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Abstract

Time-domain equalization is crucial in reducing channel dispersion and canceling interference in multicarrier systems.
The equalizer is a finite impulse response (FIR) filter with the purpose that the delay spread of the combined
channel-plus-equalizer IR is not longer than the cyclic prefix length. In this paper, a specific framework of long FIR
channel-shortening problem is studied. In fact, approximated by a stable pole-zero model, we show that the channel
transfer function poles introduce interference. Hence, to cancel bad poles, we propose the use of lattice structure to
implement the channel shortener which places their zeros very close to critical channel poles and cancels them out.
For low complexity implementation, we adopt adaptive algorithms to design the lattice channel shorteners. This
paper analyzes the lattice structure performances of two blind adaptive channel shorteners: sum-squared
autocorrelation minimization and multicarrier equalization by restoration of redundancy algorithms. The proposed
implementation performances are given in terms of bit rate, and the simulation results are studied in the context of
asymmetric digital subscriber line system.

1 Introduction
Multicarrier (MC) modulation has various advantages
that make it useful for a wide variety of digital com-
munication systems [1]. Actually, it has been chosen as
the physical layer standard for a diversity of basic sys-
tems such as digital transmission over telephone lines,
applications in broadcasting, and in wireless networks
[2-6]. The most important advantage of the MC system
is its robustness against interferences. In fact, cyclic pre-
fix (CP) insertion through MC symbols provides higher
immunity against channel delay spread. Therefore, as long
as channel dispersion is not longer than the CP, sys-
tem performance does not degrade. However, a highly
time-dispersive channel leads to a significant reduction
of the transmission data rate since the received sig-
nal is corrupted by both inter-carrier and inter-symbol
interferences. To avoid such a performance degradation,
a channel-shortening technique, commonly referred to
as time-domain equalizer (TEQ), is introduced at the
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receiver front end. Generally, the TEQ is defined as
a transversal filter with the main purpose of keeping
the delay spread of the combined channel-plus-equalizer
impulse response (IR) not longer than the CP length [7].
Yet, by being finite IR (FIR) filters, all of the proposed
TEQs are designed for both FIR and/or infinite IR (IIR)
channel shortening which make all of them solve the
channel-shortening problems without taking into account
the transmission channel models.
Otherwise, we must stress the fact that the transmis-

sion characteristics of the channel determine directly the
performance of communication systems. Therefore, sev-
eral channel models were proposed to accurately simulate
the effect of transmission of the MC signal through the
channel. Particularly, it is proven that in twisted pair lines,
the channel is well modeled by a recursive filter with a
slowly decaying IR [8,9]. This means that the channel
transfer function presents poles close to the unit circle
(UC). By exploiting this result, we propose in this paper
to develop a specific framework for slowly decaying recur-
sive channel shortening. Indeed, approximated by a stable
pole-zero model, we need to show that the channel poles
introduce a term of interference in each receivedMC sym-
bols. Thus, in order to shorten the recursive channel, an
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effective TEQ will place their zeros on the critical poles
to cancel them out. Yet, it is worth noting that inaccu-
rate zeros position results in a limited channel-shortening
performance, which motivates the use of lattice structure
to cancel channel poles. Therefore, this can be effectively
done only by adopting the lattice structure which must be
conceived by optimizing appropriate channel-shortening
criteria.
Furthermore, in the literature, most of the supervised

channel-shortening criteria formulations, such as MSSNR
[10], MGSNR [11], min-ISI [12], MBR [13] and SINR-max
[14], are mainly based on the combined channel-plus-
equalizer IR expression and their optimum TEQs which
are perceived as solutions of algebra linear equations.
However, when lattice structure is put into service, all of
these criteria deal with non-linear formulation in terms
of lattice TEQ reflection coefficients, whereas the criteria
which are based on lattice filter output signal present lin-
ear formulation in terms of reflection coefficients. Thus,
for linear algebra resolution and low complexity lattice
implementation, we need to adopt the last kind of criteria,
from which we quote the blind multicarrier equalization
by restoration of redundancy (MERRY) and sum-squared
autocorrelation minimization (SAM) algorithms [15,16].
Accordingly, we tend to present through this paper the

lattice structure performances of the adaptive MERRY
and SAM algorithms. Indeed, the proposed implementa-
tion performances are given in terms of bit rate, and the
simulation results are studied in the context of digital sub-
scriber line (DSL) systems. Initially, Section 2 discusses
the problem statement of long FIR channel shortening
and motivates the use of the lattice structure as a way to
implement the TEQ. Section 4 then develops the steepest
descent implementation of the lattice-based SAM algo-
rithm, whereas Section 5 gives the recursive least squares
(RLS) implementation of the lattice-based MERRY algo-
rithm. Further, Section 6 presents comparative simulation
results, and conclusions are given in Section 7.
The matrices and vectors are denoted with upper and

lower case boldface letters (e.g.,M and v), the superscripts
∗, T, H, and −1 denote the conjugate, the transpose,
the Hermitian (conjugate transpose), and the inverse of a

matrix, respectively; 0N×L and IN denote the N × L null
matrix and theN×N identity matrix. For any vector v, ‖v‖
denotes the Euclidean norm, and M = diag(v) is the diag-
onal matrix with diagonal elements equal to the vector v
elements. The notation sk,n is used to present the nth MC
sample transmitted or received at kth MC symbol period.

2 Channel interference analysis for MC
transmission

Actually, the ultimate goal of this section is to show that if
the MC transmission channel is modeled by slowly decay-
ing recursive filter, then its partial equalization can be
done only through canceling its transfer function poles,
causing interference. Thus, to achieve this purpose, the fil-
ter equalizer must place the zeros in critical poles as a way
to cancel them out.

2.1 MC systemmodel
MC modulation divides the transmission bandwidth into
N parallel subchannels by means of inverse fast Fourier
transform (IFFT). A CP is appended to each symbol
to ensure subchannel orthogonality after propagation
through the time-dispersive channel. Demodulation of
the received signal is performed by an FFT operation.
The simplified baseband equivalent MC system model is
shown in Figure 1. At the transmitter and after mod-
ulation, the data sequence is converted into N parallel
subsequences, zk,n, where n ∈ {1, 2, . . . ,N} refers to the
subcarrier number and k is the discrete time index. The
block zk

.= [
zk,1, . . . , zk,n, . . . , zk,N

]T is used to modulate
the different subcarriers by means of an IFFT, the result
block vector is denoted by xk

.= [
xk,1, . . . , xk,n, . . . , xk,N

]T
and is expressed by xk = Fzk , where F represents the
unitary symmetric IFFT matrix, {F}n1,n2 .= 1√

N e j2π
n1n2
N ,

n1, n2 ∈ {0, 1, . . . ,N − 1}, and j2 = −1. To ensure
that the subcarriers remain orthogonal after propagation
through the channel, the last P samples (corresponding
to the CP) of xk are copied and added to the beginning
of this block to form the kth MC block, x̃k , of length
M = N + P, where x̃k

.= [
x̃kM+1, . . . , x̃(k+1)M

]T =[
xk,N−P+1, . . . , xk,N , xk,1, . . . , xk,N

]T .

Figure 1MC systemmodel. N, MC symbol size; i, MC symbol index; k and n, sample index before and after inserting cyclic prefix.
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Let x̃i, where i .= kM + m and m ∈ {1, . . . ,M}, be the
source sequence to be transmitted, after P/S operation.
The process x̃i is modeled as zero mean, wide sense sta-
tionary with unit variance, and white (this property holds
provided that sampling is done at twice the signal band-
width). The noise ṽi is a zeromean white Gaussian process
with variance σ 2

ṽ uncorrelated with the transmitted signal.

2.2 Channel pole-zero model
In order to analyze the channel-shortening problem, we
propose to approximate the transmission channel with a
lower order pole-zero model. In fact, when the channel
is characterized by its long tail, it can be approximated
by a reduced-parameter model. Actually, the problem of
approximating a long FIR filter by a pole-zero filter with
a small total number of coefficients had been investigated
by many researchers [17,18], some of them had especially
developed a stable pole-zero model of the DSL loop as a
way to reduce the implementation complexity of the DSL
channel equalization [9]. Thus, the transfer function of
long FIR channel can be as follows:

H(z) =

La∑
q=0

aqz−q

1 +
Lb∑
p=1

bpz−p
, (1)

where La and Lb are the channel numerator and denom-
inator orders, respectively. Moreover, the direct form
channel model can be characterized in the time domain
by the following difference equation:

r̃i =
La∑
q=0

aqx̃i−q −
Lb∑
p=1

bpr̃i−p + ṽi, (2)

with r̃i as the received signal.

2.3 Channel interference analysis
In the following, we detail the necessity of channel short-
ening in the case of MC long FIR channels. Hence, we will
show that the presence of at least one pole in the channel
transfer function introduces a term of interference in the
received MC block. In order to simplify this analysis, we
need to state the following explanation by assuming that
the channel had one pole, i.e., Lb = 1, the numerator order
is less than the CP, i.e., La ≤ P, the equalizer filter is trans-
parent, i.e., ỹi = r̃i, and no channel delay is considered, i.e.,
δ = 0.
At the receiver, the channel output, ỹi, is converted into

M parallel substreams and the cyclic prefix is removed
from the received block in order to obtain the kth MC
symbol vector yk = [

ỹkM+P+1, ỹkM+P+2, . . . , ỹ(k+1)M
]T .

According to the relation (2), we can state the matrix-
vector form of the received MC block as follows:

yk = Axk − By(1)
k + ṽk , (3)

where A is a N × N circulant matrix, where the
first column and row are, respectively, disposed by[
a0, . . . , aLa , 0, . . . , 0

]T and
[
a0, 0, . . . , 0, aLa , . . . , a1

]
, ṽk

.=[
ṽkM+P+1, . . . , ṽ(k+1)M

]T is the noise vector, y(1)
k

.=[
ỹkM+P , . . . , ỹ(k+1)M−1

]T and B .= b1IN . In another
aspect, for detailing the signal components received
at kth symbol period, we denote by y(j)

k the vec-
tor

[
ỹkM+P+1−j, . . . , ỹ(k+1)M−j

]T and by ṽ(j)
k the vector[

ṽkM+P+1−j, . . . , ṽ(k+1)M−j
]T . The last notation is omitted

for j = 0, i.e., y(0)
k = yk and ṽ(0)

k = ṽk . As it can be shown,
for j ≤ P − La and l ≤ P, the vectors y(j)

k and x(l)
k are

recursively computed according to the following relations:

y( j)
k = Ax( j)

k − By( j+1)
k + ṽ( j)

k , (4)

x(l+1)
k = J̃x(l)

k . (5)

Here, J̃ is a shifting matrix, J̃ .=
[
J̆, e

]
where J̆ .=[

0(N−1)×1, IN−1
]T and e .= [

1, 01×(N−1)
]T , and then, by

exploiting the recursive relations (4) and (5), we can write
for L = P − La:

yk =
L∑
j=0

(−1) jB jAJ̃ jxk + (−1)L+1BL+1y L+1
k

+
L∑
j=0

(−1) jB jṽ( j)
k . (6)

Let D .= ∑L
j=0(−1) jB jAJ̃ j; we can easily show that D is

a circulant matrix. Further, an FFT operation demodulates
the received MC symbol yk , and the resulting block which
is denoted by sk is given by the following:

sk = FHDFzk︸ ︷︷ ︸
desired symbol

+ (−1)L+1FHBL+1y L+1
k︸ ︷︷ ︸

interference term

+
L∑
j=0

(−1) jFHB jṽ( j)
k

︸ ︷︷ ︸
noise term

. (7)

As a result, we notice that the received MC symbol
consists of three major components: the desired signal
component which is obtained through the diagonal matrix
FHDF, the interference component which is expressed
by the term (−1)L+1FHBL+1y L+1

k , and the noise compo-
nent

∑L
j=0(−1) jFHB jṽ( j)

k . Notably, the interference com-
ponent is analyzed by expressing y L+1

k as follows:

y L+1
k = ÃJL+1xk − By L+2

k + ṽ L+1
k , (8)
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Figure 2 Lattice implementation of the TEQ.

where Ã .= [
a,AT (:, 2 : N)

]T , and a .= [a0, 0, . . . , 0, aLa−1,
. . . , a1]T . Therefore, we can observe that the matrix
BL+1ÃJL+1 cannot be circulant because Ã is non-
circulant. Hence, it cannot be diagonalized by Fourier
transform which makes this quotation produce an unde-
sired interference signal in the received MC symbol sk .
Finally, we notice that, independent of the channel zero

number, the channel poles introduce a term of interfer-
ence with power depending on their locations inside the
UC. Therefore, with the aim to cancel interference, it
is proposed to insert a TEQ at the receiver front end
to equalize poles and produce a combined channel-plus-
equalizer IR not longer than the CP length. Next, we
will discuss the lattice structure derived to implement the
TEQ to shorten the recursive channel model.

3 Lattice structure of channel equalizer
There is no doubt that the equalizer coefficients depend
mainly on the characteristics of the channel that are sim-
ilarly determined from the measurements obtained by
transmitting signals through the physical media. Such
filters, with adjustable parameters, are usually called adap-
tive, especially when they are incorporated with algo-
rithms which allow the filter coefficients to be adapted to
the changes in the signal statistics. Adaptive technique can
also lead to a reducing complexity.
Under their direct transversal shape, all of the proposed

adaptive channel shorteners are designed for both FIR
and/or IIR channel shortening. Therefore, in this paper,
we propose a specific framework for channel shortening
where we consider the channel model as a slowly decaying
IIR filter. In order to ensure the best algorithm conver-
gence to TEQ zeros, canceling poles and causing the tail,
we suggest working with the lattice structure for the adap-
tive TEQ implementation. We admit the adaptive blind
MERRY and SAM algorithms.
As it will be illustrated in the following sections, the

choice of the TEQ filter structure has a profound effect
on the operation of the channel-shortening algorithms. In
fact, we will show that when the adaptive TEQs are imple-
mented using the lattice structure, the TEQ coefficients
converge very close to the optimal values.

Therefore, we need to distinguish themost popular filter
structures: the transversal and lattice structures. Basically,
the transversal structure is the most common structure
used in implementing channel shorteners, i.e., the func-
tion of the latter is to adjust the set of Lw + 1 filter
coefficients wj, j = 0, 1, . . . , Lw (tap weights) which makes
the output ỹi to be close as possible to a desired signal.
The output filter is calculated as a linear combination of
the input sequence.
The lattice TEQ filter is perceived as modular in struc-

ture so that it consists of a number of individual stages,
each one of them has the appearance of a lattice, as it is
stated in Figure 2. The transfer function of the lattice fil-
ter is determined by the reflection coefficients qp, for p =
1, 2, . . . , Lw. The stage outputs are obtained as follows:

u1(i) = v1(i + 1) = r̃i, (9)
vp(i + 1) = qp−1up−1(i) + vp−1(i), (10)

up(i) = qp−1vp−1(i) + up−1(i), (11)

and the output TEQ is given by the following:

ỹi = r̃i +
Lw∑
p=1

qpvp(i),

= r̃i + qTvi, (12)

where q = [q1, q2, . . . , qLw ]T and vi = [v1(i), v2(i), . . . ,
vLw(i)]T .
The mapping from transversal to lattice form can be

achieved via the Levinson-Durbin recursions [19]. Note
that the lattice structure effectively imposes a monic con-
straint on the TEQ, i.e., the first tap is always 1. Hence, the
equivalent filter length is equal to Lw + 1.
Hence, by adopting the lattice structure, we need to

optimize the TEQ coefficients by implementing adaptive
algorithms. We suggest working with the blind MERRY
and SAM algorithms.

4 Lattice implementation of the adaptive SAM
algorithm

The short autocorrelation of the effective channel is a
property that is degraded by a long channel IR. Uniquely,
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SAM is a blind adaptive channel-shortening algorithm
that attempts to restore this short autocorrelation
property.

4.1 SAM cost function properties
SAM algorithm performs a gradient descent of a specific
cost function which is defined as the sum of the squares
of autocorrelation coefficients of all lags greater than the
desired channel memory. This cost function could be
stated as follows:

JSAM(w)
.=

Lc∑
l=P+1

|Rcc(l)|2, (13)

where Rcc(l) = ∑Lc
i=0 cici−l is the autocorrelation of the

overall IR ci (ci = ∑Lw
l=0 wlhi−l). Note that if ci = 0 for

i ≥ P+1, then Rcc(l) = 0 for l ≥ P+1 so that JSAM will be
zero. In other words, a short channel implies a short auto-
correlation. Therefore, we must specify that the converse
is not true: for example, let us consider the IR as follows:

ci =
⎧⎨
⎩

α, i = 0,
α2 − 1, i = 1,
α(α2 − 1), 2 ≤ i ≤ Lc,

(14)

with |α| < 1. For sufficiently large Lc, one has Rcc(l) ≈
δ(l), whereas the IR cannot be said to be ‘short’ (just take
|α| close to 1). This, normally, is due to the fact that ci in
Equation 14 resembles the IR of an all-pass system. Nev-
ertheless, shortening Rcc(l) seems to be a useful way that
aims to attempt channel shortening in practical scenarios
[16].
Another important observation regarding the SAM cost

(13) is its invariance to flipping any of the zeros of
the overall transfer function C(z) = ∑Lc

i=0 ciz−i with
respect to the unit circle, since this operation leaves Rcc(l)
unchanged. Since any zero of the TEQ transfer function
W (z) = ∑Lw

i=0 wiz−i is a zero of C(z), flipping the TEQ
zeros leaves the cost JSAM unaltered. As a result, by con-
sidering any point on the cost surface, there will be 2Lw
points giving identical cost elsewhere, and in particular,
any minimum (local or global) will be repeated 2Lw times.
These minima in reality may or may not yield a good per-
formance in terms of shortening the effective channel IR.
For example, let us consider a channel with IR hi given by
Equation 14, and then the two-tap TEQs w1 = [1,−α]T
and w2 = [−α, 1]T result in identical short autocorrela-
tion. However, whilew1 yields good performance in terms
of overall IR shortening, w2 does not.
As a way to ensure SAM algorithm convergence to the

good TEQ zeros, canceling poles and causing the tail, we
suggest a minimum phase constraint be imposed on the
TEQ. This can be effectively implemented using the lat-
tice structure. On the other hand, there is a necessary and

sufficient condition for this filter which allows it to be in
a minimum phase: all reflection coefficients have magni-
tude less than unity. We propose to check this condition
as the algorithm progresses.

4.2 Lattice SAM algorithm
In [16], it has been showed that the SAM cost function is
merely approximated by the sum-squared autocorrelation
of the TEQ output sequence:

JSAM ≈
Lc∑

l=P+1
|Rỹỹ(l)|2. (15)

Given the lattice TEQ output signal ỹi, the purpose of
the SAM algorithm is to update q as a way to minimize
Equation 15. This can be done by means of the following
well-known gradient descent:

q(i + 1) = q(i) − μ∇qJSAM, (16)

where ∇qJSAM is the gradient of JSAM evaluated for q =
q(i) andμ is the step size. However, in order to implement
Equation 16, we define an instantaneous cost function by
replacing the expectation operationwith amoving average
over a defined window of length ν:

JSAM ≈
Lc∑

l=P+1

∣∣∣∣ξ(i, l)
ν

∣∣∣∣
2
, with ξ(i, l) .=

∑
j∈Ii

ỹjỹ∗
j−l,

(17)

where Ii
.= {i, i − 1, . . . , i − ν + 1}. The partial deriva-

tive of JSAM with respect to lattice-TEQ coefficient, qp, is
denoted as follows:

∂JSAM
∂qp

= 1
ν2

Lc∑
l=P+1

(
ξ(i, l)

∂ξ∗(i, l)
∂qp

+ ξ∗(i, l)∂ξ(i, l)
∂qp

)
.

(18)

Now, one has

∂ξ∗(i, l)
∂qp

≈ v∗
p(i)ỹi−l, (19)

∂ξ(i, l)
∂qp

≈ v∗
p(i − l)ỹi. (20)

In Equations 19 and 20, we have neglected the depen-
dence of the signals vp(i) with the reflection coefficients
(see Equation 12). In spite of that, in the summation,
we have neglected all but one term in order to keep the
computational complexity at bay. Let us define the vectors

ỹi
.= [

ỹi−P−1, ỹi−P−2, . . . , ỹi−Lc
]T , (21)

	i
.= [

ξ(i,P + 1), ξ(i,P + 2), . . . , ξ(i, Lc)
]T , (22)
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and the matrix

Ṽi
.= [

vi−P−1, vi−P−2, . . . , vi−Lc
]T . (23)

After absorbing the factor 1
ν2

into the step-size μ, the
proposed update rule can then be written as follows:

q(i + 1) = q(i) − μ
(
v∗
i 	

T
i ỹi + ỹiṼT

i 	∗
i

)
. (24)

In other respects, the lattice version of SAM
(Equation 24) requires on the order of Lw(Lc − P) multi-
plications and additions per update, which is comparable
to that of the original transversal implementation.

4.3 Normalized lattice SAM algorithm
As a way to improve the convergence rate of the lattice
SAM algorithm, there is a variable step size that can be
used in the update rule as follows:

qp(i + 1) = qp(i) − μiγp(i), 1 ≤ p ≤ Lw, (25)

where γp(i) = v∗
p(i)	T

i ỹi + ỹiṼT
i (p, :)	∗

i .
In order to determine the optimal value of μi, we pro-

pose to minimize, at each i, the a posteriori cost function
JposSAM which mainly depends on the updated TEQ out-
put signal ỹposi . Let us define a posteriori output signal as
follows:

ỹposi = r̃i +
Lw∑
p=1

qp(i + 1)vposp (i). (26)

Thus, to determine vposp (i), we exploit the recursive rela-
tions in Equation 9, at a posteriori time. By neglecting the
terms of proportional to μm for m ≥ 2, it can be veri-
fied that vposp (i) and uposp (i) are recursively computed as
follows:

vposp (i) = vp(i) − μitp(i), (27)
uposp (i) = up(i) − μisp(i), (28)

where tp(i) and sp(i) are determined according to the
following:

tp+1(i) = tp(i − 1) + qp(i)sp(i − 1) + γp(i)up(i − 1),
sp+1(i) = qp(i)tp(i) + γp(i)vp(i) + sp(i). (29)

By neglecting again terms in μm for m ≥ 2 and replac-
ing Equations 27 and 28 into Equation 26, the a posteriori
TEQ output yields in the following notation:

ỹposi = ỹi − μi

⎛
⎝ Lw∑

p=1
qp(i)tp(i) + vp(i)γp(i)

⎞
⎠ . (30)

We may define the a posteriori cost function at the ith
iteration as follows:

JposSAM
.=

Lc∑
l=P+1

∣∣∣∣∣∣
i−1∑

j=i−ν+1
ỹjỹ∗

j−l + ỹposi ỹ∗
i−l

∣∣∣∣∣∣
2

. (31)

By admitting that κ(i) = ∑Lw
p=1 qp(i)tp(i) + vp(i)γp(i).

Through replacing the expression of ỹposi from
Equation 30 into Equation 31, it follows that

JposSAM = JSAM + μ2
i |κ(i)|2

Lc∑
l=P+1

|ỹi−l|2 − 2μi

(
	H

i ỹ∗
i κ(i)

)
.

The value of μi minimizing JposSAM is found to be

μ
opt
i = 
 (

	H
i ỹ∗

i κ(i)
)

|κ(i)|2
Lc∑

l=P+1
|ỹi−l|2

. (32)

The updating rule for the lattice version of SAM will be
disposed by the following:

qp(i + 1) = qp(i) − αμ
opt
i γp(i), 1 ≤ p ≤ Lw, (33)

where 0 < α ≤ 2 is a fixed stability factor.

5 Lattice implementation of the adaptive MERRY
algorithm

Inspired by the behavior of the lattice implementation
of the SAM cost function, we examine throughout this
section the benefit that can be accomplished by imple-
menting MERRY with the same structure. Therefore, we
develop an adaptive algorithm relying on the lattice RLS
MERRY implementation.
In the following, we seek to reformulate the mini-

mization of the lattice MERRY cost function into least
squares approach to adaptively implement the RLS algo-
rithm. That is why we define a weighted least squares cost
function as follows:

JMERRY
.=

∑
l∈Ik

λk−l|ỹlM+P+δ − ỹlM+N+P+δ|2, (34)

where Ik
.= {0, 1, . . . , k}, 0 < λ ≤ 1 is an exponential

weighting factor which effectively limits the number of
symbols based on which the cost function is minimized.
Therefore, the RLS algorithm is detailed in the following
quotation by expressing the gradient of the LS function:

JMERRY =
∑
l∈Ik

λk−l|r̃d(l) + qTvd(l)|2, (35)

where vd(l)
.= [vd1(l), . . . , vdp(l), . . . , vdLw(l)]T with

vdp(l)
.= vp(lM + P + δ) − vp(lM + N + P + δ) and

r̃d(l)
.= r̃lM+P+δ − r̃lM+N+P+δ . If we take the gradient,

evaluated at (k + 1)th MC symbol for q = q(k), we have

∇qJMERRY = qT (k)
∑
l∈Ik

λk−lvd(l)vdH(l)

+
∑
l∈Ik

λk−l r̃d(l)vdH(l), (36)
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when the cost function gradient is equal to zero, it results
in the following:

qT (k)
∑
l∈Ik

λk−lvd(l)vdH(l) = −
∑
l∈Ik

λk−l r̃d(l)vdH(l).

(37)

We then emphasize the correlation matrix as Vd(k)
.=∑

l∈Ik λk−lvd(l)vdH(l) and the cross-correlation vector as
rv(k)

.= ∑
l∈Ik λk−l r̃∗d(l)vd(l); the LS solution for time

instant k is then stated as follows:

qT (k) = −rHv (k)Vd(k)−1. (38)

We start the derivation of the recursive algorithm by
expressing the deterministic correlations matrix, Vd(k),
and the deterministic cross-correlation vector, rv(k), in
their recursive forms:

Vd(k) = λVd(k − 1) + vd(k)vdH(k)
rv(k) = λrv(k − 1) + r̃∗d(k)vd(k). (39)

In order to generate the coefficient vector of
Equation 38, we are interested in the inverse of the deter-
ministic autocorrelation matrix Vd(k). For that task, the
matrix inversion lemma comes in handy. Let us denote by
P(k) the inverse of the matrix Vd(k) then

P(k) = λ−1P(k − 1) − λ−2P(k − 1)vd(k)vdH(k)P(k − 1)
1 + λ−1vdH(k)P(k − 1)vd(k)

.

(40)

Through the equations which were already seen, the
RLS algorithm becomes easy to follow and to implement
without the need of matrix inversion. The forgetting fac-
tor λ presents the contribution of the previous samples;
this makes the filter sensitive or not to the recent samples.
The matrix P(k) is typically initialized as a scaled iden-
tity matrix ρILw , where ρ is a large positive constant. The
discussion resulted in a single equation to determine the
lattice coefficient vector which minimizes the following
cost function:

q(k) =
[
ILw − P̃T (k − 1)

]
q(k − 1) − PT (k)vd∗(k)r̃d(k),

(41)

where P̃(k − 1) = vd(k)vdH (k)P(k−1)
λ+vdH (k)P(k−1)vd(k) . The computational

cost of this algorithm is approximately 2L2w multiplications
and accumulate operations.

6 Simulation results
Accordingly, we tend to observe through this section the
lattice structure performances of the blind MERRY and
SAM algorithms . Indeed, the proposed implementation
performances are given in terms of convergence proper-
ties of the algorithms and simulation results in the DSL
environment.

6.1 SAM convergance properties
In the following, we propose to compare the cost surface
behavior of the lattice to the transversal TEQs adjusted by
the SAM criterion. Let us consider an example of the two-
pole channel model where the transfer function is stated
as follows:

H(z) = 1 − 0.5z−1

(1 − 0.8e jπ/2z−1)(1 − 0.8e−jπ/2z−1)
. (42)

The CP is composed of two samples, the lattice short-
ener has three taps (Lw = 2), whereas no noise is con-
sidered. Three-dimensional and contour plots of the SAM
cost function are shown in Figures 3 and 4, in terms of the
TEQ reflection coefficients q1 and q2 for the lattice imple-
mentation of spherical coordinates for direct transver-
sal implementation. Nevertheless, we observe that in
the working range |qp| < 1, the cost of the lattice
SAM through this example is convex and has a unique
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Figure 3 Transversal SAM cost function versus spherical
coordinates θ and φ. (a) Three-dimensional plot and (b) contour
plot.
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Figure 4 Lattice SAM cost function versus q1 and q2. (a)
Three-dimensional plot and (b) contour plot.

minimum, while for the transversal structure there are
four minima having equivalent values of the SAM cost.

6.2 Convergence properties of the RLS-MERRY algorithms
Furthermore, we aim to compare the convergence prop-
erties of the proposed lattice RLS-MERRY algorithm to
their homology in the transversal implementation. The
transversal RLS-MERRY algorithm is deeply detailed in
[20]. Let us consider the same example of the channel
transfer function given in the previous paragraph. Thus,
to examine the RLS-MERRY algorithms convergence to
the optimal solution, the mean square deviation (MSD)
performance metric is used. The MSD with respect to the
optimal coefficients corresponds to the minimum of the
MERRY cost function:

MSD .= ‖w(k) − w∞‖2
‖w∞‖2 . (43)

The optimal TEQ, w∞, is obtained by averaging
the filter coefficient, determined after the algorithm

convergence, over 100 independent runs. In the case of
lattice structure, the RLS-MERRY reflection coefficients
are computed using the update rule (Equation 41), then
the mapping from lattice to transversal is made through
the Levinson-Durbin recursions. Figure 5 shows the MSD
variation during lattice RLS-MERRY algorithm compared
with the transversal RLS-MERRY TEQ. The MSD curves
are obtained by averaging 100 independent runs. Notice
that, for the two RLS-MERRY algorithms, the forgetting
factor is λ = 0.99 and the scaled coefficient is ρ = 100.
Based on the results shown in the MSD plot in Figure 5,

we may observe that for the same rate convergence,
the steady-state value of the MSD produced by the lat-
tice implementation is much smaller than in the case of
transversal implementation. To confirm this result, we
show in Figure 6 the TEQ zero locations with transversal
and lattice structures (a) and (b). We remark that when
lattice structure is implemented, the TEQ zeros are very
close to the channel poles.

6.3 DSL environment simulation
Throughout this section, we compare the performance of
the different studied TEQ implementations, specifically in
the considered DSL environment where the transmission
channel is modeled as an IIR channel. Indeed, it is shown
that, in twisted pair lines, the channel is well modeled by
an IIR filter with a slowly decaying IR [8]. This means that
the channel transfer function presents poles very close to
the UC.
To shorten the DSL channel, an effective TEQ will place

zeros on the critical poles to cancel them out, which
motivates the use of the lattice structure to implement a
minimum phase TEQ and to ensure convergence of the
multimodal SAM algorithm to a good stationary points.
Further, the lattice structure is adopted to implement the
blind MERRY algorithm.
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number.
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Figure 6 Pole-zero plot of MERRY TEQ after convergence. (a)
Transversal TEQ and (b) Lattice TEQ.

To compare the performance of different implementa-
tions of adaptive equalizers, simulation results are pre-
sented for a set of standard ADSL channels. The transfer
functions for the different channels include the model of
the copper wire itself as well as the digital and analog
transmit and receive filters. Hence, we consider carrier
serving area (CSA) test loops combined with a plain old
telephone service splitter. Actually, the parameters were
chosen to match the downstream ADSL standard sys-
tem: the cyclic prefix is 32 samples, and the FFT size is
512. The external noise consists of −140 dBm/Hz addi-
tive white Gaussian noise as given in [21], and no crosstalk
is considered. In the following simulations, we will focus
only on equalization issues without optimizing the power
allocation of the different subcarriers. We suppose that
16-QAM signaling is used on all of the subchannels, and
the sampling frequency is 2.208 MHz.
By analyzing the lattice implementation performances

of SAM and RLS-MERRY algorithms, we disposed, as
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Figure 7 Normalized lattice SAM achievable bit rate as function
of fixed step size (α) and equalizer length (L̃w). Simulations for an
upstream ADSL in the CSA loop 1.

performance metric, the bit rate. The achievable bit rate
of the multicarrier channel can be written as the sum of
the capacities of AWGN subchannels

R .=
∑
n∈V

log2(1 + SNRn
�

), (44)

where V is the index set of used subchannels and � is
the SNR gap to Shannon capacity, which is assumed to be
constant over all subchannels. Actually, the SNR gap is a
function of the bit error probability aimed at [22], we take
� = 9.8 dB. The subchannel SNRn, as defined in [13],
incorporates both interference and noise distortion. The
bit rate was measured and averaged over 100 realizations
of each channel-shortening procedure.
To begin the implementation of the normalized version

of lattice SAM algorithm, we consider the moving average
window of length ν = 100. Therefore, Figure 7 indicates
the normalized lattice SAM achievable bit rate versus the
fixed step size, α, for different equalizer length L̃w =
Lw + 1. For the other CSA loops, the optimal values of
TEQ order and fixed step size as well as the achievable bit
rate are summarized in Table 1. Also, Figure 8 shows the
bit rate evolution over time (sample index), by comparing
the normalized lattice and the original transversal imple-
mentations of SAM algorithm. From the last figure, we

Table 1 Normalized lattice SAM achievable bit rate

CSA loop number 1 2 3 4 5 6 7 8

L̃w 3 7 11 21 11 15 20 27

αopt 0.05 0.1 0.05 0.05 0.05 0.05 0.001 0.001

R (Mbps) 6.24 7.72 6.62 6.38 6.53 7.17 5.52 4.89

It is a function of optimal values of equalizer order, L̃w , and fixed step size, α, for
the eight CSA loops.
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can see that the normalized lattice SAM equalizer outper-
forms the transversal SAM algorithm (which is updated
with a moving average implementation as well).
Notably, the RLS-MERRY channel shortener algorithm

depends on parameter synchronization δ. Hence, Figure 9
shows the RLS-lattice MERRY achievable bit rate as a
function of the delay parameter, δ, and the TEQ order,
L̃w, for CSA loop 1. For the other CSA loops, the opti-
mal values of delay parameter and equalizers’ length are
given in Table 2 where the achievable bit rate of RLS-
transversal MERRY and RLS-lattice MERRY algorithms
are also computed. However, Figure 10 displays the bit
rate evolution over iteration number (MC symbol num-
ber), for comparing the RLS lattice and the original RLS
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Figure 9 RLS-lattice MERRY achievable bit rate as a function of
the delay parameter (δ) and the TEQ order (L̃w). Simulations for an
upstream ADSL in the CSA loop 1.

Table 2 Achievable bit rate as a function of optimal values
of equalizer order L̃w and delay parameter δ

CSA loop Transversal RLS-MERRY Lattice RLS-MERRY

number L̃w δopt R (Mbps) L̃w δopt R (Mbps)

1 7 20 5.59 9 21 12.96

2 9 18 7.03 11 18 13.54

3 13 22 5.42 17 25 11.02

4 11 20 5.15 20 21 10.76

5 5 18 5.35 19 23 11.12

6 3 18 4.92 16 18 10.25

7 11 30 5.15 21 28 10.19

8 9 30 5.06 21 30 10.61

This is for the eight CSA loops shortened with the transversal RLS-MERRY and
lattice RLS-MERRY algorithms.

transversal implementations of MERRY. Easily, we can see
that the lattice structure results in a noticeable improve-
ment in terms of achievable bit rate. Be reminded that the
unit first tap constraint is imposed by the lattice structure
for all studied algorithms. Also, we can see that the lattice
implementation of RLS-MERRY equalizer outperform the
lattice SAM TEQ for the eight CSA loops.

7 Conclusions
Specific framework of MC transmission channel has been
studied in this paper. We have considered slowly decay-
ing recursive channel model. Therefore, on the basis of the
pole-zero model, we have shown that the channel poles
introduce a term of interference in each received MC
symbols; thus, to shorten this kind of channel, an effec-
tive TEQ will place their zeros on the critical poles to
cancel them out. However, inaccurate zero location may
result in limited channel-shortening performance, which
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motivates the use of the lattice TEQ structure aiming to
place zeros very close to the channel poles.
Furthermore, for linear algebra resolution and low com-

plexity reasons, we have adopted only adaptive algorithms
to update the TEQ which is designed using the lattice
structure. Hence, an implementation of the lattice SAM
andMERRY adaptive algorithms has been proposed.With
computational complexity similar to that of the origi-
nal versions of transversal algorithms, the convergence
of lattice algorithms has been observed. In addition, we
have showed that when it is compared to the transversal
direct implementation, the lattice TEQ algorithms achieve
higher performance in terms of achievable bit rate.
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