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Abstract

Parametric models are of great interest for representing and manipulating sounds. However, the quality of the
resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be
estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao
bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding
applications. These limitations can be overcome by using the coding approach which consists in directly transmitting
the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of
the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility
with existing file formats. The purpose of this article is to propose a compromised approach, called the ‘informed
approach,’ which combines analysis with (coded) side information in order to increase the precision of parameter
estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis
problem is presented in a coder/decoder configuration where the side information is computed and inaudibly
embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist
the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling
which is a well-known model with practical applications and where theoretical bounds have been calculated. This
work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging
problems like active listening of music, source separation, and realistic sound transformations.

Keywords: Audio coding; Spectral analysis; Sinusoidal modeling; Informed source separation; Active listening;
Auditory scene analysis

1 Introduction
Active listening aims at enabling the listener to modify the
music in real time while it is played. This makes produced
music, fixed on some support, more lively. The modifica-
tions can be, for example, audio effects (time stretching,
pitch shifting, etc.) on any of the sound sources (vocal or
instrumental tracks) present in the musical mix.
To perform these sound transformations with a very

high quality, sinusoidal modeling [1,2] is well suited.
However, this parametric model requires a very precise
analysis step in order to estimate the sound parameters
accurately.
For simple sounds, i.e., monophonic with a high signal-

to-noise ratio (SNR), state-of-the-art estimators such as
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the spectral reassignment [3] or the derivative method [4]
are sufficient. But this is rarely the case for more complex
audio signals, like the final mix of the music.
Indeed, theoretical limitations for the best estimators

exist and are given by the Cramér-Rao bound (CRB) which
corresponds to the minimal error variance reachable with
an unbiased estimator. This bound indicates that despite
efforts to enhance the analysis methods, the maximal
quality is bounded and can be insufficient for complex
audio signals and demanding applications such as as active
listening of music.
However, digital multi-track audio recording techniques

are now widely used by recording studios and make avail-
able - for the producer - the isolated audio signals which
compose the mix. This allows the estimation of audio
parameters with a high accuracy when the signals are
not disturbed by other sound sources (interferers). Fur-
thermore, music creators sometimes use pure synthetic
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sounds (e.g., MIDI expander or virtual instruments) where
the exact audio signal parameters can be known.
The coding approach consists in transmitting the

parameters of the signal using a minimal amount of infor-
mation. The sinusoidal model has interesting sparsity
properties for representing sound signals and allows effi-
cient audio coding [5,6]. Furthermore, this model which
corresponds to the deterministic part of sounds is used by
MPEG-SSC [7] and MPEG-HILN [8] and obtains a high
perceptual quality using about 24 kbps per source. The
major drawback with this approach is the loss of compati-
bility with legacy digital audio formats. For the purpose of
compatibility, one can embed the coded parameters in the
digital audio file, using watermarking techniques. How-
ever, the pure coding approach will not take advantage
of the information provided by a classic estimator which
could intuitively be used to reduce the resulting coding
bitrate.
When collaborating with the music producers and aim-

ing at enabling active listening for the consumer, we are
then in a situation where we can have access tomany audio
tracks - simpler signals, thus with more accurate param-
eters - prior to the mixing stage of the music production,
whereas for compatibility reasons, we will have to deal
with the final mix - much more complex - as a standard
digital audio file.
So, on the one hand, the classic estimation approach

deals with the standard digital audio file of the mix but
produces parameters of insufficient quality. But, on the
other hand, the coding of the isolated sound sources often
requires the introduction of a new audio format and does
not take advantage of estimation from the transmitted
mix.
In this article, we propose an alternative approach

called ‘informed analysis’ for parameter estimation which
consists in combining a classic estimator with side infor-
mation. In recent years, the informed approach was
successfully introduced [9] and applied to audio source
separation. The proposed methods [10,11] also called
informed source separation (ISS) provide a practical solu-
tion to underdetermined (where the number of observed
mixtures is smaller than the number of sources) audio
source separation which remains challenging in the blind
case.
Using this approach, extra information is extracted and

coded using the original separated source signals assumed
to be known before the creation of the mixture sig-
nal which is sent to the decoder. At the decoder where
the source signals are unknown, the analysis process is
assisted by the transmitted extra information. To ensure
the compatibility with existing audio formats, the extra
information is inaudibly embedded into the analyzedmix-
ture signal itself using a large bandwidth watermarking
approach [12].

In spite of promising audio listening results, ISS tech-
niques are specific to the source separation problem and
the resulting quality of existing approaches remains lim-
ited by the oracle estimator (e.g., Wiener filtering). Fur-
thermore, these approaches do not estimate directly the
audio signal parameters which can be of great interest for
audio transformations and cannot yet master the audio
quality by defining a target distortion measure (e.g., SNR)
according to the rate-distortion theory.
In this article, we introduce a generalized framework

which can be applied to any parameter estimation prob-
lem and which is not limited to audio applications. The
method proposed in this article is applied to audio sinu-
soidal modeling and reaches the desired target quality by
combining a classic estimator with minimal extra infor-
mation. Thus, we both improve the precision of classic
spectral analysis which is theoretically limited by the CRB
and we improve the efficiency of distortion-rate opti-
mal quantization (used for lossy compression), thanks to
the information provided by the classic analysis. More-
over, the resynthesis of the sound sources from their
parameters (without transformation) results in a source
separation technique.
This work is an extension of previously published con-

ference papers [13,14]. Firstly, it proposes a generaliza-
tion and a complete theoretical framework which can be
applied to any informed analysis problem for an opti-
mal combination of estimation and coding. Secondly, it
provides more advanced simulations and more detailed
calculations about the informed approach applied to the
sinusoidal model. Thirdly, it provides more advanced
source separation results using the proposed technique
(realistic mixture composed of six sources). Finally, the
mask computation technique used by the source separa-
tion method was enhanced since [14] and uses long-term
sinusoidal modeling to minimize the overall bitrate.
This article is organized as follows. The informed analy-

sis framework is described in Section 2. It is applied to the
spectral analysis for the sinusoidal model in Section 3. In
Section 4, we propose an implementation of an ISS -like
system which estimates the isolated source parameters.
Finally, results and future work are discussed in Section 5.

2 Generalized informed analysis framework
Due to limitations of the blind or the semi-blind approach
for challenging estimation problems like audio source
separation, recent methods have considered the usage
of side information to improve the resulting quality for
practical applications [9,10]. In this section, we propose
to generalize this idea to any estimation problem where
model parameters have to be estimated from a perturbed
observed signal. Thus, the problem of parameter estima-
tion using side information is formulated and solved using
the proposed method.
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2.1 Problem formulation
First consider a real signal s which is a function of a
deterministic parameter p (which can be a real vector)
combined with noise b resulting from a stochastic process.
Thus, the observed signal can be expressed as follows:

s = μ(p, b), (1)

where μ is the function which models the observed signal.
The classic estimation problem consists in recovering the
parameter p from the observed signal s with the minimal
error. The resulting estimation p̂ using a classic estimator
denoted p̂(s) is a stochastic process due to the presence of
b; thus, we have

p̂(s) = p̂ = p + ε, (2)

where ε corresponds to the error of estimation. The
Cramér-Rao bound defines the minimal variance for the
best unbiased estimator (which verifies E[ p̂−p]= 0); thus,
we have

V[ p̂ − p]= V[ε]≥ CRB where CRB = F−1. (3)

Here, F denotes the Fisher matrix which can be expressed
as the second derivative of the log-likelihood function
expressed as

F = −E
[

∂2

∂p2
log

(
f (s; p)

)]
, (4)

where E[·] and V[·], respectively, are the expectation and
variance operators and f (s; p) is the probability density
function of s which depends on the p value. The inequal-
ity (3) means that the minimal error variance is bounded
for the best estimator. Thus, if we aim at reaching a target
variance Vtarget ≤ CRB, according to (3), the unique solu-
tion for a given model f (s; p) is to use side information.

2.2 Informed approach for parameter estimation
Now we assume a configuration (see Figure 1) similar
to existing ISS techniques [10] where p is exactly known
before the signal s is synthesized according to (1). The
informed approach for a given analysis problem consists
in minimizing both the resulting error of estimation and
the bitrate of the side information.
At the coder, the minimal extra information denoted I

is computed from p according to Vtarget using the param-
eter Iσ which depends on the estimator precision. At the
decoder, I is combined with estimation p̂ to obtain p̃
which verifies V[ p̃−p]= Vtarget ≤ V[ p̂−p]. For an unbi-
ased estimator, we can notice that the variance is equal to
the mean squared error: V[ p̂ − p]= E[ (p̂ − p)2]= E[ ε2].
To describe the proposed method based on this con-

figuration, we consider first the estimation of a scalar
parameter p in Section 2.2.1. In Section 2.2.2, the pro-
posed method is generalized to the estimation of a ν-
dimensional vector parameter.

Figure 1 Informed approach applied to parameter estimation.
Vtarget can be used at the decoder with some particular coding
schemes.

2.2.1 Single-parameter informed analysis
Suppose we have to estimate a real parameter p ∈[ 0, 1).
p is related to the signal s which is created accord-
ing to (1) from the parameter p including the noise.
The information needed to recover p based on the esti-
mate p̂ obtained from s is extracted as follows: firstly,
we define Cd : [ 0, 1) → {0, 1}d the d-bit fixed-point
binary coding application andD the decoding application.
C = (C1,C2, . . .,Cd) denotes the representation of p and
p̃ = D(C) = ∑d

i=1 Ci2−i is the d-bit fixed-point value
of p. The coding and decoding applications correspond
to a uniform scalar quantizer with a quantization step
� = 2−d. The bit precision d can be deduced from the
target average distortion which can be the mean squared
error resulting from uniform quantization. In practice, the
design of the quantizer depends on the choice of the dis-
tortion measure. This point is discussed for the vector
quantization case in Section 2.2.2 and is detailed for a
specific application in Section 3.3.
Secondly, Iσ is defined as the most significant bit (MSB)

of the upper bound of the estimator confidence interval
(CI) and corresponds to the boundary between the reli-
able and the unreliable part of each estimation. In practice,
Iσ is estimated for a significant number of occurrences
over p̂ using the estimator for a given noise probability
density function. In this case, we assume that the noise
can be measured or simulated. Otherwise, Iσ can also be
estimated iteratively [14] as proposed for the application
described in Section 4. According to the Figure 2 which
results from the reassignment method applied to a signal
combined with a white Gaussian noise (see [13] for the
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Figure 2 Distribution of the MSB index of the absolute value of
the estimation error for a given SNR. −8 dB (a), 0 dB (b), and
10 dB (c).

experiment details), Cd(p) can be separated respectively
in a reliable part (the useful information provided by the
classic estimator) and an unreliable part as we have

Cd(p) = C1,C2, . . . ,CIσ −1︸ ︷︷ ︸
reliable part

,CIσ , . . . ,Cd︸ ︷︷ ︸
unreliable part

. (5)

Thus, p̃ can be exactly recovered from any estimated
value p̂ using I :

I = CIσ −1,CIσ , . . . ,Cd (6)

which satisfies Iσ ≤ msb
(
C(|p − p̂|)). Thus, the extra

information denoted I is defined as the part of C(p) situ-
ated between indices Iσ −1 and d (the unreliable part). The
additional CIσ −1 bit value is required for the error correc-
tion process based on the binary substitution mechanism
which is applied in Algorithm 1. The informed estima-
tion denoted p̃ is finally recovered from any p̂ ∈[ p −
2−Iσ , p + 2−Iσ ] taking advantage of I using Algorithm 1,
where ‘inc’ and ‘dec’ stand, respectively, for increment-
ing and decrementing the binary representation. In this
algorithm, we chose the MATLAB notation where C(i)
denotes Ci and C(i : j) denotes the vector Ci,Ci+1, . . .,Cj.
Firstly, Algorithm 1 substitutes the unreliable part of C(p̂)
with I(2 : l) where l = min(d, d − Iσ + 2) corresponds to
the length of vector I . Secondly, the bit value at position
Iσ − 1 is compared to I(1) which tests if the substitu-
tion process is sufficient for error correction. When the
values are different, a complementary arithmetic oper-
ation is required to solve eventual matching exception
problems of the binary representation due to the carry
mechanism. In this case, the binary representation of p̂ is
separated into two parts denoted Cante and Cpost which
are used to compute two possible candidates denoted p+
and p−. The one which is the closest to p̂ is chosen as the
error-corrected value p̃.
For audio applications, Iσ can also be estimated directly

from the mixture using a noise estimation method (e.g.,
[15]) or can be deduced using d and the length of I . In
other cases, it has to be transmitted as extra information
using a maximum of �log2(d)� bits. Here, �.� denotes the
ceiling function.
In the considered configuration, the exact value of

p̂ is assumed to be different at the coder and at the
decoder. This configuration is particularly realistic when
the observed signal depends on the transmitted extra
information used for the error correction itself. This is the
case for ISS methods which use watermarking where esti-
mated values depend on the embedded extra information.
In this particular configuration, a closed-loop differential
predictive coder [16] cannot be used. Single-parameter
informed analysis is applied to sinusoidal model parame-
ters estimation described in Section 3.2.
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Algorithm 1 Error correction of p̂ using I
C ← C( p̂)
l ← length(I)

if l ≥ 2 then
C(Iσ : Iσ + l − 2) ← I(2 : l)

end if
p̃ ← D(C)

if I(1) 	= C(Iσ − 1) then
Cante ← C(1 : Iσ − 1)
Cpost ← C(Iσ : d)

p+ ← D(inc(Cante),Cpost)
p− ← D(dec(Cante),Cpost)
if |p̂ − p+| < |p̂ − p−| then

p̃ ← p+
else

p̃ ← p−
end if

end if
return p̃

2.2.2 Generalization to vector parameter informed analysis
Consider now that we have to estimate P ∈ [ 0, 1)ν ,
a ν-dimensional real vector. As we aim at minimizing
both the bitrate and the resulting error, P has to be an
entropy-constrained vector quantized first according to
the rate-distortion theory [17] to obtain P̃.
Thus, for a target maximal average distortion D =

E[ δ(P, P̃)], the Shannon theorem tells us that there exists a
code of minimal rate R = H(P̃). The rate-distortion prob-
lem can be formulated as a minimization of the following
unconstrained Lagrangian cost function:

J = D + λR, (7)

where λ is the Lagrangian multiplier. The solution to this
optimization problem defines the rate-distortion function
R(D) which is defined as the lower bound for the bitrate
required to code P̃ with the maximal average distortion
D. A computational solution consists in using the gen-
eralized Lloyd algorithm for entropy-constrained vector
quantization proposed by Chou et al. in [18]. The result-
ing optimal quantizer is almost uniform according to the
rate-distortion theory [17] and can be combined with
variable-length entropy coding (e.g., [19]).
After the entropy-constrained optimal quantization, the

extra information used to recover P̃ from any estimated
P̂ has to be computed. As each component vector Pi can
have a different contribution for the overall distortion D,
it results to a variable relative precision over each vector
component (resulting from the vector quantizer design).
According to [16], the optimal entropy-constrained vec-
tor quantizer is a uniform quantizer for each dimension,
where a different bit budget di can be allocated to each
vector component. This bit budget can easily be deduced

from the relative accuracy over each component result-
ing from the vector quantizer design. Thus, the technique
proposed for single-parameter informed analysis can be
applied on each separated component Pi. The overall
generalized vector parameter informed analysis can be
summarized as follows, respectively, for the coder and the
decoder:

• Coder

– Synthesize s from P according to observation
model (1).

– Perform entropy-constrained vector
quantization of P using [18] (or an equivalent
method) for a given target distortion Dtarget.

– Define the reliable and the unreliable part for
each component Pi using a given estimator P̂
and compute I = (I1, I2, . . ., Iν).

– Transmit s and I to the decoder using
separated communication channels where I
can be coded using entropy coding.

• Decoder

– Estimate P̂ from s.
– Perform entropy-constrained vector

quantization of P̂ using [18] for the given
target distortion Dtarget.

– Apply error correction using Algorithm 1 for
each component Pi using Ii. Each component
Ii can be recovered if a prefix code or a
separator word was chosen at the coder.

The proposed generalized informed analysis method for
signal parameter estimation is applied to the sinusoidal
model described in the next section.

3 Informed spectral analysis
The sinusoidal model involves a complete analy-
sis/transformation/synthesis chain which is common
for most audio applications. This model is particularly
suitable for representing the deterministic part of sounds
which is perceptually the most important [6]. The quality
of synthesized signals strongly depends on the accuracy of
the estimated parameters of each sinusoidal component.

3.1 Sinusoidal modeling of sound signals
As mentioned by Fourier’s theorem, any periodic signal
can be decomposed in a sum of sinusoids with various
amplitude and harmonically related frequencies. In its
more generalized expression, we consider a sum of time-
varying complex sinusoids (the partials). We also consider
a residual signal denoted r(t) which results from the mod-
eling approximation using a finite number L of sinusoidal
components and an eventual additive observation noise.
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The resulting model can be written as

x(t) =
L∑

l=1
sl(t) + r(t)

=
L∑

l=1
al(t) exp

(
jφl(t)

) + r(t), (8)

where j2 = −1. Here, a(t) and φ(t) = ∫ t
0 ω(t) dt +

φ0 denote, respectively, the time-varying (non-stationary)
amplitude and initial phase (for t = 0). The phase param-
eter depends on the time-varying frequency denoted ω(t)
which corresponds to its instantaneous first derivative:
ω(t) = dφ

dt (t).

3.1.1 Parameter estimation
As proposed in [20], efficient estimators for sinusoidal
model parameters may be derived from the short-time
Fourier transform (STFT) of the observed signal. STFT-
based methods are preceded by peak detection and noise
thresholding in the magnitude spectrum before the sinu-
soidal parameters are estimated [21]. For each spectral
peak, the signal model is reduced to only one partial (L =
1) where the influence of the other partials is neglected (in
the general case when L > 1). For a local analysis frame
centered around time 0 using the stationary model, the
signal can be expressed as

s(t) = a0 exp
(
j (φ0 + ω0t)

)
, (9)

where a0, ω0, and φ0 are the instantaneous parameters.
The stationary model considered here is sufficient for
most of the sounds where parameters are slowly varying.
Thus, the parameters are assumed constant for a short
analysis frame [22].

3.1.2 The reassignmentmethod
The reassignment method, first proposed by Kodera
et al. [23,24], was generalized by Auger and Flandrin [3]
for time and frequency. This method enhances the reso-
lution in time and in frequency of classic STFT methods.
Let us consider first the STFT of signal s:

Sw(t,ω) =
∫ +∞

−∞
s(τ )w(τ − t) exp

(−jω(τ − t)
)
dτ .

(10)

This involves an analysis window w, band-limited in
such a way that for any frequency corresponding to one
specific partial (corresponding to a local maximum in
the magnitude spectrum), the influence of the other par-
tials can be neglected. We use the zero-centered (sym-
metric) Hann window of duration N, defined on the
[−N/2;+N/2] interval according to

w(t) = 1
2

(
1 + cos

(
2π

t
N

))
. (11)

By considering (10), one can easily derive

∂

∂t
log (Sw(t,ω)) = jω − Sw′(t,ω)

Sw(t,ω)
(12)

thus,

ω̂(t,ω) = ∂

∂t
� (

log (Sw(t,ω))
) = ω − �

(
Sw′(t,ω)

Sw(t,ω)

)
︸ ︷︷ ︸

−�ω

,

(13)

where 
(z) and �(z) correspond, respectively, to the real
and the imaginary part of the complex scalar z. Here, Sw′
denotes the STFT of signal s using the first time derivative
of the analysis window w. The estimates of the frequency
ω̂0, amplitude â0, and phase φ̂0 parameters can respec-
tively be expressed for a partial l corresponding to a local
maximum m of the (discrete) magnitude spectrum at the
(discrete) frequency ωm:

ω̂0 = ω̂(t,ωm) (14)

and

â0 =
∣∣∣∣Sw(ωm)

W (�ω)

∣∣∣∣ , (15)

φ̂0 = ∠
(
Sw(ωm))

W (�ω)

)
, (16)

whereW (ω) is the spectrum of the analysis window w:

W (ω) =
∫ +∞

−∞
w(t) exp

(−jωt
)
dt. (17)

In the case of the Hann window, we have

W (ω) = 1
2
WR,N+1(ω)

+ 1
4
WR,N+1(ω − 
Fs,N )

+ 1
4
WR,N+1(ω + 
Fs,N ), (18)

where WR,N = sin(Nω/2)
sin(ω/2) is the spectrum of the rectan-

gular window, 
Fs,N = 2πFs/N , and Fs is the sampling
frequency. The reassignment method is among the best
STFT-based methods in terms of efficiency and esti-
mation precision [4,25]. High-resolution methods [26]
improve the frequency resolution, but not the estimation
precision, always limited by the CRB (see Figure 3).

3.1.3 Theoretical bounds
When evaluating the performance of an estimator in the
presence of noise and in terms of the variance of the
estimation error, an interesting element to compare with
is the CRB which is defined as the limit to the best
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Figure 3 Variance of the error for frequency (a), amplitude (b),
and phase (c) estimation (N = 513).

possible performance achievable by an unbiased estima-
tor given a data set. For the model of (9), for the three
model parameters, these bounds have been derived, e.g.,
by Zhou et al. [27]. We will consider the asymptotic ver-
sion (for a large and a high number of observations) of the
corresponding bound.
Djurić and Kay [28] have shown that the CRB depends

on the time n0 which corresponds to time 0 in (9) and at
which the parameters are estimated. The optimal choice
in terms of lower bounds is to set n0 at the center of the
frame since the CRB depends on

εk(N) =
N−1∑
n=0

(
n − n0
N

)k
. (19)

Thus, in the stationary case, the lower bound for the
amplitude a, frequency ω, and phase φ are [27]

CRBa(a,N , σ) ≈ σ 2ε2
2(ε0ε2 − ε12)

, (20)

CRBω(a,N , σ) ≈ σ 2ε0

2a20N2(ε0ε2 − ε12)
, (21)

CRBφ(a,N , σ) ≈ σ 2ε2
2a2N2(ε0ε2 − ε12)

. (22)

The precision of the estimation of each sinusoid is limited
by this CRB, at least without using additional informa-
tion. As shown in Figure 3, the variance of the error
obtained with the reassignment method is close to the
CRB. However, for practical problems, this resulting qual-
ity can be insufficient andmay require enhancement using
complementary information as it is proposed in the next
section.

3.2 Informed approach in the scalar case
Informed analysis consists of a two-step analysis. Firstly,
extra information is extracted during a coder step using
the knowledge about the distribution of the estimation
error resulting from a classic (not informed) analysis.
Secondly, the same estimator is applied to an altered ver-
sion of the same signal (e.g., mixing with other sounds
plus addition of noise) and the errors are systemati-
cally corrected using the previously extracted informa-
tion. This approach assumes that the reference parameters
are exactly known at the coder step before the alteration
of the signal. In this section, the informed analysis frame-
work which was described in a general case in Section 2
is respectively applied to scalar and vector informed sinu-
soidal parameter estimation in the following sections.
In this section, all parameters of the sinusoidal model

described in (9) are considered separately. Thus, the
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single-parameter informed analysis method described in
Section 2.2.1 is applied to sinusoidal model parameter
estimation using the reassignment method.

3.2.1 Simulation
For the experiment where the results are presented in
Figure 3, we consider a discrete-time signal s with sam-
pling rate Fs = 44.1 kHz consisting of one complex
exponential (L = 1) generated according to (8) with an
amplitude a0 = 1 and mixed with white Gaussian noise of
variance σ 2. The SNR is given in decibels by 10 log10

(
a20
σ 2

)
.

To make the parameters independent of the sampling fre-
quency, in the remaining part of this paper, we normalize
ω by Fs. The analysis frames we consider are of odd length
N = 2H + 1 = 513 samples (the duration, in seconds, of
the analysis window being T = N/Fs), with the estima-
tion time 0 set at their center. The computation uses the
fast Fourier transform based on (10) where the continuous
integral turns into a discrete summation over N values,
with an index from −H to +H .
Thus, Figure 3 compares the variances of the errors

obtained from the estimation of each sinusoidal parame-
ter using the classic reassignment method and the 5-bit
informed version. The informed reassignment method
combines the estimation obtained using the classic reas-
signment method with Algorithm 1.
The results are also compared with the CRB and

informed lower bound (ILB) which are the theoretical
best performances, respectively, for the classic and the
informed approach. The defined ILB assumes that the
resulting error is divided by 2 (and the variance per 22) for
each informing bit. Thus, the ILB can be defined as a func-
tion of the existing CRB and the number of informing bits
denoted i as

ILB(i) = CRB · 2−2i. (23)

This bound is not reached in practice because each
informed bit can be identical to the one estimated using
the classic approach. Thus, in our experiment, the vari-
ance of each 5-bit informed estimated parameter seems to
be situated approximately in the middle between the CRB
and the ILB.

3.3 Informed approach in the vector case
In this section, each parameter of the sinusoidal model
described in (9) is grouped in a vector. We consider now
that we have to estimate P = (a,ω,φ) a vector of R3. As
a, ω, and φ have different physical meaning, they require a
different relative accuracy in order to minimize a defined
distortion measure.

3.3.1 Principles
Firstly, P is optimally vector-quantized using entropy-
constrained unrestricted spherical quantization (ECUSQ)

[29] which minimizes the weighted mean square error
(WMSE) between synthesized signals according to (9).
The ECUSQ method was shown to obtain similar perfor-
mance to that of the method described in [18] applied to
spherical quantization with a better computational com-
plexity (not iterative). Furthermore, this technique designs
the quantizer from the probability density function over
each parameter component and does not require a code-
book at the decoder.
The overall bit budget d allocated component and

results in a variable bitrate for a fixed target entropy Ht
which depends on the targetmaximal average distortionD
(e.g., if a ≈ 0, we need to allocate bits neither to phase nor
to frequency). The relationship between the rate R = �Ht�
and the average distortion is detailed in Section 3.3.2. The
function which returns the number of bits allocated to
each vector component of P for a given overall bit budget
d is �log2 γ �, where γ is the point density function given
by ECUSQ.
Secondly, informed spectral analysis is applied sepa-

rately on each vector component of P which can be pro-
cessed as in the single-parameter case. The coding appli-
cation Cd : [ 0, 1)3 → {0, 1}d uses a simple concatenation
and is written as

Cd(P) = (
Ce(a), Cf (ω), Cg(φ)

)
with e+ f + g = d. (24)

Thus, the final extra information is I = (
Ia, Iω, Iφ

)
.

For the decoding process, the relative bit allocation e,
f, and g for each parameter is required to apply the error
correction. As [29] shows that the optimal quantizer of
a depends on Ht and the optimal quantizer of φ and ω

depends on the value of the amplitude, then a is informed
first to obtain ã using Ia. Thus, f and g can be calculated
from ã using ECUSQ in order to apply the error correction
on φ and ω using Iω and Iφ . This point is more detailed
in the next section.

3.3.2 Quantization
According to the rate-distortion theory [17], it is possible
to calculate the minimal rate of information required to
obtain a defined target quality.
Firstly, we define the average distortion D chosen to be

the expected value of the distortion function δ between
the synthesized signals using the reference and quantized
parameters which can be expressed as

D = E[ δ(s, s̃)] . (25)

As a distortion function δ, we choose the weighted
squared error which depends on the ground difference
between the signals synthesized on a short analysis frame.
Thus, (25) corresponds to the WMSE between the signals
s and s̃. This is expressed as a function of the sinusoidal
model defined at (9) for a local frame analysis of length N :
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δ(s, s̃) =
ν+N−1∑
n=ν

|w[n] (s[n]−s̃[n] )|2

=
ν+N−1∑
n=ν

∣∣∣w[n] (ae j(ωn+φ) − ãe j(ω̃n+φ̃)
)∣∣∣2

= ||w||2(a2 + ã2) − 2aã

ν+N−1∑
n=ν

w[n]2 cos

⎛
⎜⎝(ω − ω̃)︸ ︷︷ ︸

�ω

n + (φ − φ̃)︸ ︷︷ ︸
�φ

⎞
⎟⎠ ,

(26)

where ||w||2 = ∑ν+N−1
n=ν w[n]2 and n = ν, . . ., ν + N − 1.

Here,w denotes the analysis window assumed to be evenly
symmetric and which defines the considered signal seg-
ment. According to [29], the distortion (25) is minimal for
ν = −(N −1)/2. This is the assumption for the remainder
of this article. Using the Taylor expansion of the cos func-
tion and the approximation aã ≈ ã2, (26) can be expressed
as (see details in the Appendix)

δ(a,ω,φ, ã, ω̃, φ̃) ≈ ||w||2
(
�2

a + ã2(�2
φ + σ 2�2

ω)
)
.

(27)

Thus, δ̄ which corresponds to the distortion over a
quantization cell with lengths �a,�ω,�φ can be deduced
from (26) by applying the expectation operation as

δ̄(ã, ω̃, φ̃,�a,�ω,�φ) =
∫∫∫

fA,
,�(a,ω,φ)δ(a,ω,φ,

ã, ω̃, φ̃) da dω dφ,
(28)

where fA,
,�(a,ω,φ) denotes the joint probability density
function of each source parameter represented by random
variables A, 
, and �. Using the approximation (42), δ̄ can
be expressed as a function of quantization step denoted �

assumed to be constant over each quantization cell (using
the high resolution assumption). A high rate approxima-
tion of (25) can be obtained by averaging the distortion
over all quantization cells of indices ιa, ιω, and ιφ taken in
their corresponding alphabet Ia, Iω, Iφ :

D =
∑
ιa∈Ia

∑
ιω∈Iω

∑
ιφ∈Iφ

p(ιa, ιω, ιφ)δ̄(ã, ω̃, φ̃,�a,�ω,�φ)ιa,ιω ,ιφ

≈ ||w2||
12

∫∫∫
fA,
,�(a,ω,φ)

(
γ −2
A (a,ω,φ)

+ã2(γ −2
� (a,ω,φ) + σ 2γ −2


 (a,ω,φ))
)
da dω dφ,

(29)

where p(ιa, ιω, ιφ) is the probability of the cell with quanti-
zation indices (ιa,ιω,ιφ), σ 2 = 1

||w||2
∑ν+N−1

n=ν w[n]2 n2, and

γ = �−1 is the so-called quantization point density func-
tion which gives the total number of quantization levels
when it is integrated over a region.
Now we aim at defining the quantization point den-

sity functions which minimize D for a target entropy
denoted Ht which corresponds to the theoretical minimal
amount of information required to code one sinusoidal
component.
Using the high rate assumption, the joint entropy can be

approximated as follows:

Ht ≈ H(A,
,�)

+
∫∫∫

fA,
,�(a,ω,φ) log2(γA(a,ω,φ)) da dω dφ

+
∫∫∫

fA,
,�(a,ω,φ) log2(γ
(a,ω,φ)) da dω dφ

+
∫∫∫

fA,
,�(a,ω,φ) log2(γ�(a,ω,φ)) da dω dφ.

(30)

So finally, we have to minimize the following criterion
using the method of Lagrange multiplier:

J = D + λH̃t ,

where H̃t = Ht − H(A,
,�) and we obtain (see [29])

γA(a,φ,ω) =
( ||w||2
6λ log2(e)

) 1
2
, (31)

γ�(a,φ,ω) = aγA(a,φ,ω), (32)
γ
(a,φ,ω) = aσγA(a,φ,ω) (33)

with

λ = ||w||22− 2
3
(
H̃t−2b(A)−log2(σ )

)
6 log2(e)

, (34)

where e = exp(1) and b(A) = ∫
fA(a) log2(a) da; thus, we

deduce

γA(a,φ,ω) = 2
1
3
(
H̃t−2b(A)−log2(σ )

)
, (35)

γ�(a,φ,ω) = a2
1
3
(
H̃t−2b(A)−log2(σ )

)
, (36)

γ
(a,φ,ω) = aσ2
1
3
(
H̃t−2b(A)−log2(σ )

)
, (37)

which corresponds to the ECUSQ optimal vector quan-
tizer design. This result provides the relative accuracy of
each parameter for the target entropy Ht . By substituting
(35), (36), and (37) in (29), we obtain the corresponding
theoretical minimal distortion reachable with ECUSQ:

DECUSQ = ||w||2
4

2− 2
3
(
H̃t−2b(A)−log2(σ )

)
. (38)
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Here, DECUSQ is obtained for a target entropy Ht which
corresponds in practice approximately to the average
amount of bits required for the coding of one sinusoidal
component. Using the proposed informed analysis frame-
work for vector informed analysis, we can reduce this
distortion with a classic estimator using the same bit bud-
get. As shown in the next section, the resulting distortion
depends on the initial SNR of the analyzed mixture signal.

3.3.3 Simulation
For this experiment we generated 10,000 random signals
composed of one exponential sinusoid according to (9)
and combined with a white Gaussian noise of different
variance in order to result a SNR in the range of [−20 dB,
50 dB]. Amplitude and frequency parameters are gener-
ated according to Rayleigh probability density functions,
respectively, of parameters σa = 0.2 and σω = π/11. The

phase parameter follows the uniform probability density
function U(0, 2π). For analysis, we use the Hann window
of length N = 1, 023 with estimation set at this center.
The target entropy Ht is calculated from ECUSQ quan-
tized [29] for a target SNR set respectively at 45 dB and
at 100 dB. Iσ is estimated using the knowledge about the
fixed initial SNR uniformly quantized with 4 bits on the
[−20 dB, SNRtarget] interval.
For results, Figure 4a,b shows the reached average SNR

using informed spectral analysis and Figure 4c,d shows the
corresponding average number of bits of extra informa-
tion used for the analysis of each sinusoidal component.
The presented measures are expressed as functions of the
initial SNR simulated with a white Gaussian noise. These
figures show that informed analysis can be used to mas-
ter the resulting target audio quality. We observe that the
amount of transmitted information decreases when the

Figure 4 Resulting mean SNR (a, b) and bitrate allocation (c, d) over sinusoidal parameters.
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effective resulting error is lower using the classic estima-
tor (here, the reassignment method described in Section
3.1.2). As shown in Figure 4c, the required amount of extra
information is zero when the classic estimator reaches
the target SNR in Figure 4a, an average bitrate of 0 kbps
is reached for an initial SNR greater than 20 dB due to
the expectation operation applied over 10,000 random
signals). Thus, the proposed informed analysis method
achieves to reach any fixed target SNR taking benefit of
the classic estimator. Furthermore, the transmitted data is
optimally allocated to each sinusoidal parameter using the
vector quantized design described in Section 3.3.2.

4 Application to isolated source parameter
estimation from amonophonic mixture

As explained in Section 3, the estimation obtained with
a classic estimator applied on a simple signal (composed
of one source) is more accurate than when it is applied
on complex sounds (e.g., polyphonic mixture with several
sources plus noise).When the separated source signals are
available before the mixing process, this particular con-
figuration can be exploited using the informed analysis
framework described previously.

4.1 Method overview
We propose here (see Figure 5) an ISS technique based
on a coder/decoder configuration where the original dis-
crete source signals sk[n] are assumed to be exactly known
at the coder. The reference sinusoidal parameters of each
source signal denoted Pk are estimated from isolated
sk[n] using a classic estimator before the mixing process.
The necessary information needed to recover Pk from

Figure 5 Structure of the proposed system for informed
single-source signal analysis in a monophonic soundmixture.
Coder (a) and decoder (b) .

x[n] using a classic estimator is estimated and inaudi-
bly embedded into the mixture using watermarking [30].
As described in Figure 5, the embedded side informa-
tion depends on the resulting watermarked mixture itself
denoted xW [n]. Thus, it is computed using an iterative
update process detailed in Section 4.7. At the decoder,
the embedded information is extracted and is combined
with the same classic estimator according to the informed
analysis framework detailed in Section 2.

4.2 Sound source model and parameter estimation
Consider a discrete instantaneous single-channel discrete
mixture signal composed of K sources which can be
expressed as follows:

x[n]=
K∑

k=1
sk[n]+r[n] , (39)

where r[n] is the residual signal. Source signals sk[n] are
decomposed as a sum of L real sinusoidal components [1]
for each local analysis frame written as

sk[n]=
L∑

l=1
al cos (ωln + φl) (40)

which corresponds to the real part of (9) where a, ω, and
φ, respectively, are the amplitude, frequency, and phase
parameters assumed to be locally constant. For the anal-
ysis process, the instantaneous parameters are estimated
using a classic frame-based estimator.
As discussed in [13] (see Section 2), efficient estimators

like the spectral reassignment or the derivative method [4]
are suitable for informed spectral analysis. In fact, these
estimators almost reach the theoretical bounds and mini-
mize the bitrate required to code the extra information.

4.3 Source mask computation and coding
In order to estimate separately the sinusoidal parameters
of each source signal, the discrete spectrogram has to be
clustered. Thus, the time-frequency activation mask of
each source signal sk has to be known before the estima-
tion of sinusoidal parameter step (which is often preceded
by a peak detection step in the magnitude spectrum). This
issue is solved using long-term sinusoidal modeling [31]
of the reference parameters at the coder which allows to
code the entire mask with a negligible bitrate, thanks to
the informed estimation of sinusoidal parameters.
Long-term sinusoidal modeling consists in estimating

the trajectory of each partial by associating the instanta-
neous sinusoidal components estimated between adjacent
analysis frames. This task is completed using a partial
tracking algorithm [31] which estimates instantaneous
partials both at frame

◦n and at frame
◦n+1. Thus, each
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partial at frame
◦n is associated with the most proba-

ble one (the closest from the prediction) at frame
◦n+1

which verifies given threshold conditions (a maximal dis-
tance threshold is fixed). Using a partial tracking algo-
rithm, a new partial trajectory is created (partial birth)
for each isolated estimated component (not associated to
an existing partial trajectory). The end of a partial tra-
jectory (partial death) is reached when no instantaneous
sinusoidal component can be associated to an existing
partial.
As a partial tracking algorithm applied on each iso-

lated source signal provides different results than when
it is applied to the mixture, information about the ref-
erence partials has to be transmitted. An efficient solu-
tion consists in coding the partials of each source signal
(computed from the reference sinusoidal parameters) as a
triplet (

◦
k,α,β) where

◦
k corresponds to the first discrete

frequency index corresponding to the birth of the par-
tial. α and β correspond to the time frame indices which,
respectively, are the birth and the death of the consid-
ered partial. Thus, each frequency index can be coded
using �log2(N/2)� bits where N is the STFT length. Each
frame index is coded using �log2(T)� where T is the total
number of analysis frames.
As the estimated sinusoidal parameters are reliable at

the decoder using informed spectral analysis, the exact
trajectory of each partial is recovered at each instant

◦n.
Thus, the mask at frame ◦n+1 is computed using the pre-
dicted parameters from the corrected partials at frame

◦n.
This process is applied for each partial until the last frame
index is reached (coded as β in the triplet).
In our implementation, we use a simplified predictor

where amplitude and frequency parameters are assumed
constant between two adjacent frames. As a threshold, the
difference between the estimated and the predicted fre-
quency should not exceed 10%. In our experiments, we
use 23-ms-long 50% overlapped frames at a sampling rate
Fs = 44.1 kHz. As shown in Section 4.7, the resulting
bitrate depends on the number of sinusoidal components
and is negligible compared to the entire extra information
bitrate.

4.4 Watermarking process
The technique presented in [30] is used to inaudibly
embed the extra information computed previously. It is
inspired from quantization index modulation (QIM) [12]
and is based on a modified discrete cosine transform
(MDCT) coefficient quantization.We choose this method
for its large embedding capacity, higher than 200 kbits/s
and for its high perceptual resulting quality. Further-
more, [30] ensures that the exact embedded information
is recovered at the decoder and can be used for real-
time processing with STFT-based analysis. However, this

technique is not robust to lossy audio compression and
must be used with lossless or uncompressed audio format
(e.g., FLAC, AIFF, WAVE).

4.5 Implementation details
The entire method summarized in Figure 5a,b can be
implemented according to Algorithms 2 and 3, respec-
tively, for the coder and the decoder. The results obtained
with our implementation are detailed and discussed in
Section 4.7.

Algorithm 2 Coder
input: sk[n]: isolated source signals
output: xW [n]: watermarked mixture

• Estimate Pk,l from sk[n] using the reassignment
method (see Section 3.1.2).

• Compute quantized P̃k,l using the ECUSQ method
(see Section 3.3.2).

• Compute binary maskmk,l from P̃k,l using the
long-term sinusoidal modeling (see Section 4.3).

• Estimate Iσ ,k,l and Ik,l from P̂k,l using the informed
spectral analysis method (see Section 3.3) with
simulated mixing process according to (39) combined
with watermark (see Section 4.4).

• Compute xW [n] using the watermarking technique
coder [30] containing (mk,l, Iσ ,k,l, Ik,l).

Algorithm 3 Decoder
input: xW [n]: watermarked mixture
output: s̃k[n], P̃k,l: isolated source signals and parameters

• Recover (mk,l, Iσ ,k,l, Ik,l) from watermark extraction
from xW [n] using the watermarking technique
decoder [30].

• Estimate P̂k,l usingmk,l combined with the
reassignment method (see Section 3.1.2).

• Compute P̃k,l with Iσ ,k,l and Ik,l using the informed
spectral analysis (see Section 3.3).

• Synthesize s̃k[n] from P̃k,l according to (40).

4.6 Computational complexity
The proposed algorithm depends on the number of sources
K, the STFT length N, and the number of non-negligible
sinusoidal components denoted M which depends on the
parameter quantization step. In the proposed implemen-
tation, the maximal value of M was limited to 50 by
analysis frame.We also consider the number λ of iteration
used at the coder to update the value of Iσ and which
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require the analysis of the watermarked mixture created
at a previous iteration.
We detail in Table 1 the run-time complexity expressed

in units of time for both the coder and the decoder. These
complexities correspond to the worst-case scenario using
the ‘big O’ notation where λ < K < M < N . In the
proposed notation, we postulate that all arithmetic oper-
ations require exactly one unit of time to be executed.
The complexity of the watermarking method is not taken
into account in this calculation. Table 1 reveals that the
encoder is more expensive than the decoder in terms of
run-time complexity due to the iterative process and the
(K + λ)-fold STFT used for the reference parameter esti-
mation and the information extraction which dominate
the execution time.

4.7 Experiments and results
In this section, we apply the isolated source parameter
estimation system described in Section 4 to a musical
piece mixture composed of six source signals: a female
singing voice, two guitars, a drum, a bass, and a synthe-
sizer keyboard. The reference parameters Pk,l are esti-
mated first at the coder from isolated source signals.
According to the desired target quality, the reference
parameters are quantized and partials are constructed in
order to compute the time-frequencymask of each source.
Finally, the extra information composed of the coded
mask and the computed information resulting from the
informed spectral analysis algorithm is inaudibly embed-
ded into the resulting mixture signal using watermarking.
After the coding process, a decoding verification is applied
on the watermarked signal in order to check if the Iσ
parameter of each component was correctly estimated

Table 1 Run-time complexity in units of time for the
proposed algorithm for informed isolated parameter
estimation

Subroutine Arithmetic operations in

units of time

STFT and source parameter estimation O(KN log(N))

ECUSQ O(KM)

Mask computation and partial tracking O(M2)

Extra information computation O(λN log(N))

Encoder total run-time complexity Tenc(λ, K ,M,N) =
O((λ + K)N log(N) + M2)

STFT and parameter estimation O(N log(N))

Error correction and dequantization O(KM)

Source signal synthesis O(KN log(N)))

Decoder total run-time complexity Tdec(K ,M,N) = O(KN log(N))

The run-time complexities are expressed as functions of the number of sources
K, the number of sinusoidal componentsM, and the number of iterations λ used
to compute extra information and the transform length N.

for decoding. Otherwise, Iσ is updated with a new esti-
mated lower value and the coding process is reiterated.
As explained in Section 2.2.1 for single-parameter estima-
tion, a lower value of Iσ increases the amount of trans-
mitted extra information; however, it ensures that each
informed parameter reaches the target precision. In prac-
tice, the final watermarked mixture was reached after less
than three iterations.
Figures 6 and 7 compare the practical resulting bitrate

used to reach the target SNR which is computed between
the resulting signals and the references signals (synthe-
sized using Pk,l). These figures describe the exact SNR
reached using the proposed method. However, when
the size of the extra information exceeds the watermark
capacity, the results are obtained with a simulated mix-
ture using the maximal watermarking bandwidth. These
figures compare the results obtained with the classic (not
informed) approach (represented with a red circle), the
pure coding approach using the ECUSQ optimal quan-
tizer, and the informed approach which combines estima-
tion and coding. The results obtained using these three
different approaches can be explained as follows:

• The classic (not informed) result is obtained using
the reassignment estimator and uses a bitrate equal
to 0 kbps.

• Using the pure coding approach, the theoretical
ECUSQ curve corresponds to DECUSQ which is
computed according to (38) under the assumption
that each sinusoidal component is coded using the
same target entropy denoted Ht . Thus, this curve
indicates the number of non-negligible (with a
quantized amplitude higher than zero) sinusoidal
components resulting from the quantization process.
This number increases with the target quality and the
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Figure 6 Overall bitrate used to obtain the defined SNR for the
entire mixture with six sources.



Fourer and Marchand EURASIP Journal on Advances in Signal Processing 2013, 2013:178 Page 14 of 17
http://asp.eurasipjournals.com/content/2013/1/178

140

120

100

80

60

40

20

0
0 10 20 30 40 50 60 70 80

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)

140

120

100

80

60

40

20

0

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)

140

120

100

80

60

40

20

0

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)

140

120

100

80

60

40

20

0

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)
140

120

100

80

60

40

20

0

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)

140

120

100

80

60

40

20

0

160

O
ve

ra
ll 

bi
tr

at
e 

(k
bp

s)

 target SNR
0 10 20 30 40 50 60 70 80

 target SNR

0 10 20 30 40 50 60 70 80
 target SNR

0 10 20 30 40 50 60 70 80
 target SNR

0 10 20 30 40 50 60 70 80
 target SNR

0 10 20 30 40 50 60 70 80
 target SNR

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

ECUSQ theoretical

ECUSQ practical

classic (not informed)

informed analysis

informed analysis (no mask)

watermark capacity

Figure 7 Comparison of the bitrate requirement for each method to reach the target SNR. Guitar 1 (a), bass (b), drum (c), synthesizer (d),
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mismatch of the source signal with the sinusoidal
model. The practical ECUSQ curve corresponds to
the real bitbrate which was used to reach the target
SNR. This bitrate differs from the theoretical curve
due to the high rate assumption and the mismatch
between the theoretical and the practical distribution
over source signal parameters (used to design the
vector quantizer).

• Using the informed approach, we compute two
curves which show the bitrate required by the
time-frequency mask with the proposed method.
When the number of non-negligible components
increases, the bitrate used to code the mask increases
(e.g., drum which mismatches the sinusoidal model).

The resulting bitrate presented in Figures 6 and 7
strongly depends on the number of non-negligible sinu-
soidal components which increases according to the
resulting SNR. According to Figures 6 and 7, informed
analysis requires a lower bitrate than the ECUSQ method
alone when the signal mixture is available. However, this
benefit decreases when the target SNR is too high due
to a large number of sinusoidal components which can-
not be efficiently analyzed using the classic estimator.
Moreover, as shown in Figure 6 for a realistic applica-
tion on the entire mixture with a limited watermarking
capacity, informed analysis offers a gain of more than
15 dB for the SNR. The practical results which use
the maximal quality simultaneously for all source signals
using entire watermark capacity are available online for
listening a.

5 Conclusions
The informed approach for model parameter estimation
was described in a theoretical and a practical frame-
work. Firstly, we proposed a general method which can
be applied to any signal parameter estimation problem.
Secondly, the proposed method was applied to sinusoidal
model parameter estimation of isolated source signals
from a monaural sound mixture. The resulting quality
and bitrate were compared with those of the classic esti-
mation approach and the pure coding approach using
ECUSQ which was shown optimal for WMSE distortion.
The results show a significant benefit of the proposed
approach which successfully takes advantage of a clas-
sic estimation using side information coded with a lower
bitrate than theoretically required to reach a target qual-
ity. Furthermore, we showed that this approach can be
combined with a watermarking technique to inaudibly
embed the required extra information into the analyzed
signal itself. Thus, it allows the implementation of realis-
tic applications where the signal parameters are required
with a target precision. However, the practical experi-
ments show limitations of this approach for high target

precision where the efficiency of extra information coding
should be improved.
Future works will consist in proposing applications with

more adapted models (e.g., sound transients and noise)
and a more efficient coding scheme for the side informa-
tion (e.g., entropy coding) to reduce the resulting bitrate.
Also, considering a perceptual distortion measure should
be a better choice for audio listening applications which
do not require a fine precision of the imperceptible signal
parameters. This should result in bitrates comparable to
those of existing ISS techniques.

Endnote
aSound results are available online for listening at

http://www.labri.fr/perso/fourer/publi/JASP13.

Appendix
Average distortion between two sinusoidal signals
Let the weighted square error between two sinusoidal
signals s and s̃ be expressed according to (26) as

δ(s, s̃) = ||w||2 (a2 + ã2)︸ ︷︷ ︸
�2

a+2aã

− 2aã
ν+N−1∑
n=ν

w[n]2 cos

⎛
⎜⎜⎝(ω − ω̃)︸ ︷︷ ︸

�ω

n + (φ − φ̃)︸ ︷︷ ︸
�φ

⎞
⎟⎟⎠ .

(41)

Using the second order of the Taylor series expansion
at 0 of the cosine function, we can approximate cos(x) ≈
1 − x2

2 . Thus, (41) can be expressed as

δ(a,ω,φ, ã, ω̃, φ̃) ≈ ||w||2(�2
a + 2aã) − 2aã

ν+N−1∑
n=ν

w[n]2

(
1 − 1

2
(�2

ωn2 + 2n�ω�φ + �2
φ)

)

≈ ||w||2�2
a + aã

⎛
⎜⎜⎜⎜⎜⎝

ν+N−1∑
n=ν

w[n]2 n2

︸ ︷︷ ︸
σ 2 ||w||2

�2
ω

+
ν+N−1∑
n=ν

w[n]2 �2
φ + 2

ν+N−1∑
n=ν

w[n]2 n�ω�φ

⎞
⎟⎟⎟⎟⎟⎠

≈ ||w||2

⎛
⎜⎜⎜⎜⎝�2

a + aã

⎛
⎜⎜⎜⎜⎝σ 2�2

ω + �2
φ

+ 2
||w||2

ν+N−1∑
n=ν

w[n]2 n�φ�ω︸ ︷︷ ︸
≈0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

with σ 2 = 1
||w||2

∑ν+N−1
n=ν w[n]2 n2.

http://www.labri.fr/perso/fourer/publi/JASP13
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Using the approximation aã ≈ ã2, we obtain

δ(a,ω,φ, ã, ω̃, φ̃) ≈ ||w||2
(
�2

a + ã2
(
�2

φ + σ 2�2
ω

))
.

(42)

Now we aim at calculating the expectation δ̄ over a
quantization cell with lengths �a,�ω,�φ . This can be
expressed as a function of the joint probability den-
sity function fA,
,�(a,ω,φ) of the sinusoïdal parameters
included into a quantization cell:

δ̄(ã, ω̃, φ̃,�a,�ω,�φ) =
∫∫∫

fA,
,�(a,ω,φ)δ(a,ω,φ,

ã, ω̃, φ̃) da dω dφ.
(43)

Under the high rate assumptions, fA,
,�(a,ω,φ) is
approximately constant over each quantization cell. Thus,
each quantized value is located in the center of the quan-
tization intervals.
Thus, δ̄ can be approximated using (42) as

δ̄(ã,�a,�ω,�φ) ≈||w||2
(
2

∫ �a/2

0

1
�a

x2 dx

+ 2ã2σ 2
∫ �ω/2

0

1
�ω

y2 dy

+ 2ã2
∫ �φ/2

0

1
�φ

z2 dz
)

≈||w||2
(

2
�a

�3
a

24

+ã2σ 2 2
�ω

�3
ω

24
+ ã2

2
�φ

�3
φ

24

)

≈||w||2
12

(�2
a + ã2(σ 2�2

ω + �2
φ)).

(44)

This result is used for the calculation of (29).
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