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Abstract

The aim of this paper is to find a multitaper-based spectrum estimator that is mean square error optimal for cepstrum
coefficient estimation. The multitaper spectrum estimator consists of windowed periodograms which are weighted
together, where the weights are optimized using the Taylor expansion of the log-spectrum variance and a novel
approximation for the log-spectrum bias. A thorough discussion and evaluation are also made for different bias
approximations for the log-spectrum of multitaper estimators. The optimized weights are applied together with the
sinusoidal tapers as the multitaper estimator. Comparisons of the cepstrum mean square error are made of some
known multitaper methods as well as with the parametric autoregressive estimator for simulated speech signals.
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1 Introduction
Cepstrum-based methods are important in many applica-
tions, especially speech analysis [1], and also in other areas
such as, e.g., seismic deconvolution [2], vibratory diagno-
sis using mechanical signals [3], and estimation of peri-
ods of surface waves traveling around the circumference
of tree trunks [4]. Usually, an autoregressive (AR)-based
spectrum or a windowed periodogram is used for estima-
tion of the cepstrum coefficients. The errors caused by
bias and variance might be large, and algorithms based
on robust spectrum analysis techniques could be useful
for better performance. Such methods, usually derived
from the periodogram, have been proposed lately, e.g.,
cepstrum coefficient thresholding in [5] and a novel tech-
nique for power compensation of bias in [6]. In [7], a
method for smoothing of the covariance function is pre-
sented.
The concept of multiple windows or multitapers was

invented by David Thomson [8,9], but multitapers were
actually used much earlier in the form of one window
shifted in time, the Welch method or Weighted Overlap
Segmented Averaging (WOSA) by Welch [10]. The main
idea of multitapers is to reduce the variance of the peri-
odogram by averaging several uncorrelated periodograms.
The time-shifted window by Welch gives uncorrelated

Correspondence: sandsten@maths.lth.se
Centre for Mathematical Sciences, Mathematical Statistics, Lund University,
Box 118, Lund SE-221 00, Sweden

periodograms as the time-shifted window overlaps differ-
ent data sequences, although the same window was used.
The idea by Thomson was to use the same data sequence
for all periodograms, i.e., the whole data sequence, but
to change the shape of the window for the different peri-
odograms in a way that gave uncorrelated periodograms
and thereby reduced variance. For smooth spectra, the
Thomson multitaper method is used [8], but for spectra
with larger dynamics and peaks, the peak matched multi-
ple windows [11], the sinusoidal multitapers [12], and also
more advanced multitaper methods, such as the adap-
tive Thomson method [8], have been shown to be more
suitable.
A preliminary mean square error optimal multitaper

cepstrum estimator has been suggested in, e.g., [13] where
the optimal multitapers and weights for a comb-spectrum
model were used. This estimator has been evaluated
and compared with the Thomson multitapers, the sinu-
soidal multitapers, the Welch method, and usual win-
dowed periodogram-based cepstrum analysis methods for
speaker recognition. The results of these studies show that
a multitaper estimator optimal for a speech-like spectrum
model has advantages compared to traditional techniques
[14-16].
The aim of this paper is to find a mean square error

optimal weighting of the multitaper cepstrum estima-
tor, based on the approximative mean square error for
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the log-spectrum. The expression for the bias of the log-
periodogram of a Gaussian process has been proposed
and thoroughly evaluated in [6,17]. For the sinusoidal
multitapers, the properties of the log-spectrum of locally
white noise were derived in [18]. In [19], a more accurate
expression for the bias was proposed. The attempt in this
paper is to further simplify the expression of the bias of the
log-spectrum using different Mercator series and to use
such an approximation together with the Taylor expansion
of the variance of the multitaper log-spectrum [18,19] to
find mean square error optimal weights of the multitaper
cepstrum.
The outline of the paper is as follows: In Section 2,

suggestions of the approximative statistics for the cep-
strum and log-spectrum are presented. Section 3 presents
and evaluates mean square error optimal weighting fac-
tors for the log-spectrum. In Section 4, evaluation and
comparison of the mean square error of the cepstrum for
speech-like processes are given. The paper is concluded in
Section 5.

2 Approximative statistics of themultitaper
log-spectrum estimate

From the discrete-time stationary stochastic process x(n),
with spectral density Sx(f ), the windowed periodogram is
estimated as

Ŝk( f ) =
∣∣∣∣∣
N−1∑
n=0

x(n)hk(n)e−i2π fn

∣∣∣∣∣
2

, (1)

using N samples x =[x(0) . . . x(N − 1)]T and the data
window hk =[hk(0) . . . hk(N − 1)]T , where the super-
script T denotes the transposed vector. The multitaper
spectrum is computed as

Ŝx( f ) =
K−1∑
k=0

αkŜk( f ) − 1
2

< f ≤ 1
2
, (2)

using different window functions hk(n) in Equation 1 and
weights, αk , k = 0 . . .K − 1. The window functions are
normalized to give the expected value E [Ŝk( f )]= Sx(f )
for N → ∞ for k = 0 . . .K − 1. The estimate of the real-
valued symmetrical multitaper cepstrum is then defined
as

r̂c(n) =
∫ 0.5

−0.5
log Ŝx( f )ei2π fndf , (3)

for all integer values of n, with log as the natural logarithm.
The total mean square error (MSE) of the cepstrum esti-
mator r̂c(n) and corresponding log-spectrum estimator is
defined as

MSE =
∞∑

n=−∞
E

[(
r̂c(n) − rc(n)

)2] ,
=

∫ 0.5

−0.5
E

[(
log Ŝx( f ) − log Sx( f )

)2]
df (4)

where rc(n) and Sx( f ) are the true cepstrum and spec-
tral density, respectively. The mean square error at the
frequency value f can be divided into

E
[(

log Ŝx( f ) − log Sx( f )
)2] =

(
E

[
log Ŝx( f )

]
− log Sx( f )

)2
︸ ︷︷ ︸

bias2

+V
[
log Ŝx( f )

]
︸ ︷︷ ︸

variance

, (5)

where V [∗] denotes variance.

2.1 Expected value and bias of the log-spectrum
Awell-known expression for the expected value of the log-
periodogram of a Gaussian process (see, e.g., [17]) is

E
[
log Ŝx( f )

]
= logE

[
Ŝx( f )

]
− γ , 0 < f <

1
2
, (6)

where γ ≈ 0.577 is the Euler constant. For the logarithm
of a multitaper periodogram using the sinusoidal tapers, it
was shown in [18] that the expected value is

E
[
log Ŝx( f )

]
≈ logE

[
Ŝx( f )

]
+ (

ψ(K) − log(K)
)
, (7)

with equality for locally white noise. This equality is also
expressed in [6] for the log-periodogram and also includes
super-Gaussian and sub-Gaussian distributions of spec-
tral coefficients. The number of multitapers is K, and
ψ(K) is the digamma function, which can be recursively
computed as ψ(K + 1) = ψ(K) + 1

K with ψ(1) = −γ .
For the case of K = 1, Equations 6 and 7 coincide,
but for larger values of K, the difference ψ(K) − log(K)

approaches zero, e.g., for K = 2, ψ(2) − log(2) ≈ −0.270,
and for K = 6, ψ(6) − log(6) ≈ −0.0856.
To verify if Equation 7 also holds for a varying spec-

trum, a simulated example is shown in Figure 1 show-
ing the difference (logE

[
Ŝx( f )

]
− E

[
log Ŝx( f )

]
) for

K = 1, 2, 6, and 12 (blue lines). The simulated
process is an AR(12) process (poles in 0.95e±i2π0.05,
0.92e±i2π0.10, 0.95e±i2π0.20, 0.96e±i2π0.30, 0.92e±i2π0.35,
0.95e±i2π0.40) where the expected values (logE

[
Ŝx( f )

]
and E

[
log Ŝx( f )

]
) are estimated from 10,000 realiza-

tions. The multitaper spectrum is computed according to
Equation 2 using the equally weighted sinusoidal tapers of
length N = 256 [12]. The difference coincides very well
with − (

ψ(K) − log(K)
)
(red lines) for lower values of K,

but for higher values of K, the variation of the blue line
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Figure 1 Example of the true difference logE
[
Ŝx(f )

]
− E

[
log Ŝx(f )

]
and proposed approximations for different numbers of multitapers

K .

becomes larger over the different frequency values. How-
ever, for varying spectrum and especially speech-like pro-
cesses, a more accurate Taylor expansion approximation
is defined by

E
[
log Ŝx( f )

]
≈ logE

[
Ŝx( f )

]
− V [Ŝx( f )]

2E2[Ŝx( f )]
, (8)

which was suggested in [19]. The second term V [Ŝx( f )]
2E2[Ŝx( f )]

(green lines) is shown to be very similar to the true
difference for higher value of K (e.g., K = 6, 12).
The true log-spectrum bias (TLSB) is

bias = E
[
log Ŝx( f )

]
− log Sx, (9)

and using the definition from Equation 7 and extending
from locally white noise, the approximate log-spectrum
bias (ALSB) is defined as

bias ≈ logE
[
Ŝx( f )

]
− log Sx + (

ψ(K) − log(K)
)

= log
E[Ŝx( f )]
Sx( f )

+ (
ψ(K) − log(K)

)
. (10)

An expansion of the term log
E
[
Ŝx( f )

]
Sx( f ) into the Merca-

tor series log(1 + x) = x − x2
2 + x3

3 . . . is sometimes
applied although often referred to as inaccurate. Replacing

1+x = E
[
Ŝx

]
Sx in Equation 10 gives x = E

[
Ŝx

]
Sx −1. However,

this expansion limits to −1 < x ≤ 1, i.e., 0 <
E
[
Ŝx

]
Sx ≤ 2,

and the best approximation is given when
E
[
Ŝx

]
Sx is close

to 1, i.e., the expected value is close to the true spectrum.
The two first terms in a more thorough approximation are
used, referred to as two-term true spectrum normalized
bias approximation, TNBA(2),

bias ≈
E

[
Ŝx( f )

]
− Sx( f )

Sx( f )
− 1

2

⎛
⎝E

[
Ŝx( f )

]
− Sx( f )

Sx( f )

⎞
⎠

2

+

+ (
ψ(K) − log(K)

)
.

(11)

A simpler approximation is proposed for comparison,
referred to as one-term true spectrum normalized bias
approximation, TNBA(1),

bias ≈
E

[
Ŝx( f )

]
− Sx( f )

Sx( f )
. (12)

The approximation term
(
ψ(K) − log(K)

)
from

Equation 10 is also neglected, as this term, for the multi-
taper case, is small compared to the error in the omitted
higher-order terms.
Using a Euler expansion on the above Mercator series

gives another Mercator series as log
(

x
x−1

)
= 1

x + 1
2x2 +

1
3x3 . . ., which is valid for all x > 1. Replacing x

x−1 with

E[Ŝx]
Sx will give x = E

[
Ŝx

]
E
[
Ŝx

]
−Sx

> 1 which will be true if

E
[
Ŝx

]
> Sx, and the error between the expected value

and the true spectrum could be large. Expanding the bias
using only the two first terms of this series will give
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log
E[Ŝx( f )]
Sx( f )

≈
E

[
Ŝx( f )

]
− Sx( f )

E
[
Ŝx( f )

] +

+ 1
2

⎛
⎝E

[
Ŝx( f )

]
− Sx( f )

E
[
Ŝx( f )

]
⎞
⎠

2

.

(13)

Similarly, as above, the bias approximation

bias ≈
E

[
Ŝx( f )

]
− Sx( f )

E
[
Ŝx( f )

] +

+ 1
2

⎛
⎝E

[
Ŝx( f )

]
− Sx( f )

E
[
Ŝx( f )

]
⎞
⎠

2

+(
ψ(K) − log(K)

)
(14)

is referred to as the two-term expected value normalized
bias approximation, ENBA(2). A simpler approximation,
one-term expected value normalized bias approximation,
ENBA(1),

bias ≈
E

[
Ŝx( f )

]
− Sx( f )

E
[
Ŝx( f )

] , (15)

is also suggested. The ALSB, TNBA(2), and ENBA(2) will
give about the same values for the single window case
(K = 1), but for the multitaper log-spectrum, the dif-
ferences might be substantial. This is illustrated with an
example in Figure 2 where 10,000 realizations of the same
AR(12) process as above are used. The number of win-
dows isK = 6 sinusoidal multitapers, and in Figure 2a, the

relative expected value of the spectrum,
E
[
Ŝx

]
Sx , is depicted

to show that the relative value is quite close to 1, or at
least between 0 and 2 for the whole spectrum, which
indicates that the approximation referred to as TNBA
would be appropriate. In Figure 2b,c, the error between
the different bias approximations compared to the true
bias of the log-spectrum in Equation 9 is shown. Note
that the error for the ALSB (blue line) is the same in both
Figure 2b,c. For this highly varying spectrum, we see that
the ALSB is a fair approximation and that TNBA(2) as
well as the TNBA(1) gives very large errors for the cases

where
E
[
Ŝx

]
Sx > 2, e.g., slightly below f = 0.30 and above

f = 0.40. The ENBA(2) gives in these cases a smaller
error (see Figure 2b) but might also give a much larger
error than the TNBA(2). The more simple approximation
of TNBA(1) and ENBA(1) in Figure 2c gives larger errors.

However, at the peaks of the spectrum, i.e., f = 0.05, 0.10,
0.20, 0.30, 0.35, and 0.40, the difference of the errors com-
pared to Figure 2b is not that large, but at the smooth
parts, between the peaks, the negative effect of omitting
the term

(
ψ(K) − log(K)

)
is notable. For larger values of

K, this error will be smaller as this term also becomes
smaller for larger K.

2.2 Variance of the log-spectrum
Expressions for the variance of the log-spectrum have
been derived, e.g., the variance of the log-periodogram of
a Gaussian process was derived in [17] and shown to be

V
[
log Ŝx(f )

]
=

∞∑
n=1

1
n2

= π2

6
, 0 < f <

1
2
. (16)

This result was generalized in [6] to hold for complex
super-Gaussian as well as sub-Gaussian spectral coeffi-
cients. For the logarithm of multitaper spectra using K
sinusoidal tapers, it was shown in [18] that the variance,
with a locally white noise assumption, is

V
[
log Ŝx( f )

]
= ψ ′(K), (17)

where ψ ′(K) is the trigamma function and is recursively
computed by ψ ′(K + 1) = ψ ′(K) − 1

K2 and ψ ′(1) = π2

6
(trigamma).
The approximation based on the Taylor expansion sug-

gested in [7], i.e.,

V
[
log Ŝx( f )

]
≈

V
[
Ŝx( f )

]
E2

[
Ŝx( f )

] , (18)

was shown to be a sufficiently accurate approximation
for speech-like processes. This approximation is referred
to as expected value normalized variance approximation
(ENVA).
To compare these approximations, 10,000 realizations

from the AR(12) process above are used. The results are
presented in Figure 3 for different values of K. The true
variance of the log-spectrum is presented as the blue line,
and for K = 1, this coincides very well with ψ ′(1) = π2

6
(cyan). The ENVA, as the red line, is not at all close to
the true variance. However, when K increases, the ENVA
and the true variance coincide very well, also in the vari-
ations of the spectrum, where the approximation from
Equation 17 does not fit that well.

3 Mean square error optimal weighting of the
multitaper cepstrum

Based on the discussions and examples in the for-
mer section, the following approximated expression for
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Figure 2 Example of relative expected value and the differences between approximative bias and true bias. (a) The relative expected value

E
[
Ŝx(f )
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/Sx(f ). (b) The difference between the approximative bias and the true bias of ALSB, TNBA(2), and ENBA(2). (c) The difference between the

approximative bias and the true bias of ALSB, TNBA(1), and ENBA(1). A simulated AR(12) process is used with 10,000 realizations.

the mean square error for each frequency is chosen
as

MSEf =
(
E

[
log Ŝx( f )

]
− log Sx( f )

)2 + V
[
log Ŝx( f )

]
,

(19)

≈
(
E[ Ŝx( f )]−Sx( f )

E[ Ŝx( f )]

)2

︸ ︷︷ ︸
bias2

+ V [ Ŝx( f )]
E2[ Ŝx( f )]︸ ︷︷ ︸
variance

,
(20)

where ENBA(1) and ENVA are applied as approximations
of the bias and variance of the log-spectrum, respectively.
This approximation shows that normalizing the sum of
all MSEf of the spectral estimator Ŝx(f ) with the squared
expected value of Ŝx(f ) gives a reasonable approxima-
tion of the mean square error for the estimator log Ŝx(f )
and is thereby also related to the MSE of Equation 4. It
is therefore reasonable to assume that minimization of
Equation 20 for all f, also minimizing Equation 4, would
give an optimal estimator for the cepstrum coefficients
r̂c(n).

The bias in Equation 20 using the multitaper spectrum
estimator of Equation 2 is

bias =
∑K−1

k=0 αkhTk �H( f )Rx�( f )hk − Sx( f )∑K−1
k=0 αkhTk �H( f )Rx�( f )hk

, (21)

where Rx = E[xxT ], �( f ) = diag[1 e−i2π f . . .

e−i2π(N−1)f ] and the superscript H denotes conjugate
transpose. The variance is

variance =
∑K−1

l=0
∑K−1

k=0 αlαkcov[ Ŝk( f )Ŝl( f )]
(
∑K−1

k=0 αkhTk �H( f )Rx�( f )hk)2
, (22)

where cov[Ŝk( f )Ŝl( f )]= |hTk �H( f )Rx�( f )hl|2 + |hTk
�( f )Rx�( f )hl|2. The second term is large only for fre-
quencies close to f = 0 or to the Nyquist frequency,
where the function hTk �( f )Rx�( f )hl overlaps its con-
jugate. Most of the spectrum power is however located
at the frequencies in between. The covariance for the
frequency f is therefore approximated as

cov[ Ŝk( f )Ŝl( f )]=| hTk �H( f )Rx�( f )hl |2 . (23)
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Figure 3 The true variance, ENVA, and the approximation from Equation 17 for different numbers of multitapersK .

The optimization criterion of Equation 20 includes the
expressions of Equations 21 and 23 with unknown hk
and αk , k = 0 . . . K − 1. In the further optimization,
the multitapers hk are assumed to be known and to be
the sinusoidal tapers of [12] with N = 256. The only
unknowns are the weighting factors αk , k = 0 . . . K − 1,
which however appear both in the numerator and the
denominator.
The choice of multitapers is crucial, and for an appli-

cation where the data can be expected to originate from
a highly dynamical spectrum, the Slepian multitapers [8]
could be a better choice. The concern in this paper is
based on the application to speech signals, where the spec-
trum can be expected to have peaks, usually not too sharp,
and in total a reasonable dynamics.
In all periodogram-based spectrum analysis methods,

the multitaper estimation method can be considered to be
a filtering procedure in a FIR-filter bank where the filter
functions all can be modulated to be an identical base-
band filter with center frequency 0. For each frequency,
the input signal is consequently demodulated and filtered
through the baseband filter [20]. As baseband filter, a sim-
ple AR(1) spectrum is used, with a peak located at zero fre-
quency, i.e., one pole in ρ. The resulting optimal weights
for two different cases of ρ are presented where the cor-
responding covariance matrix Rx is used in Equation 20.
The AR(1) spectrum is a simple model but reasonable

for speech data as speech data often are estimated as AR
models (order 10-20). The average damping of the differ-
ent poles (ρ) of such an estimated AR spectrum from real
data will give an idea of what damping factor should be
chosen for the AR(1) model for the optimization of the
weights. How this averaging and choice should be made is
left for further studies.
The criterion is non-linear with respect to the unknown

αk , k = 0 . . . K − 1, and is therefore minimized itera-
tively with a quasi-Newton algorithm [21]. This algorithm
was presented in [22] and is also applied in this paper.
The initial weighting factors are in all cases equal weights,
αk = 1/K , k = 0 . . . K −1. In this paper, no further study
of the convergence is made. The criterion MSEf can be
optimized for different frequencies f. Naturally, the peak
frequency f = 0 of the model spectrum is interesting, as
well as the resolution, i.e., the bandwidth of the estimator
[8,22]. The function to be minimized is

ξ =
W/2∑

fn=−W/2
MSEfn (24)

and the frequency values are chosen as fn = n
2N . The opti-

mization bandwidthW can be varied, and for a frequency
localized estimator, only the tapers that have their center
frequency inside the band should be included. The cen-
ter frequency of the sinusoidal tapers are fi = i

2(N+1) ,
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i = 0 . . .N − 1, and the highest frequency taper to be
included in the bandwidth | f | < W/2 is number i =<

W/2 · 2(N + 1) giving K = i + 1 < (W · (N + 1)) +
1. The chosen optimization bandwidth is crucial for the
resolution of the final estimate, and it should be chosen

at least somewhat smaller than the preferred resolution
of the final estimate as done in spectrum analysis. The
local in-band multitaper cepstrum bias of the sinusoidal
tapers is shown in [18] to be bounded by S′′
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Figure 5Model spectrum for ρ = 0.93 and optimal weighting factors. (a) The model spectrum AR(1) for ρ = 0.93 and the different
optimization bandwidths. (b)Weighting factors from the optimization of the approximation of the mean square error of the log-spectrum, for the
different bandwidths.
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Table 1 Evaluation of ξev of the optimal weighting OPT098
for different estimation and evaluation bandwidthsW

ξev(K) W = 0.02 W = 0.04 W = 0.08

OPT098 0.563 (6) 0.424 (11) 0.301(21)

SINopt 0.618 (3) 0.532 (3) 0.423 (4)

THOMopt 0.674 (3) 0.572 (3) 0.453 (4)

WELCHopt 0.613 (4) 0.505 (4) 0.408 (4)

HAMM 1.91 (1) 1.92 (1) 1.93 (1)

ξev is the average log-spectrumMSE. The number of tapers giving the minimum
errors for the sinusoidal tapers, Thomson multitapers and Welch method and
the errors of the single Hamming window are also shown.

the Slepian multitapers. The Slepian multitapers, how-
ever, have better leakage properties or out-of-band bias
[8]. The sampling frequency of the actual process will
effect an estimated ρ as well as the decision of the band-
width parameter W. For example, reducing the sample
frequency by a factor of 2 will give half the number of data
values N, which will increase the in-band bias by a fac-
tor of 4, but the reduced number of samples will be fully
compensated by the decrease of ρ. For the AR(1) model,
the damping factor will change from ρ to ρ2, signifi-
cantly affecting the spectrum shape to be more smooth.
The bandwidth parameter W can be twice as large as
the actual spectrum peaks of the data now which is a
factor 2 further from each other compared to the non-
reduced sampling frequency. The number of tapers will
then be approximately the same as K ≈ W · N , and N
is reduced but W is doubled. Thereby, the variance will
not change significantly. However, a reduction of sampling
frequency is always beneficial, if possible, to the point
where actual information is lost, but the further and more
thorough analysis of the sampling effects is left for future
research.
Three different bandwidths is used in the optimiza-

tion, W = 0.02, 0.04, and 0.08, according to Figure 4a
where the different vertical colored lines mark W/2. The
related number of tapers is K = 6, 11, and 21 for the
respective bandwidth. The model spectrum is the AR(1)
spectrum with ρ = 0.98. The resulting weighting factors

Table 2 Evaluation of ξev of the optimal weighting OPT093
for different estimation and evaluation bandwidthsW

ξev(K) W = 0.02 W = 0.04 W = 0.08

OPT093 0.221 (6) 0.201 (11) 0.178 (21)

SINopt 0.242 (7) 0.225 (8) 0.206 (8)

THOMopt 0.252 (7) 0.235 (8) 0.217 (7)

WELCHopt 0.247 (8) 0.213 (9) 0.192 (9)

HAMM 1.95 (1) 1.95 (1) 1.96 (1)

ξev is the average log-spectrumMSE. The number of tapers giving the minimum
errors for the sinusoidal tapers, Thomson multitapers and Welch method and
the errors of the single Hamming window are also shown.

are depicted in Figure 4b where the blue line represents
the K = 6, k = 0 . . . 5 values for W = 0.02, the green
line the K = 11 values for W = 0.04, and the red
line the resulting weighting factors for W = 0.08. The
three curves are quite similar and are approaching zero
for higher k, indicating that using the fewer weighting fac-
tors from the narrow frequency band W = 0.02 might
work as well as the larger number from the optimization
bandwidthW = 0.08.
A more wideband process, the AR(1) process with ρ =

0.93 (see Figure 5a), gives another result. Using the nar-
row band for the optimization gives the K = 6 weighting
factors depicted as the blue line in Figure 5b. These val-
ues are quite close to each other, indicating that equally
weighted mutitaper spectra might work as well for this
type of spectrum. For a wider bandwidth, including more
of the spectrum in the optimization, the resulting weight-
ing factors are given by the green and red lines for W =
0.04 and 0.08, respectively.
To compare the actual performances of these approx-

imative estimators, an evaluation of the mean square
errors of the log-spectrum, i.e., Equation 19, is made for
10,000 realizations of an AR(2) process with the poles
located at ρe±i2π0.25. The evaluation bandwidth is lim-
ited to 0.25 − W/2 ≤ f ≤ 0.25 + W/2. The resulting
mean square errors, ξev, using the proposed weighting fac-
tors of Figures 4 and 5 and the sinusoidal tapers (N =
256), are calculated (OPT098 and OPT093). In Tables 1
and 2, the results are compared to the results of other
well-known methods, such as (equally weighted) sinu-
soidal tapers, the Thomson multitapers, and the Welch
method (Hanning window and 50% of overlap), using the
number of tapers that give the smallest error (SINopt,
THOMopt, and WELCHopt). For comparison, the results
using a single Hamming window are also computed
(HAMM). For the more peaked spectrum (ρ = 0.98),
the results for OPT098 are much better than for the
equally weighted multitaper methods as well as the sin-
gle Hamming window. The cost is the increased num-
ber of tapers of the estimate. However, for OPT098 and
W = 0.02, the number of tapers is K = 6, to be com-
pared with K = 4 or K = 3 for the other multitaper
methods. For the broadband spectrum with ρ = 0.93,
the results of OPT093 are much better than the other
multitaper methods even though, in the case of W =
0.02, the number of multitapers is actually fewer. These
simulations are just a verification that the optimization
has performed well, and the more interesting evaluation
is for the total log-spectrum and thereby also for the
cepstrum.

4 Cepstrum analysis of speech processes
To evaluate the performance for speech-like processes,
AR models are estimated from sounds of the phoneme
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Table 3 Cepstrum ξc for simulated AR processes, where the ARmodel is estimated from ‘A’ of hallo

ξc(K ,M) M1(49) M2(12) M3(14) F1(39) F2(12) F3(43)

OPT098002 0.546 (6) 0.323 (6) 0.323 (6) 0.583 (6) 0.322 (6) 0.554 (6)

OPT098004 0.532 (11) 0.294 (11) 0.290 (11) 0.582 (11) 0.290 (11) 0.531 (11)

OPT098008 0.529 (21) 0.259 (21) 0.257 (21) 0.590 (21) 0.245 (21) 0.522 (21)

OPT093002 0.703 (6) 0.208 (6) 0.223 (6) 0.734 (6) 0.202 (6) 0.746 (6)

OPT093004 0.693 (11) 0.176 (11) 0.194 (11) 0.724 (11) 0.158 (11) 0.689 (11)

OPT093008 0.673 (21) 0.182 (21) 0.191 (21) 0.716 (21) 0.156 (21) 0.663 (21)

SINopt 0.630 (3) 0.193 (8) 0.216 (7) 0.643 (4) 0.179 (8) 0.629 (3)

THOMopt 0.661 (3) 0.198 (8) 0.224 (7) 0.671 (3) 0.186 (8) 0.661 (3)

WELCHopt 0.590 (4) 0.186 (8) 0.205 (8) 0.633 (4) 0.167 (9) 0.608 (4)

HAMM 1.69 (1) 1.64 (1) 1.65 (1) 1.71 (1) 1.63 (1) 1.70 (1)

ARopt 0.964 (49) 0.165 (12) 0.140 (14) 0.362 (39) 0.281 (12) 0.611 (43)

There were six different speakers (three males and three females). The true model orders are noted for different speakers. The number of multiple windows K is also
given after the value of ξc for the different methods. For the AR estimator, the estimated model orderM for the minimum error is presented.

‘A’ of recorded data of the Swedish word Hallå (Hallo) as
well as of the whole word Hallå from the same speakers
(three males and three females). The reason for analyz-
ing ‘A’ is the more stationary character of vowels during
the whole sequence length. However, the methods should
also be robust against normal changes of the speech, and
therefore the whole wordHallå is also investigated, where
the sequences for the spectrum analysis are chosen sub-
sequentially and without overlap. The total lengths of the
differentHallå are between 248 and 567 ms, and the sam-
pling frequency is 11 kHz, giving the number of sequences
between 9 and 23 where the sequence length is N = 256
(23 ms). For the syllable ‘A’, N = 256 in all cases. The
choice of the AR model order for each sequence is made
from the Akaike information criterion (AIC). A number of
1,000 simulated speech-like processes are then produced

from the different models, and the evaluation criterion is
the total mean square error for the cepstrum,

ξc =
N−1∑
n=1

E
[(
r̂c(n) − rc(n)

)2] . (25)

Note that the cepstrum coefficient at n = 0 is excluded
in this analysis. The reason is that the zeroth coefficient
corresponds to a constant energy level of the spectrum
and is usually omitted in most cepstrum applications.
The estimators OPT098 and OPT093 from the for-

mer section are applied and compared with THOMopt,
WOSAopt, and SINopt as above where the result from the
number of multitapers giving the smallest error is pre-
sented. A comparison with an AR estimator is also made.

Table 4 Cepstrum ξ c for simulated AR processes, where the ARmodel is estimated from different sequences of hallo

ξc(K ,M) M1(4 − 42) M2(2 − 17) M3(9 − 20) F1(11 − 49) F2(9 − 50) F3(7 − 49)

OPT098002 0.363 (6) 0.325 (6) 0.328 (6) 0.546 (6) 0.395 (6) 0.648 (6)

OPT098004 0.338 (11) 0.294 (11) 0.299 (11) 0.520 (11) 0.372 (11) 0.649 (11)

OPT098008 0.314 (21) 0.253 (21) 0.261 (21) 0.510 (21) 0.351 (21) 0.663 (21)

OPT093002 0.313 (6) 0.214 (6) 0.220 (6) 0.705 (6) 0.399 (6) 0.995 (6)

OPT093004 0.304 (11) 0.177 (11) 0.190 (11) 0.622 (11) 0.397 (11) 1.04 (11)

OPT093008 0.301 (21) 0.175 (21) 0.189 (21) 0.615 (21) 0.385 (21) 0.974 (21)

SINopt 0.316 (6) 0.200 (8) 0.210 (8) 0.627 (4) 0.3917 (5) 0.727 (3)

THOMopt 0.328 (6) 0.212 (8) 0.217 (7) 0.671 (3) 0.428 (5) 0.771 (3)

WELCHopt 0.302 (6) 0.203 (9) 0.201 (8) 0.624 (4) 0.422 (5) 0.716 (3)

HAMM 1.65 (1) 1.65 (1) 1.64 (1) 1.70 (1) 1.67 (1) 1.71 (1)

ARopt 0.428 (19) 0.361 (12) 0.171 (13) 0.722 (48) 0.663 (27) 0.635 (45)

There were six different speakers (three males and three females). The range of the model orders are noted for the different speakers. The number of multiple
windows K is also given after the value of ξc for the different methods. For the AR estimator, the estimated model orderM for the minimum error is presented.
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The model order (using the AIC criterion) giving the
smallest error is presented. The result of the single Ham-
ming window periodogram (HAMM) is also added, as
this method is often applied in speech analysis. The result
of this method is however much worse than any of the
multitaper methods.
In Table 3, the minimum total mean square errors

ξc for the six different ‘A’ from three male and three
female speakers are presented. For all subjects, the used
simulation AR model orders are shown in the first line,
e.g., order 49 was given for the first male speaker,M1(49).
As expected, the order of the underlying model is found to
be the optimal one in all cases for the AR estimator, ARopt.
The estimated model orders are presented after the error
of the ARopt in parenthesis. Similarly, the optimal num-
ber of tapers for all the multitaper methods is expressed in
parenthesis after the error.
Studying the errors of the multitaper methods, it can be

seen that one of the proposed estimators, either OPT098
or OPT093 gives the smallest error in almost all cases
followed by WELCHopt, SINopt, and THOMopt. In most
cases, the number of tapers needed are just two or three
more than for the equally weighted multitaper methods,
e.g., for M1; the error given from OPT098002 (K = 6) is
much smaller than the error from WELCHopt (K = 4).
Similarly, for F2, the error given fromOPT093004 (K = 11)
is substantially smaller than the error from WELCHopt
(K = 9). In almost all cases, as expected from AR model
simulations, the ARopt gives a much better result. How-
ever, in several cases, the error of ARopt is much larger
than the multitaper methods, e.g., M1 and F2. It is also
interesting to note that the error of the single Hamming
window, HAMM, is almost the same for all speakers. This
is in concordance with the expressions given in [6,17],
where the bias is approximately zero and the total variance
as well as the total mean square error is π2/6 ≈ 1.64, for
all cepstrum coefficients, excluding the zeroth coefficient.
In Table 4, the average ξc of subsequent intervals of the

total word Hallå is presented (number of sequences differ
between 9 and 23). For all cases, the samemethods and the
same parameter settings as in previous studies are evalu-
ated. The ARopt is investigated for different model orders,
and the model order giving the smallest total error for
all subsequences of Hallå is used and the corresponding
error is presented. The results of the multitaper meth-
ods show about the same difference as for the evaluation
the syllable ‘A’. At least one of OPT098 or OPT093 gives
a smaller error than WELCHopt, SINopt, and THOMopt.
Sometimes both OPT098 and OPT093 give a smaller
error, e.g., for F1, which also is smaller than the error given
by the ARopt, which is an indication of the robustness of
the estimator against the choice of model. In most cases,
a considerable reduction of the error is given from the
OPT098 and OPT093 only using K = 6 or 11 tapers,

which is a reasonable additional number compared to the
equally weighted multitaper methods (K = 3 − 9). The
ARopt now shows a considerable larger error in several
cases than themultitapermethods. Similarly as for the syl-
lable ‘A’, the single Hamming window gives results around
1.64.

5 Conclusions
A cepstrum estimator is proposed based on a weighted
multitaper spectrum. An evaluation of different approx-
imations for bias and variance of the multitaper log-
spectrum is made, and a mean square error criterion is
proposed that includes novel approximations of the bias
and variance. The weights of the multitaper spectrum are
optimized, and the new estimator, the optimal weights
combined with the sinusoidal tapers, is evaluated for cep-
strum estimation of speech-like processes. The results
show that a 10% to 20% reduction of themean square error
of the cepstrum can be achieved, to the cost of two or
three additional periodogram computations.
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