.
The results show that the performance of BOPU varies

only slightly with different measurements availability. The
main approximations made in the proposed BOPU are as
follows: (1) The correlated errors of pseudoranges b(k)

s are
ignored in factorization. The simulation results of case 3
and case 2 show that such an approximation is accept-
able. (2) The dead-reckon message (19) and (20) actually
ignored nonzero off-diagonal values, and Equation 11
ignores the smoothing of Õ(k−1)

M on x(k−2)
m . Such approxi-

mations hold where the quality of observations dominates
the positioning performance such as the cases in simula-
tions. For UAVs, the positioning result using all wireless

sources is further coupled with IMU measurements to
reach out for a better final result.

4.3 Algorithmic complexity
Given a nodem at epoch k, we have one dead-reckonmes-
sage, |S(k)

m | satellite pseudorange factor messages, |M(k)
m |

messages from range neighbors, and
∑

g∈G |G(g,k)
m | mes-

sages from SoOP neighbors. It usesN particles in UPF and
I iterations in the product estimate. The core of UPF is
UKFwhose complexity isO(n3a) [37], where na is the num-
ber of states as stated before. The complexities of main
computations in BOPU are listed in Table 2. As was shown
in Table 2, the complexity of BOPU is dominated by mes-
sage multiplications needed by messages to peers, which
scales asO(IN |S(k)

m |(1+|M(k)
m |+|S(k)

m |+∑
g∈G |G(g,k)

m |)n3a).
5 Conclusions
Nowadays, UAVs are playing an increasingly important
role both in the military and in civil affairs. Worries on
the robustness of GNSS have also been increasing with
the maturity of GNSS countermeasures and proliferation
of wireless devices. With the aim of providing a better
navigator for UAVs, we investigated the positioning of
UAVs with all wireless sources via belief propagation with
unscented particle filtering. By jointly using the measure-
ments from GNSS satellites, peer UAVs, ground control
stations, and signal of opportunities, the proposed algo-
rithm, which is named BOPU, provides an improved
positioning robustness and algorithmically proven high
precision. By being opportunistic, BOPU allows for not
only flexible variations of measurements availability but
also agile compromise between wireless bandwidth con-
sumption and positioning performance when put into
practice.

Table 2 Computational complexity of nodem in the
proposed BOPU

Computation Complexity Iteration/

epoch

Dead-reckon
message

O(na + n2a) 1

Satellite factor
message

O|S(k)
m |na I

Carrier phase factor
message

O|S(k)
m |na I

Message to peers
O(N|S(k)

m |(1 + |M(k)
m | + |S(k)

m |
I

+∑
g∈G |G(g,k)

m |)n3a)
Message from range
neighbors

O(|M(k)
m |)n3a) I

Message from SoOP
neighbors

O(
∑

g∈G |G(g,k)
m |)n3a) I

Compute p(x(k)m |Õ(1:k)
M )

O(N(1 + |M(k)
m | + |S(k)

m |
I

+∑
g∈G |G(g,k)

m |)n3a)
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