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Abstract

This paper presents an image inpainting method based on sparse representations optimized with respect to a
perceptual metric. In the proposed method, the structural similarity (SSIM) index is utilized as a criterion to optimize
the representation performance of image data. Specifically, the proposed method enables the formulation of two
important procedures in the sparse representation problem, ‘estimation of sparse representation coefficients’ and
‘update of the dictionary’, based on the SSIM index. Then, using the generated dictionary, approximation of target
patches including missing areas via the SSIM-based sparse representation becomes feasible. Consequently, image
inpainting for which procedures are totally derived from the SSIM index is realized. Experimental results show that the
proposed method enables successful inpainting of missing areas.

1 Introduction
In the field of image processing, there exist many studies
on image restoration/enhancement such as image denois-
ing [1-3], image deblurring [4,5], and image inpainting [6].
Furthermore, it is well known that the performance of
these studies has been rapidly improved in recent years
[1,2,4]. Missing area reconstruction is one of the most
attractive topics for study in the field of image restoration
since it has a number of applications. Unnecessary object
removal, missing block reconstruction in an error-prone
environment in wireless communication, and restoration
of corrupted old films are representative applications.
Since missing area reconstruction can be used in many
applications, it has various names including inpainting,
image completion, error concealment, and blotch and
scratch removal. In this paper, we use ‘inpainting’ since
this is one of the most common names in this research
field.
Many inpainting methods for the above applications

have been proposed [7-45]. Most methods are broadly
classified into two categories: missing structure recon-
struction [7-18] and missing texture reconstruction
[21-45]. In addition, there have been proposed several
inpainting methods which adopt the combined use of the
structure and texture reconstruction approaches [20,42].
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Variational image inpainting methods which aim at
successful structure component reconstruction have tra-
ditionally been studied. Variational image inpainting is
performed based on the continuity of the geometrical
structure of images. Most variational inpainting meth-
ods solve partial differential equations (PDEs). One of
the pioneering works was proposed by Masnou et al. [7].
Furthermore, Bertalmio et al. proposed a representative
image inpainting technique which is based on PDEs. Not
only the above methods but also several improved meth-
ods have recently been proposed [12-15]. Although these
variational image inpainting methods enable successful
reconstruction of the structure components, images also
include other different important components, i.e., tex-
ture components, and alternative methods tend to output
better results. The remainder of this paper focuses on the
reconstruction of textures with discussion of its details.
Results of pioneering work based on texture synthe-

sis were reported by Efros et al. [21]. Their method is
based on the Markov random field model, and inpainting
is realized by copying known pixels within a target image.
It is well known that successful inpainting of pure tex-
ture images can be realized using their method. In recent
years, their ideas have been improved bymany researchers
[22-30].
Drori et al. [23] and Criminisi et al. [24] developed

more accurate inpainting techniques. Drori et al. pro-
posed a fragment-based image completion algorithm that
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can preserve not only textures but also structures within
target images. Criminisi et al. proposed an exemplar-
based inpainting method, and it became a benchmarking
method in this study field. Their method adopts a patch-
based greedy sampling algorithm, and faster and simpler
inpainting becomes feasible. Recently, many improved
versions of the above exemplar-based inpainting method
[25-29] have intensively been proposed. Specifically, Meur
et al. proposed multiresolution analysis-based inpaint-
ing approaches using the exemplar-based method [28,29].
Kwok et al. proposed a much faster inpainting method
in which useful schemes for calculating patch similarities
in exemplar-based inpainting were introduced [30]. They
also reported that their method provided better results
than those of the previously reported methods in some
cases.
The above existing methods based on texture synthesis

and exemplar-based inpainting generally copy pixel values
to missing areas directly. Thus, if target images contain
uniform and simple textures, the methods can perform
accurate inpainting. However, if the above conditions are
not satisfied, it becomes difficult to approximate miss-
ing textures by only the best matched examples. There-
fore, many inpainting methods that approximate patches
including missing areas using subspaces generated from
known areas within target images have been proposed. In
thesemethods, target patches are generally represented by
linear combinations of bases that span the obtained sub-
spaces. The performance of inpainting therefore depends
on the generated subspaces and linear coefficients for cal-
culating the linear combination. Amano et al. proposed a
principal component analysis (PCA)-based missing area
inpainting method using back projection for lost pixels
[31]. They utilized an eigenspace that enabled derivation
of inverse projection for the inpainting. Several inpaint-
ing methods in which kernel methods are introduced into
PCA-based subspace construction have also been pro-
posed [32-35]. Based on nonlinear eigenspaces, successful
representation of image data becomes feasible, i.e., the
methods are suitable for approximating nonlinear struc-
tures in images.
Recently, sparse representation for image inpainting has

been intensively studied. Sparse representation enables
adaptive selection of optimal bases suitable for approx-
imating target images [36,37]. This means subspaces
utilized for the inpainting can be adaptively provided.
Therefore, several inpainting methods using sparse rep-
resentation have been proposed [38-42]. Furthermore,
Xu et al. have shown the effective use of sparse rep-
resentation for realizing image inpainting [41]. Specifi-
cally, in their method, new modeling of patch priority
and patch representation, which are two crucial steps
for patch propagation in an exemplar-based inpainting
approach, based on sparsity is adopted. In similar ideas,

several inpainting methods based on neighbor embed-
ding approaches are proposed [43,44]. These methods
are derived from the aspect of the manifold learn-
ing and provide good results. Furthermore, inpainting
methods based on rank minimization have also been
proposed [45].
The above-described existing methods are based on

least squares approximation for inpainting. This means
that inpainting minimizing the mean square error (MSE)
of intensities, which is the most popular metric, is per-
formed. However, several works [46,47] show that MSE
optimal algorithms cannot provide high visual quality.
Thus, it may not be appropriate to use MSE as a qual-
ity measure for the inpainting. It should be noted that
using kernel PCA (KPCA) [32,33], methods such as those
shown in [34] and [35] try to approximate nonlinear image
features. These methods perform least squares approxi-
mation in high-dimensional nonlinear feature spaces, and
it has been reported that improvement in performance
was achieved in some cases.
Recently, image quality assessment has become popu-

lar in overcoming the problem of MSE and its variants.
Criteria such as noise quality measure [48], informa-
tion fidelity criterion [49], and visual information fidelity
[50] are well known as perceptual distortion measures,
and their performances have been evaluated in detail
[51]. The structural similarity (SSIM) index [52] is uti-
lized as one of the most representative quality measures
in many fields of image processing. Since its formu-
lation is simple and easy to analyze, the SSIM index
can be applied to not only image quality assessment
but also design of linear equalizers [53]. Therefore, suc-
cessful inpainting based on this quality measure can be
expected.
In this paper, we present an inpainting method based

on sparse representations optimized with respect to a
perceptual metric. In order to perform inpainting using
sparse representation, the SSIM index is used for a crite-
rion to optimize the representation performance.
Specifically, the proposed method introduces the SSIM-

based criterion into two important procedures in the
sparse representation problem, i.e., ‘estimation of the
sparse representation coefficients’ and ‘update of the
dictionary’. This is the biggest difference between the pro-
posed method and existing methods. Then, by deriving
the sparse representation of target patches includingmiss-
ing areas based on the generated dictionary, inpainting
based on the SSIM index is realized. Note that in the
above approach, since optimization problems maximiz-
ing the SSIM index are nonconvex, the computation
scheme in [53] is adopted, and nonconvex optimiza-
tion problems are reformulated as quasi-convex problems.
In the proposed method, the optimal subspace can be
adaptively provided for each target patch using sparse
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representation. Furthermore, since the SSIM index, which
is a better perceptual criterion than the traditional MSE
and its variants, is used, successful inpainting can be
expected.
A similar approach has also been proposed by Rehman

et al. for realizing noise removal and super-resolution [54].
On the other hand, we present a new scheme for realiz-
ing inpainting in this paper, and the target application is
different from those in [54]. Basically, in our method, the
algorithms for estimation of sparse representation coeffi-
cients and generation of the dictionary are different from
those in the method of Rehman et al. Furthermore, the
biggest difference between our method and the method
in [54] is generation of the dictionary. Specifically, in
the existing method [54], the dictionary is obtained by
directly using the K-SVD algorithm [36], which is based
on theMSE-based criterion, where SVD represents singu-
lar value decomposition. On the other hand, the proposed
method tries to obtain the dictionary based on the SSIM-
based criterion, and all of the procedures are based on the
SSIM index.
This paper is organized as follows. First, in Section 2,

we briefly explain sparse representation and the SSIM
index, which are used in the proposed method, as pre-
liminaries. Next, in Section 3, we explain the overview of
the proposed method. An inpainting method via sparse
representation based on the SSIM index is proposed in
Section 4. Experimental results that verify the perfor-
mance of the proposed method are shown in Section 5.
Finally, conclusions are given in Section 6.

2 Preliminaries
In this section, we briefly explain sparse representation
and the SSIM index used in the proposed method as pre-
liminaries. They are presented in Sections 2.1 and 2.2,
respectively.

2.1 Sparse representation
Sparse representation of signals is explained in this sub-
section. The basic algorithm for sparse representation
and the K-SVD algorithm [36], which is closely related to
the proposed method, are shown in this subsection. Thus,
we briefly explain their ideas.
Given an overcomplete dictionary D∈Rn×K whose

columns are prototype signal-atoms dj ∈ Rn( j = 1,
2, . . . ,K), a target signal y ∈ Rn can be represented as a
sparse linear combination of these atomsa. Specifically, y
is approximated as y ∼= Dx

(
x ∈ RK ), where x is a vector

containing the representation coefficients of signal y, and
it satisfies ||y − Dx||p ≤ ε. In this subsection, we assume
p = 2.
If n < K and D is a full-rank matrix, an infinite num-

ber of solutions are available for the above representation

problem. Thus, a new constraint is introduced into this
problem, and the solution is obtained by solving

min
x

∣∣∣∣y − Dx
∣∣∣∣2
2 subject to ||x||0 ≤ T , (1)

where ||·||0 represents the l0-norm. Furthermore,T deter-
mines the sparsity of the signals. The above equation
represents the optimal representation coefficient vector x
minimizing the distance ||y − Dx||22 which is calculated
under the constraint that the number of the nonzero ele-
ments in x is T or less. For example, Figure 1a shows an
example of the sparse representation of the target vector y,
where in this example, ||x||0 = 6. Therefore, the number
of the nonzero elements in x is six. By limiting the number
of the nonzero elements, we can obtain the solution of the
above linear combination. It is well known that calculation
of the optimal solution is a nondeterministic polynomial-
time hard (NP-hard) problem [55]. Thus, several methods
that approximately provide solutions of the above problem
have been proposed, and the simplest ones are matching
pursuit (MP) [56] and orthogonal MP (OMP) algorithms
[57-59]. The basis pursuit algorithm is also a represen-
tative algorithm solving the problems by replacing the
l0-norm with an l1-norm [60]. The focal underdeter-
mined system solver is a similar algorithm using lp-norm
(p ≤ 1) [61].
Next, given a set of signal vectors yi(i = 1, 2, . . . ,N),

there exist dictionary matrices providing the sparse solu-
tion xi. The K-SVD algorithm [36] can provide the optimal
dictionary matrix D and coefficient vectors xi(i = 1,
2, . . . ,N) by solving

min
D,X

{||Y − DX||2F
}

subject to ∀i, ||xi||0 ≤ T , (2)

where X = [x1, x2, . . . , xN ] and Y = [y1, y2, . . . , yN ], and
|| · ||F represents the Frobenius norm. In Equation 2, this
problem is to obtain the optimal dictionary matrix D and
representation coefficient vectors xi(i = 1, 2, . . . ,N) min-
imizing the sum of ||yi − Dxi||2(i = 1, 2, . . . ,N) under
the constraint that the number of the nonzero elements
in xi(i = 1, 2, . . . ,N) is T or less. Figure 1b shows the
relationship between Y and DX, where the number of the
nonzero values in each xi of X is six in this example. The
K-SVD algorithm approximately calculates the optimal
solution of Equation 2 by iterating calculation of xi(i = 1,
2, . . . ,N) based on the OMP algorithm and update of
the atoms dj(j = 1, 2, . . . ,K) in the dictionary matrix
D using singular value decomposition (SVD). Specifically,
the representation coefficient vector xi(i = 1, 2, . . . ,N) is
estimated one by one, and each atom dj(j = 1, 2, . . . ,K)
in the dictionary matrix D is also updated one by one.
As described above, for updating dj(j = 1, 2, . . . ,K), SVD
is adopted for effectively providing the approximately
optimal solution.
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Figure 1 Brief overview of the sparse representation. (a) Sparse linear combination Dx approximating y, where ||x||0 = 6 and (b) two matrices
D and X calculated in K-SVD algorithm [36] from Y, where D is a dictionary matrix, X is a matrix including representation coefficient vectors, and Y is
a matrix including target signals.

2.2 Structural similarity index
The SSIM index represents the similarity between two sig-
nal vectors y1 and y2(∈ Rn), and its specific definition is
as follows:

SSIM(y1, y2) = [
l(y1, y2)

]α × [
c(y1, y2)

]β × [
s(y1, y2)

]γ , (3)

where the terms l(y1, y2) and c(y1, y2) respectively com-
pare the mean and variance of the two signal vectors.
Furthermore, s(y1, y2) measures their structural correla-
tion. Therefore, from Equation 3, the similarity between
two signal vectors is obtained from the three similarities of
their luminance, contrast, and structure components, i.e.,

l(y1, y2), c(y1, y2), and s(y1, y2), which are closely related
to the human visual system (HVS), where their details are
shown below. Note that the parameters α > 0,β > 0,
and γ > 0 determine the relative importance of the
three components in Equation 3. Next, the three terms,
l(y1, y2), c(y1, y2), and s(y1, y2), are obtained as

l(y1, y2) = 2μy1μy2 + C1
μ2
y1 + μ2

y2 + C1
, (4)

c(y1, y2) = 2σy1σy2 + C2
σ 2
y1 + σ 2

y2 + C2
, (5)

s(y1, y2) = σy1,y2 + C3
σy1σy2 + C3

. (6)
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In the above equations, μy1 and μy2 are the means of
y1 and y2, σ 2

y1 and σ 2
y2 are the variances of y1 and y2,

and σy1,y2 is the cross covariance between y1 and y2. The
constants C1,C2, and C3 are necessary to avoid instability
when the denominators are very close to zero.
As shown in [52], the parameters are set as α = β =

γ = 1 and C3 = C2
2 , and formulation of the SSIM index is

simplified by

SSIM(y1, y2) =
(
2μy1μy2 + C1

) (
2σy1,y2 + C2

)
(
μ2
y1 + μ2

y2 + C1
) (

σ 2
y1 + σ 2

y2 + C2
) . (7)

Note that in the proposed method shown in Section 4,
C1 = (K1Imax) and C2 = (K2Imax), where Imax = 255,
K1 = 0.01, and K2 = 0.03. Thus, α,β , γ ,C1,C2, and C3
are set to the values shown in [52].
In [47] and [52], the effectiveness of the SSIM index as

a quality measure, its superiority to MSE, and its vari-
ants are presented in detail. Generally, MSE cannot reflect
perceptual distortions, and its value becomes higher for
images altered with some distortions such as mean lumi-
nance shift, contrast stretch, spatial shift, spatial scaling,
and rotation but with negligible loss of subjective image
quality. Furthermore, blurring severely deteriorates image
quality, but its MSE becomes lower than those of the
above alterations. On the other hand, the SSIM index
is defined by separately calculating three similarities in
terms of luminance, variance, and structure, which are
derived on the basis of the HVS not accounted for by
MSE. Therefore, it becomes a better quality measure pro-
viding a solution to the above problem, and this is also
confirmed in [47]. We can therefore expect that the use
of this similarity for inpainting will provide successful
results.
Note that moment invariants take not only image fea-

tures, such as means and variance, but also image degra-
dations, such as translation, scaling, and rotation, into
accounts to generate some invariants and to properly
match images without setting any constant. Therefore, in
the rest of this subsection, we show some discussions of
advantage and disadvantage of the use of the SSIM index
by comparing with moment invariants.

2.2.1 Advantage
In the proposed method, we use the SSIM index to rep-
resent the visual quality of inpainting results. The SSIM
index is defined based on several characteristics in the
HVS. As shown in Equations 3 to 7, the SSIM index is
related to luminance and contrast masking and the corre-
lation. This means that the SSIM index is obtained from
the three elements, i.e., Equations 4 to 6. Specifically, the
first term defined in Equation 4 is consistent withWeber’s

law, which states that the HVS is sensitive to the rela-
tive luminance change, and not to the absolute luminance
change. The second term defined in Equation 5 is derived
based on the contrast masking characteristic that the con-
trast change is less sensitive when there is a high base
contrast than there is a low base contrast. Then, in the
third term defined in Equation 6, the structure compari-
son is conducted after luminance subtraction and contrast
normalization. If we ignore C3, it is equivalent to calculat-
ing the correlation coefficient. In this way, it can be seen
that the SSIM index is derived by a bottom-up scheme
according to the HVS. This means the proposed method
using the SSIM index can perform the inpainting with
consideration of the sensitivity to the HVS.

2.2.2 Disadvantage
It is known that the SSIM index tends to be robust to
translation, scaling, and rotation. However, as those gaps
become larger, it also becomes difficult to provide accu-
rate visual quality using the SSIM index due to its defini-
tion. On the other hand, moment invariants can output
several useful criteria which are invariant under transla-
tion, scaling, and rotation. Therefore, if a new visual qual-
ity measure can be derived from these moment invariants,
successful inpainting based on the derivedmeasure can be
also expected. Furthermore, the SSIM index has several
parameters compared to the moment invariants.
Note that when comparing with the MSE and its vari-

ants, the SSIM index can only be calculated from some
areas. This means the SSIM index is calculated in a block-
wise scheme, not in a pixel-wise scheme. Therefore, to
realize the use of the SSIM index for inpainting, we have
to adopt the block-wise procedures.

3 Overview of our proposed framework
This section presents the overview of the proposed frame-
work. First, we show the outline of the proposed method
in Figure 2. As shown in this figure, the proposed method
consists of two algorithms, ‘generation of dictionary’
and ‘inpainting of missing areas’. This means these two
algorithms respectively correspond to training and test
phases.

3.1 Generation of dictionary
First, in the generation of the dictionary, we clip known
patches not including any missing areas from the target
image, and the dictionary matrixD shown in Section 2.1 is
calculated from these patches. In the same manner as the
traditional sparse representation problems, we iteratively
perform two procedures, ‘calculation of the representa-
tion coefficients’ and ‘update of the atoms included in the
dictionary matrix D’. The procedures are similar to those
of the traditional method (K-SVD algorithm [36]). The
contribution of the proposed method, i.e., the difference
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Figure 2 Block diagram of the proposedmethod. The proposed method consists of two parts ‘Generation of dictionary’ and ‘Inpainting of
missing areas’, respectively, shown in Sections 4.1 and 4.2.

from the traditional method, is the introduction of the
SSIM index. Specifically, the representation coefficients
and the atoms of the dictionary matrix are calculated in
such a way that the SSIM-based approximation perfor-
mance becomes the highest. This means that the cost
function ||Y − DX||2F in Equation 2 is replaced with that
of the SSIM index. Note that in the calculation of the
representation coefficients, the maximization problem of
the SSIM index is a nonconvex problem, and thus, it is
reformulated as a quasi-convex problem using the com-
putation scheme in [53]. On the other hand, in the update
of the atoms of the dictionary matrix, we use a sim-
ple steepest ascent algorithm since the introduction of
the computation scheme in [53] needs high computation

costs. In K-SVD algorithm [36], the atoms can be effec-
tively updated using SVD, but this scheme is based on
the least-square approximation, and therefore, we use the
simple steepest ascent algorithm.

3.2 Inpainting of missing areas
In the inpainting of missing areas, we first clip a patch
including missing areas from the target image. Note that
we have to determine which patch should be first selected
for the inpainting. In the proposed method, we calculate
the patch priority for determining the inpainting order
based on the method in [24]. Therefore, the patch maxi-
mizing the patch priority is selected, and its missing areas
are reconstructed in the proposed method.
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For the selected patch (denoted as the target patch)
including missing areas, the inpainting procedures are
performed. Specifically, the proposed method performs
the sparse representation of the target patch to estimate
the missing intensities. Note that the cost function in
Equation 1 is replaced with an SSIM version. Thus, this
is the difference from the traditional sparse representa-
tion approach and the biggest contribution in ourmethod.
The sparse representation of the target patch maximizing
the SSIM index is then performed, where this nonconvex
maximization problem is also reformulated as a quasi-
convex problem using the computation scheme in [53].
In Figure 2, the specific procedures for calculating the
sparse representation are shown. Their details are shown
in the following section. From the approximation results
obtained by the above sparse representation, the pro-
posedmethod outputs the estimated intensities within the
missing areas of the target patch.
By iterating the patch selection based on the patch pri-

ority and its SSIM-based missing area reconstruction, we
can inpaint the whole missing areas within the target
image.

4 Image inpainting via SSIM-based sparse
representation

The inpainting method via SSIM-based sparse represen-
tation is presented in this section. As described in the
previous section, the proposed method is divided into
two algorithms, generation of a dictionary and inpainting
algorithm. In the first algorithm, the dictionary is gener-
ated from known patches fi (i = 1, 2, . . . ,N) within the
target image, where N is the number of known patches,
and their size is w × h pixels. It should be noted that
the proposed method performs calculation of the dictio-
nary based on the new perceptually optimized criterion,
i.e., the SSIM index. The details of this calculation are
shown in Section 4.1. In the second algorithm, the pro-
posedmethod clips a patch f includingmissing areas from
the target image and estimates their unknown intensi-
ties. In this algorithm, sparse representation based on the
SSIM index is introduced into the inpainting. Its details
are shown in Section 4.2. For the following explanation,
we denote unknown and known areas within f as � and
�̄, respectively.

4.1 Generation of the dictionary
In this subsection, the algorithm for generating the dictio-
nary is presented. In the proposed method, we calculate
the dictionary matrix D in Equation 2 for reconstructing
the missing areas within the target image. Note that the
difference from Equation 2 is the use of the SSIM index.
In contrast to Equation 2 in minimizing the MSE of the
approximation results, the proposed method maximizes
the SSIM index of the approximation results by the sparse

representation. Similar to K-SVD algorithm [36], since it
is difficult to simultaneously obtain the dictionary matrix
and the representation coefficients, we iteratively update
these two. Specifically, for the calculation of the repre-
sentation coefficients optimal in terms of the SSIM index,
we use their simple estimation scheme similar to some
matching pursuit algorithms. Furthermore, its nonconvex
optimization problem is reformulated as a quasi-convex
problem using the calculation scheme in [53]. On the
other hand, each atom of the dictionary matrix is updated
one by one by a simple steepest ascent algorithm. The
details are shown below.
As described above, known patches fi(i = 1, 2, . . . ,N)

with sizes ofw×h pixels are clipped from the target image
in the same interval. This means that the patches fi for
generating the dictionary are selected from known parts,
which are not damaged, of the target image. Next, for each
patch fi, we define a vector yi ∈ Rwh, whose elements are
its raster-scanned intensities. Using an overcomplete dic-
tionary matrix D ∈ Rwh×K containing K prototype atoms
dj ∈ Rwh(j = 1, 2, . . . ,K), each vector yi is represented as a
sparse linear combination of these atoms, yi ∼= Dxi, where
it satisfies SSIM (yi,Dxi) ≥ η for a fixed value η that cor-
responds to ε in the previous section. The vector xi ∈ RK

contains the representation coefficients of yi.
If wh < K and D is a full-rank matrix, an infinite

number of solutions are available for the representation
problems. Therefore, in the same manner as Equation 1,
the proposed method adopts the solution of

max
xi

SSIM (yi,Dxi) subject to ‖xi‖0 ≤ T . (8)

This means that the optimal vector of xi is obtained by
maximizing the SSIM index between yi andDxi under the
constraint that the number of the nonzero elements in xi
is T or less. The optimal representation coefficients can
then be obtained by solving the above equation.
In addition, according to Equation 2 in the K-SVD

algorithm [36], the optimal dictionary matrix D can be
obtained by solving the following maximization problem:

max
D,xi(i=1,2,...,N)

N∑
i=1

SSIM (yi,Dxi) subject to ∀i,

||xi||0 ≤ T .

(9)

This means that we calculate the dictionary matrix D
maximizing the approximation performance of all yi(i =
1, 2, . . . ,N) in terms of the SSIM index under the con-
straint that the number of the nonzero elements in xi(i =
1, 2, . . . ,N) is T or less. In the proposed method, the
optimal dictionary matrix D is estimated using a scheme
similar to the K-SVD algorithm [36], where the procedures
are based on the SSIM index. Specifically, this scheme is
divided into two procedures, calculation of the optimal
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vector xi(i = 1, 2, . . . ,N) and update of the dictionary
matrix D, and they are iteratively performed. We show
each of the procedures below.

4.1.1 Calculation of the optimal vector xi

By fixing the dictionary matrix D, the optimal vector
xi is calculated for each yi. Specifically, xi can be cal-
culated on the basis of Equation 8. In this optimization
problem, we select T optimal atoms that provide the
optimal linear combination based on the SSIM index.
Therefore, we adopt the simplest algorithm that selects
the optimal atoms one by one, and it is similar to sev-
eral matching pursuit algorithms [56-59]. Specifically, for
each yi(i = 1, 2, . . . ,N), we first search one atom which
provides its optimal approximation, maximizing the SSIM
index. Furthermore, by adding another atom to the previ-
ously selected atoms, we calculate their SSIM-based linear
combination approximating each yi, and then, the opti-
mal atom maximizing the SSIM index with the previously
selected atoms is selected. Then, by iterating this pro-
cedure T times, the T optimal atoms can be selected
for each yi. Therefore, the procedures are quite simple.
In each iteration, we simply select one atom in such a
way that the linear combination of this atom and the
previously selected atoms maximizes the SSIM index for
approximating each yi(i = 1, 2, . . . ,N).
The details of the tth (t = 1, 2, . . . ,T) optimal atom

selection are shown below.
In the tth optimal atom selection for yi, the following

vector is first defined:

y(t)
i,j =

[
D(t−1)

i dj
] [x(t)

i
xj

]

= D(t)
i,j x

(t)
i,j (j = 1, 2, . . . ,K), (10)

where D(t−1)
i is a wh × (t − 1) matrix containing t − 1

atoms previously selected from dj(j = 1, 2, . . . ,K) in t − 1
iterations. In addition,

D(t)
i,j =

[
D(t−1)

i dj
]
, (11)

and

x(t)
i,j =

[
x(t)
i
xj

] (∈ Rt) (12)

is a coefficient vector for calculating y(t)
i,j . The vector x(t)

i
contains representation coefficients that respectively cor-
respond to the atoms in D(t−1)

i , and xj is that correspond-
ing to dj. Here, we show the specific definitions of x(t)

i,j , y
(t)
i,j ,

and D(t)
i,j . First, x

(t)
i,j is the sparse representation coefficient

vector for representing yi with the atom dj selected to
be appended at iteration t, and y(t)

i,j is the corresponding
approximation of yi. Next, D(t)

i,j is a matrix including t − 1
atoms previously selected in t − 1 iterations and the atom

dj at iteration t which are used for representing yi. The
proposed method estimates the optimal vector ŷ(t)

i,j of y(t)
i,j

(j = 1, 2, . . . ,K) that provides the optimal representation
performance. Then the optimal atom dj is selected to
maximize the SSIM index for the representation of yi by
itself together with the atoms selected in the previous t−1
iterations.
In order to calculate ŷ(t)

i,j , the optimal coefficient vector
x̂(t)
i,j in the following equation must be estimated:

ŷ(t)
i,j = D(t)

i,j x̂
(t)
i,j . (13)

Thus, we have to solve

x̂(t)
i,j = argmax

x(t)
i,j

SSIM
(
yi, y(t)

i,j

)
, (14)

where SSIM
(
yi, y(t)

i,j

)
is defined as

SSIM
(
yi, y(t)

i,j

)
=
⎛
⎜⎝ 2μyiμy(t)

i,j
+ C1

μ2
yi + μ2

y(t)
i,j

+ C1

⎞
⎟⎠
⎛
⎜⎝ 2σyi ,y(t)

i,j
+ C2

σ 2
yi + σ 2

y(t)
i,j

+ C2

⎞
⎟⎠ .(15)

In this equation,μyi(= 1
wh1

′yi) and σ 2
yi(= 1

wh ||yi−μyi1||2)
are respectively the mean and variance of yi, where 1 =
[1, 1, . . . , 1]′ is a wh × 1 vector, and the vector/matrix
transpose is denoted by the superscript ′ in this paper.
Similarly, μy(t)

i,j
and σ 2

y(t)
i,j

are the mean and variance of y(t)
i,j ,

respectively, and are obtained as follows:

μy(t)
i,j

= 1
wh

1′y(t)
i,j

= 1
wh

1′D(t)
i,j x

(t)
i,j

= μD(t)
i,j

′x(t)
i,j , (16)

σy(t)
i,j

= 1
wh

(
y(t)
i,j − μy(t)

i,j
1
)′ (

y(t)
i,j − μy(t)

i,j
1
)

= 1
wh

(
D(t)

i,j x
(t)
i,j − 1

wh
11′D(t)

i,j x
(t)
i,j

)′

×
(
D(t)

i,j x
(t)
i,j − 1

wh
11′D(t)

i,j x
(t)
i,j

)

= 1
wh

x(t)
i,j

′
D(t)

i,j
′ (

I − 1
wh

11′
)(

I − 1
wh

11′
)
D(t)

i,j x
(t)
i,j

= 1
wh

x(t)
i,j

′
D(t)

i,j
′
H′HD(t)

i,j x
(t)
i,j

= x(t)
i,j

′
K(t)
i,j x

(t)
i,j , (17)

where

μD(t)
i,j

= 1
wh

D(t)
i,j

′
1. (18)

Furthermore,

H = I − 1
wh

11′ (19)
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is a centering matrix, where H = H′ and H2 = H are
satisfied, and I is the identity matrix. In addition,

K(t)
i,j = 1

wh
D(t)

i,j
′
HD(t)

i,j . (20)

In Equation 15, σyi,y(t)
i,j

is the cross covariance between yi

and y(t)
i,j and is defined as

σyi ,y(t)
i,j

= 1
wh

(
yi − μyi1

)′ (y(t)
i,j − μy(t)

i,j
1
)

= 1
wh

(
yi − 1

wh
11′yi

)′ (
D(t)

i,j x
(t)
i,j − 1

wh
11′D(t)

i,j x
(t)
i,j

)

= 1
wh

yi′H′HD(t)
i,j x

(t)
i,j

= k(t)
i,j

′
x(t)
i,j , (21)

where

k(t)
i,j = 1

wh
D(t)

i,j
′
Hyi. (22)

Then, Equation 15 is rewritten as

SSIM
(
yi, y(t)

i,j

)
=

⎡
⎢⎢⎢⎣

2μyi

(
μD(t)

i,j

′x(t)
i,j

)
+ C1

μ2
yi +

(
μD(t)

i,j
′x(t)

i,j

)2
+ C1

⎤
⎥⎥⎥⎦

×
⎡
⎣ 2k(t)

i,j
′
x(t)
i,j + C2

σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

⎤
⎦ .

(23)

It should be noted that the criterion in Equation 23 is a
nonconvex function of x(t)

i,j , and it is difficult to obtain the
global optimal solution. Thus, we introduce the calcula-
tion scheme used in [53] into the estimation of the optimal
vector x̂(t)

i,j . Specifically, the nonconvex problem is trans-
formed into a quasi-convex formulation. The main idea
of this scheme is shown as follows. By fixing the mean of
y(t)
i,j (= μD(t)

i,j

′x(t)
i,j ), we can focus only on the second term

in Equation 23. Therefore, the maximization problem can
be simplified.
First, we note that the first term in Equation 23 is a func-

tion only of μD(t)
i,j

′x(t)
i,j

(
= ρ

(t)
i,j

)
. Thus, Equation 23 can be

rewritten as

SSIM
(
yi, y(t)

i,j

)
=
⎡
⎢⎣ 2μyiρ

(t)
i,j + C1

μ2
yi +

(
ρ

(t)
i,j

)2 + C1

⎤
⎥⎦

×
⎡
⎣ 2k(t)

i,j
′
x(t)
i,j + C2

σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

⎤
⎦ .

(24)

Therefore, it can be seen that the first term of the above
equation can be fixed by fixing ρ

(t)
i,j since μyi is a constant.

Then, by constrainingμD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j , the optimization

problem can be simplified to find

x̂(t)
i,j

(
ρ

(t)
i,j

)
= arg max

x(t)
i,j ∈Rt

⎛
⎝ 2k(t)

i,j
′
x(t)
i,j + C2

σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

⎞
⎠

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j .

(25)

Thus, the cost function becomes more simple, i.e., we can
focus only on the second term of the SSIM index under
the constraint fixing μD(t)

i,j

′x(t)
i,j = ρ

(t)
i,j .

Therefore, the overall problem is to find the highest
SSIM index by searching over a range of ρ

(t)
i,j . Further-

more, the above problem can be rewritten as

min : τ
subject to⎡
⎣min :

[
τ
(
σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

)
−
(
2k(t)

i,j
′
x(t)
i,j + C2

)]
≥ 0

subject to μD(t)
i,j

′x(t)
i,j = ρ

(t)
i,j

⎤
⎦ ,

(26)

and, in the proposed method, the following simple
Lagrangemultiplier approach is utilized for estimating the
optimal vector of x(t)

i,j :

∇x(t)
i,j

{
τ
(
σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

)
−
(
2k(t)

i,j
′
x(t)
i,j + C2

)

+ λ

(
μD(t)

i,j

′x(t)
i,j − ρ

(t)
i,j

)}
= 0,

(27)

where the first and second terms correspond to the cost
function and the third term corresponds to the constraint.
The specific derivations of the above equations are shown
in the Appendix. We can then estimate the optimal value
of τ using a standard bisection procedure, and the opti-
mal vectors x̂(t)

i,j

(
ρ

(t)
i,j

)
are calculated for several values of

ρ
(t)
i,j (= μyi − Rδ, . . . ,μyi − 2δ,μyi − δ,μyi ,μyi + δ,μyi +

2δ, . . . ,μyi + Rδ) to select x̂(t)
i,j maximizing Equation 15.

Note that δ is the searching interval, and R determines
the searching range. Their specific values are shown in
Section 5.1. The detailed procedures for estimating τ in
the proposed method are as follows:

(i) An initial value of τ (say τ0) is determined between
zero to one. Furthermore, Uτ = 1.0 and Lτ = τ0,
where Uτ and Lτ respectively represent the upper
limit and the lower limit of τ . In this paper, we set
τ0 = 0.2.

(ii) The optimization problem in Equation 28 is solved
using τ .



Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2013, 2013:179 Page 10 of 26
http://asp.eurasipjournals.com/content/2013/1/179

(iii) Two criteria Sτ and Dτ are calculated as

Sτ = τ
(
σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

)
−
(
2k(t)

i,j
′
x(t)
i,j + C2

)
,

Dτ = Uτ − Lτ .

(iv) According to the obtained criteria Sτ and Dτ , the
following steps are operated:

(a) If Sτ ≥ 0 and Dτ < ε, the final optimal
solution of τ is output, where ε = 0.05.

(b) If Sτ ≥ 0 but Dτ ≥ ε, τ = Uτ +Lτ

2 andUτ = τ .
(c) Otherwise, τ = Uτ +Lτ

2 and Lτ = τ .

(v) Procedures (ii) to (iv) are iterated.

4.1.2 Update of dictionarymatrix D
From the calculated optimal vectors xi (i = 1, 2, . . . ,N),
the proposed method updates the dictionary matrix D.
We update each dictionary element, i.e., each atom, one by
one in a greedy fashion. Specifically, we choose one atom
and update it in such a way that the representation per-
formance, i.e., the sum of the SSIM index, becomes the
highest. We perform the update of each atom dj (j =
1, 2, . . . ,K) by solving the following problem:

max
dj

∑
i|xi(j) 
=0

SSIM
(
yi, xi(j)dj

)
, (28)

where xi(j) is a jth element of xi.
In the above equation, we try to maximize the approx-

imation performance of yi (i = {1, 2, . . . ,N |xi(j) 
= 0})
by xi(j)dj, i.e., by the target atom dj and its correspond-
ing representation coefficient xi(j). Note that it is difficult
to maximize Equation 28 in the same way as the calcu-
lation of the optimal vector xi (i = 1, 2, . . . ,N) since
the optimization problem is too complex. Thus, using
the well-known steepest ascent algorithm, the proposed
method updates each atom dj (j = 1, 2, . . . ,K). Specif-
ically, the proposed method performs an update of the
dictionary matrix D by the following procedures:

Step 1. Select one atom dj (j = 1, 2, . . . ,K ).
Step 2. Update the selected atom dj by iterating the

following equation:

dj ← dj + ζ
∑

i|xi(j) 
=0

∂ SSIM
(
yi, xi(j)dj

)
∂dj

, (29)

where ζ is a fixed small parameter.
Step 3. Replace the selected atom dj with the vector

obtained by step 2. Note that a new dictionary
matrix, whose j th column, i.e., dj, is only updated,
is obtained.

Step 4. Repeat steps 1 to 3 for all atoms d1,d2, . . . ,dK
within the dictionary matrix D.

Using the above procedures, the proposed method can
update the dictionary matrix D.

Finally, we clarify the relationship between the K-SVD
algorithm [36] and our SSIM-based algorithm. First, the
biggest difference between the proposed method and the
K-SVD algorithm is the use of different quality metrics.
The K-SVD algorithm tries to minimize the MSE for
performing sparse representation and dictionary genera-
tion. On the other hand, the proposed method tries to
maximize the SSIM index for them. Specifically, for the
calculation of sparse representation coefficients, we adopt
an algorithm similar to the OMP algorithm, but the qual-
ity measure is the SSIM index, not the MSE. Therefore,
representation coefficients are obtained to maximize the
SSIM index which is used as the representation perfor-
mance. Then, the optimal solution is obtained on the basis
of the algorithm used in [53], which is quite different from
the algorithm based on the MSE. Furthermore, for gen-
eration of the dictionary, the proposed method updates
each atom, and its scheme is also similar to that of the K-
SVD algorithm. However, the proposed method performs
the update of each atom in such a way that the sum of
the SSIM index becomes highest and, thus, SVD is not
used for the calculation. Then, since the update procedure
is too complicated, we simply adopt the steepest ascent
algorithm in our method.

4.2 Inpainting algorithm
In this subsection, the inpainting algorithm of the missing
area � in the target patch f based on the SSIM index is
presented. In the proposed method, the target patch f is
approximated by a sparse linear combination of the atoms
of the dictionary matrix D obtained in the previous sub-
section. In this approach, we introduce the SSIM index
as the approximation performance, and then, the opti-
mal reconstruction results maximizing the SSIM index
can be obtained. Note that to obtain the optimal sparse
linear combination maximizing the SSIM index, we also
introduce the calculation scheme in [53]. Note that differ-
ent from the previous subsection, since we simultaneously
estimate the representation coefficients and the missing
intensities, the calculation scheme in [53] is extended.
Then, the inpainting of the missing area � within the tar-
get patch f can be realized based on the SSIM index. The
details are shown below.
The proposed method tries to estimate the optimal

linear combination

ŷ = Dx̂ (30)
of the unknown vector y of f, where{
ŷ, x̂

} = argmax
y,x

SSIM (y,Dx) subject to Ey = y∗, ‖x‖0 ≤ T .

(31)
Note that E (∈ RN�̄×wh) is a matrix whose diagonal
elements are one or zero, and it extracts only known inten-
sities within y to obtain y∗ (∈ RN�̄ ), where N�̄ is the
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number of known pixels in f. From Equation 31, the pro-
posed method tries to estimate the unknown vector y
approximated by the linear combination of the atoms in
the dictionary matrix D under the constraints that the
known intensities in �̄ are fixed and the number of the
nonzero elements in x is T or less.
Instead of directly calculating the optimal solution in

Equation 31, we first perform the selection of the optimal
T atoms used for approximating y. Specifically, the pro-
posed method selects T optimal atoms from D by solving
the following problem:

α̂ = argmax
α

SSIM
(
y∗,EDα

)
subject to ‖α‖0 ≤ T ,

(32)

where its solution can be obtained on the basis of the
same algorithm as the calculation of the optimal vector
xi described in the previous subsection. Then, a matrix D̂
containing atoms whose corresponding coefficients in α̂

are nonzero values is obtained.
Next, from the obtainedmatrix D̂, Equation 31 is rewrit-

ten as

{
ŷ, â

} = argmax
y,a

SSIM
(
y, D̂ a

)
subject to Ey = y∗.

(33)

In the above equation,

SSIM
(
y, D̂a

)
=
[

2μyμD̂a + C1

μ2
y + μ2

D̂a
+ C1

][
2σy,D̂a + C2

σ 2
y + σ 2

D̂a
+ C2

]

=
[

2
( 1
wh1

′y
) (

μD̂
′a
)+ C1( 1

wh1′y
)2 + (

μD̂
′a
)2 + C1

]

×
[

2y′HD̂a + whC2

y′Hy + a′D̂′HD̂a + whC2

]
, (34)

and

μD̂ = 1
wh

D̂′1. (35)

In the proposed method, we estimate ŷ and â, maximiz-
ing Equation 34 under the constraint Ey = y∗ using the
computation scheme in [53] in a similar way shown in the
previous subsection. Note that we have to estimate the
two vectors, and this computation scheme is extended as
follows.
Specifically, Equation 34 is a nonconvex function of y

and a, but the first term in Equation 34 is a function
only of 1

wh1
′y (= ρ) and μD̂

′a (= ω) and, thus, we rewrite

Equation 33 in the same way as that in the previous
subsection.

max
y,a

(
2y′HD̂a + whC2

y′Hy + a′D̂′HD̂a + whC2

)
subject to

Ey = y∗, 1
wh

1′y = ρ,μD̂
′a = ω.

(36)

By fixing 1
wh1

′y = ρ and μD̂
′a = ω, the first term of the

SSIM index shown in Equation 34 can be fixed, and the
cost function of Equation 33 can be simplified.
Therefore, the overall problem is to find the highest

SSIM index by searching over ranges of ρ and ω as shown
in Figure 2. Note that their search ranges are set to μy∗ −
Rδ, . . . ,μy∗ − 2δ,μy∗ − δ,μy∗ ,μy∗ + δ,μy∗ + 2δ, . . . ,μy∗ +
Rδ, where μy∗ is the mean of y∗. Thus, the solution can
be obtained in the same manner as that shown in the
previous subsection.
Then, the following problem can be obtained:

min : τ
subject to[
min :

[
τ
(
y′Hy + a′K1a + whC2

)− (
y′K2a + whC2

)] ≥ 0
subject to Ey = y∗, 1

wh1
′y = ρ,μD̂

′a = ω

]
,

(37)

where

K1 = D̂′HD̂, (38)

K2 = 2HD̂. (39)

Note that the optimal value of τ can be obtained as shown
in the previous subsection.
Furthermore, the proposed method adopts the

Lagrange multiplier approach to obtain the optimal
vectors of y and a as follows:

∇y,a

{
τ
(
y′Hy + a′K1a + whC2

)− (
y′K2a + whC2

)+
N�̄∑
k=1

λk

× (
vk ′y − y∗

k
)+ ξ1

(
1
wh

1′y−ρ

)
+ξ2

(
μD̂

′a − ω
)}= 0,

(40)

where vk(k = 1, 2, . . . ,N�̄) is a vector satisfying

E = [
v1, v2, . . . , vN�̄

]′ , (41)

and y∗
k(k = 1, 2, . . . ,N�̄) satisfies

y∗ =
[
y∗
1, y∗

2, . . . , y∗
N�̄

]′
. (42)

In Equation 40, the first and second terms are from the
cost function, and the third, fourth, and fifth terms are
from the constraints.
Then, by solving the above problem, the proposed

method can calculate the optimal vectors â and ŷ. Finally,
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from the obtained result ŷ, the proposed method outputs
the estimated intensities in the missing area �.
As shown in the above procedures, we can estimate the

missing intensities in � within the target patch f. There-
fore, the proposedmethod clips patches includingmissing
areas and performs inpainting to estimate all missing
intensities. This means that the proposed method grad-
ually reconstructs missing areas patch by patch starting
from the missing boundary. It should be noted that in
order to realize this scheme, we have to determine the
order in which patches along the fill-front ∂� of miss-
ing areas are filled. We call this order ‘patch priority’. In
the proposed method, patch priorities are determined by
the method proposed by Criminisi et al. [24]. Specifically,
given a patch fp centered at pixel p that is in the fill-front
of the missing areas within the target image, its priority
P(p) is defined as follows:

P(p) = C(p) · D(p), (43)

where C(p) and D(p) are called confidence term and data
term, respectively, and they are defined as follows:

C(p) =
∑

q∈fp⋂(I−�) C(q)

area
(
fp
) , (44)

D(p) = |∇I⊥p · np|
Imax

. (45)

In the above equations, I and � are the whole areas
of the target image and whole missing areas, respectively.
Furthermore, area

(
fp
)
(= w × h) represents the num-

ber of pixels included within the target patch fp. Then,
Imax is a normalization factor (e.g., Imax = 255 for a typ-
ical gray scale image), ∇I⊥p is an isophote at pixel p, and
np is a unit vector orthogonal to the fill-front at pixel p.
Note that C(p) is initially set as C(p) = 0∀p ∈ � and
C(p) = 1∀p ∈ (I − �). After performing the inpainting,
C(p) is substituted into those in the inpainted areas for the
following inpainting process.
Note that the confidence term represents the mean reli-

ability of the pixels within the target patch fp. Therefore,
if the target patch fp contains many known intensities,
its value becomes higher. Furthermore, after the inpaint-
ing, the reconstructed pixels have the values less than one,
i.e., the reconstructed pixels have higher reliability than
that of the missing pixels but lower reliability than that
of the original pixels. Furthermore, as shown in Figure 3,
the data term is a function of the strength of isophotes at
the fill front δ� [24]. Therefore, by calculating the inner
product of the isophote ∇I⊥p at pixel p and unit vector np
orthogonal to the fill-front at pixel p, the linear structures
can be reconstructed first. In this way, we can restore all
of the missing areas within the target image according to
the patch priorities in Equation 43.

Figure 3 Overview of the data term calculation. Given the target
patch fp, np is the normal to the contour of the fill front ∂� of the
target missing areas � and ∇ I⊥p is the isophote at pixel p.

5 Experimental results
In this section, we verify the performance of the pro-
posed method in order to confirm its effectiveness. First,
we show results of subjective evaluation of the proposed
method using several test images. Furthermore, results of
quantitative evaluation using peak signal-to-noise ratio
(PSNR) obtained from MSE and the SSIM index are
shown, and the effectiveness of the use of the SSIM index
is also discussed.
In this section, we show the conditions of the experi-

ments in Section 5.1. In this subsection, we mainly explain
the details of the experiments and the comparative meth-
ods. In Section 5.2, subjective and quantitative results are
shown in comparison with those of the existing meth-
ods, and the effectiveness of the proposed method is also
discussed. In Section 5.3, we show some examples by
applying the proposed method to test images including
larger missing areas.

5.1 Conditions of experiments
In this subsection, we explain the conditions of the exper-
iments. In the experiments, we first prepared three test
images, which are shown in Figures 4, 5, and 6. Further-
more, we added text regions to these test images and
obtained corrupted images.
We performed inpainting of the three corrupted test

images using the proposed method and the following
existing methods:

1. Methods based on PCA or KPCA [31,34,35]
These existing methods generate eigenspaces or
nonlinear eigenspaces of patches for inpainting based
on PCA or KPCA. Since it is well known that
eigenspaces can provide least-square approximation
of target data, i.e., eigenspaces are the optimal
subspaces based on MSE, the method in [31] is
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a b c

d e f

g ih
Figure 4 Obtained results of image 1. (a) Original image (480 × 360 pixels, 24-bit color levels), (b) corrupted image including text regions (11.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

suitable for comparison with the proposed method.
Furthermore, the methods in [34] and [35] utilize
nonlinear eigenspaces to perform the approximation
of nonlinear texture features in images, and we
therefore used these methods in the experiments.

2. Exemplar-based inpainting methods [24,30]
Several exemplar-based inpainting methods have
been proposed. The method in [24] is a
representative method, and its improved version was
proposed in [30], both methods being based on
least-square error approaches. In the proposed
method, we determine the patch priority using the
scheme in [24] and, thus, the difference between our
method and [24] is the algorithm for estimating

missing intensities. Therefore, the method in [24] is
suitable in confirming the effectiveness of the
proposed inpainting algorithm, i.e., the missing
intensity estimation algorithm. Furthermore,
although the method in [30] improves on the speed
rather than inpainting performance improvement, it
is reported in their paper that their method improves
the performance of [24] in some cases. Therefore, in
the experiments, we used these methods as
comparative methods.

3. Sparse representation-based inpainting methods [41]
As described above, the method in [41] adopts the
new modeling of patch priority and patch
representation, which are two crucial steps for patch
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Figure 5 Obtained results of image 2. (a) Original image (480 × 359 pixels, 24-bit color levels), (b) corrupted image including text regions (8.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

propagation in the exemplar-based inpainting
approach, based on sparsity. It should be noted that
since this method is based on sparse representation
but uses MSE-based criteria, it is suitable for
comparison.

In this paper, we regard those in [35] and [41] as state-of-
the-art methods.
Furthermore, the method in [41] has improved the

performance in both patch approximation improvement
based on sparse representation and patch priority estima-
tion. Thus, we regard this method as a state-of-the-art
method.

In the experiments, we used the above methods as
comparative methods for evaluation of our method. For
performing inpainting by the proposed method and exist-
ing methods [24,30,41], patch size was fixed to 15 (w =
h = 15). Furthermore, the existing methods in [31,34]
and [35] simply perform inpainting in a raster scanning
order. Then, for some test images, since target patches
contain missing areas in the whole parts, those methods
cannot perform inpainting on those missing areas. Thus,
in the experiments, patch size was set to 30. Note that
much smaller patches were used in some existing meth-
ods in previous studies and that accurate performance
could be achieved. In these experiments, we used such
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Figure 6 Obtained results of image 3. (a) Original image (480 × 360 pixels, 24-bit color levels), (b) corrupted image including text regions (8.9%
loss), (c) results obtained by the proposed method, (d) results obtained by the method in [31], (e) results obtained by the method in [34], (f) results
obtained by the method in [35], (g) results obtained by the method in [24], (h) results obtained by the method in [30], and (i) results obtained by
the method in [41].

difficult conditions in order to make the difference in the
performances of the proposed method and the existing
methods clearer. Furthermore, in our method, we simply
determined T = 10, δ = 5, and R = 6.

5.2 Subjective and quantitative evaluations
Based on the experimental conditions shown in the pre-
vious subsection, inpainting was performed using the
proposed method and existing methods. Figures 4, 5,
and 6 show the results obtained by those methods.
For better subjective evaluation, we also show their
zoomed portions in Figures 7, 8, and 9, respectively.
From the obtained results, we can confirm that the

proposed method successfully performs inpainting with-
out suffering from oversmoothness. Some MSE criterion-
based methods also accurately perform inpainting, but
it becomes difficult to simultaneously maintain sharp-
ness in some cases. In some existing methods such as
[24], [30], and [41], the performance becomes worse than
that reported in those papers. As described above, in this
paper, we selected conditions different from those used
in those paper, i.e., larger size patches were used. Since
this comparison scheme was adopted in several papers,
we also used such difficult conditions in order to make
the difference in the performance of the proposed method
and existing methods clearer. Then, the representation



Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2013, 2013:179 Page 16 of 26
http://asp.eurasipjournals.com/content/2013/1/179

ba c

ed f

g ih
Figure 7 Zoomed potions of the results shown in Figure 4. (a-i) respectively correspond to the zoomed portions of Figures 4a-i.

abilities of the methods become worse and the obtained
results tend to be blurred. Since the exemplar-basedmeth-
ods in [24] and [30] directly select known patches from the
target image for inpainting, blurring tends to be reduced.
Nevertheless, even in those methods, it is difficult to
perfectly remove degradation. Furthermore, although the
methods in [34] and [35] adopt nonlinear eigenspaces for
inpainting to represent nonlinear texture features, their

representation abilities become worse as the dimension of
the subspace becomes smaller, where the dimension was
set to the same as that of the proposed method.
Generally, natural images contain much more powers in

low-frequency components than those in high-frequency
components. Low-dimensional subspaces obtained from
the MSE-based criteria in the existing methods therefore
tend to represent only such low-frequency components.

ba c

ed f

g ih
Figure 8 Zoomed potions of the results shown in Figure 5. (a-i) respectively correspond to the zoomed portions of Figures 5a-i.
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Figure 9 Zoomed potions of the results shown in Figure 6. (a-i) respectively correspond to the zoomed portions of Figures 6a-i.

Thus, since it becomes difficult to represent high-
frequency components, their results suffer from over-
smoothness. On the other hand, the SSIM index contains
a term comparing components not including average
components, i.e., variances, as shown in Equation 5,

and, thus, subspaces used for inpainting tend to success-
fully represent high-frequency components. Therefore,
the proposedmethod can perform inpainting successfully.
Furthermore, the proposed method adopts sparse repre-
sentation in addition to the SSIM index. This approach

Image 4 Image 5 Image 6 Image 7

Figure 10 First set of original, corrupted, and resulting images obtained by the proposedmethod. Top row: original images, middle row:
corrupted images including missing areas, and bottom row: results obtained by the proposed method. The sizes of images 4 to 7 are 480 × 359,
640 × 480, 640 × 480, and 640 × 480 pixels, respectively. The percentages of missing areas are 10.7%, 6.7%, 5.5%, and 5.4% in images 4 to 7,
respectively.
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Image 8 Image 9 Image 10 Image 11

Figure 11 Second set of original, corrupted, and resulting images obtained by the proposedmethod. Top row: original images, middle row:
corrupted images including missing areas, and bottom row: results obtained by the proposed method. The sizes of images 8 to 11 are 480 × 360,
640 × 480, 640 × 480, and 640 × 480 pixels, respectively. The percentages of missing areas are 11.3%, 5.5%, 6.2%, and 6.2% in images 8 to 11,
respectively.

enables adaptive selection of the optimal atoms for each
target patch including missing areas. This means that the
optimal subspace can be provided for each target patch by
our method.
Next, we show results of quantitative evaluation for the

proposed method and the existing methods. Eight test
images shown in Figures 10 and 11 are added to those in

Figures 4, 5, and 6. In these figures, the results of inpaint-
ing by our method are also shown. Tables 1 and 2 show the
results of PSNR (dB), which is calculated from MSE, and
the SSIM index of inpainting results, respectively. Note
that since the inpainting is performed for each patch, the
SSIM index is calculated for the patches, and their average
values are shown in the tables. In addition, the evaluation

Table 1 Performance comparison (PSNR) of the proposedmethod and existingmethods

Image number [31] [34] [35] [24] [30] [41] Proposedmethod

1 (Figure 4) 18.55 18.13 18.75 16.85 16.72 17.51 17.22

2 (Figure 5) 16.51 15.98 17.68 14.26 14.68 15.08 15.51

3 (Figure 6) 19.93 19.48 20.57 18.01 17.86 18.98 18.62

4 (Figure 10, first column) 15.95 16.51 17.86 14.97 15.19 15.97 15.85

5 (Figure 10, second column) 17.06 16.86 17.81 15.70 15.51 16.08 16.14

6 (Figure 10, third column) 14.42 13.81 15.86 11.79 12.20 12.02 13.38

7 (Figure 10, fourth column) 15.93 16.07 16.51 15.22 15.49 15.27 14.05

8 (Figure 11, first column) 12.98 12.74 14.17 11.34 10.92 11.81 12.04

9 (Figure 11, second column) 15.59 15.57 17.79 13.56 13.55 13.42 15.55

10 (Figure 11, third column) 14.38 14.66 16.56 13.42 13.43 13.82 13.86

11 (Figure 11, fourth column) 16.80 17.09 18.68 15.47 15.48 15.98 16.00
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Table 2 Performance comparison (SSIM) of the proposedmethod and existingmethods

Image number [31] [34] [35] [24] [30] [41] Proposedmethod

Image 1 (Figure 4) 0.6355 0.6090 0.6411 0.6822 0.6773 0.7145 0.7811

Image 2 (Figure 5) 0.5130 0.5154 0.5999 0.5077 0.5277 0.5308 0.6454

Image 3 (Figure 6) 0.6248 0.6051 0.6538 0.7318 0.7246 0.7569 0.8156

Image 4 (Figure 10, first column) 0.5833 0.5762 0.6373 0.6563 0.6708 0.7036 0.7806

Image 5 (Figure 10, second column) 0.6419 0.6424 0.6774 0.7298 0.7196 0.7410 0.8049

Image 6 (Figure 10, third column) 0.6460 0.6458 0.7346 0.6750 0.6933 0.6756 0.7619

Image 7 (Figure 10, fourth column) 0.6711 0.6766 0.7134 0.7478 0.7521 0.7402 0.7722

Image 8 (Figure 11, first column) 0.5871 0.5522 0.6282 0.6561 0.6394 0.6840 0.6940

Image 9 (Figure 11, second column) 0.6501 0.6599 0.7645 0.6852 0.6799 0.6700 0.8072

Image 10 (Figure 11, third column) 0.6240 0.6295 0.7185 0.6992 0.6980 0.7060 0.7681

Image 11 (Figure 11, fourth column) 0.6864 0.7069 0.7685 0.7155 0.7108 0.7352 0.8039

values are computed only on the reconstructed pixels. The
results show that several existing methods have higher
PSNR values, i.e., lower MSE values, than that of the pro-
posed method. Specifically, the existing method in [35]
and the proposed method output the best results in terms
of PSNR (MSE) and the SSIM index, respectively.
In recent years, several researchers of image quality

assessment have also pointed out the problem that MSE
and its variants cannot reflect some degradations [46,51].
Therefore, in order to tackle this problem, several crite-
ria for determining image qualities have been proposed,
the SSIM index being a representative criterion. In the
proposed method, we focus on this criterion and realize
inpainting that maximizes the SSIM index. Therefore, it
is natural that the proposed method achieves the high-
est SSIM values. Note that even though the use of the
SSIM index for inpainting is effective, it is difficult to per-
fectly determine the order of inpainting performance that
is the same as the subjective evaluation. This means that
ranking of inpainting performance that perfectly reflects
subjective evaluation is difficult, and further improvement
is necessary in future work.
As quantitative evaluation, we have shown PSNR and

SSIM index of the results by our method and other exist-
ing methods. Next, we focus on the computation cost of
the proposed method. We first compare the computa-
tion times of the proposed method and other multivariate
analysis-based methods in [31] and [35]b. The average
computation time for obtaining the results of images 1
to 11 by our method was about 342.1 s. Then the pro-
posed method is about 0.78 to 3.1 times (1.6 times on
average) slower than the method in [31]. Note that the
ratio smaller than onemeans that the computation time of
the proposed method is shorter. In the method in [31], the
procedure for the inpainting is simple since it only needs
the computation of the eigenvector matrix and the calcu-
lation of the back projection for lost pixels. Therefore, the

fast computation can be realized. On the other hand, the
proposed method is about 1.2 to 4.7 times (2.9 times on
average) faster than the method in [35]. In this method,
the kernel PCA is adopted, and we have to calculate the
projection onto the nonlinear subspace using the ker-
nel trick, i.e., we cannot perform the direct projection.
Furthermore, in this approach, the classification of the tar-
get patch including missing areas is performed, and thus,
the inpainting procedures are performed for all clusters.
Therefore, this needs high computation costs. Further-
more, the computation time of our method is about 4.3
to 12.5 times (7.4 times on average) longer than that of
the exemplar-based method in [24]. Note that the method
in [30] used as the comparative method in the experi-
ments drastically improves the computation costs of [24],
and it also introduces the GPU implementation. The CPU
version improving the computation costs of [24] has also
been proposed by the same authors [62]. In [62], Kwok
et al. reported inpainting that was about 15 to 50 times
faster than that of the method in [24].
In addition, compared with the MSE-based inpainting

approach, which calculates the optimal sparse representa-
tion coefficients based on the MSE, the proposed method
requires complex optimization procedures as shown in
the previous section. In theMSE-based approach, it is well
known that the normal equation can be simply solved, and
it is much simpler than our method. It is therefore neces-
sary to improve the speed of computation by introducing
some alternative approaches into our inpainting method.
This topic will be investigated in subsequent studies.
Note that in the above experiment, we used the diffi-

cult condition, i.e., larger size patches, in order to make
the difference of the inpainting performance between our
method and the existing methods clearer. Next, we show
other different experimental results obtained using condi-
tions which were adopted in each paper. This means that
the conditions of the existing methods were determined
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Figure 12 Relationship between ratio of missing pixels and SSIM index of inpainting results obtained by each method. (a-h) They
respectively show the results obtained from images 4 to 11 shown in Figures 10 and 11.
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a b c
Figure 13 Inpainting example 1 obtained by applying the proposedmethod to larger missing areas. (a) Original image (342 × 512 pixels,
11.2% loss), (b) flag image of (a), and (c) results obtained by the proposed method.

according to their papers. In the new experiments, we
used the eight test images shown in Figures 10 and 11 and
randomly addedmissing blocks of size 8×8 pixels with the
changing ratio of the missing pixels. Figure 12 shows the
relationship between the ratio of the missing pixels and
the SSIM index calculated from the reconstructed image.
From these results, we can see that the proposed method
tends to output better results than those of the existing
methods.

5.3 Inpainting of larger missing areas
Finally, in Figures 13, 14, 15, and 16, we show some exam-
ples obtained by performing inpainting for larger missing
areas based on the proposed method. Note that in these
experiments, we performed inpainting of larger missing
areas by the proposed method including one simple addi-
tional procedure. The details are shown as follows. First,
for a target patch selected on the basis of the patch prior-
ity shown in Equation 43, the proposed method performs
the inpainting shown in Section 4.2 and obtains the result
ŷ. Next, as an additional procedure, we search for the opti-
mal known patch, which is best matched to the obtained
result ŷ, using the SSIM index from the target image,
and the selected known patch is used as the final output.
Then, by performing the above procedures for all patches
selected according to patch priority, the whole missing
areas can be reconstructed.
The above scheme is similar to existing methods that

simply select only the best matched examples, but the dif-
ference is shown below. In existing methods using only
the best matched examples, the best matched patch is
selected by monitoring errors in the known neighboring
areas around the missing areas. On the other hand, the
proposed method performs reconstruction of the patches

based on SSIM-based sparse representation, and then,
the examples that are best matched to the reconstructed
patches are selected using the SSIM index, i.e., the best
matched examples are selected from well-approximated
reconstruction patches. This is the biggest difference
between the existing methods and the proposed method.
It should be noted that although the proposed method

can perform accurate reconstruction of patches, the
obtained results tend to include color that is not included
within the target image. This is because the proposed
method does not adopt any specific procedures to avoid
spurious color. Therefore, in the experiments on recon-
struction of larger missing areas, we adopted the above
scheme to avoid the propagation of spurious color.
From the obtained results, we can confirm that the pro-

posed method enables successful inpainting of such large
missing areas. Note that the images shown in Figures 13,
14, 15, and 16 are used as test images in several papers
such as in [23,24,30] and [41]. Furthermore, since the
flag images that correspond to Figures 13b, 14b, 15b, and
16b are generated in each paper, i.e., positions of miss-
ing areas are different from each other in those papers, we
show discussion by comparing the results obtained by our
method shown in Figures 13, 14, 15, and 16 and the results
shown in those papers. From the results shown in these
figures, we can see that the proposed method achieves
comparable performance or some improvements, though
it should be noted that since we do not have ground truth
images for these test images, we perform subjective eval-
uation. Specifically, as shown in Figure 15, the proposed
method and themethods in [23] and [41] can achieve visu-
ally pleasant results. In this test image, since structural
and textural components are simple and the percentage
of missing areas is relatively small, it is easier to achieve



Ogawa and Haseyama EURASIP Journal on Advances in Signal Processing 2013, 2013:179 Page 22 of 26
http://asp.eurasipjournals.com/content/2013/1/179

a

b

c
Figure 14 Inpainting example 2 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(818 × 545 pixels, 24.8% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

successful inpainting. Similarly, Figure 13 shows that suc-
cessful inpainting could be achieved by our method and
the methods in [24], [30], and [41], and improvement by
our method can be confirmed in some areas. However, it
should be noted that reconstruction of structural compo-
nents, i.e., edges, by [41] can be realized more accurately.

a

b

c
Figure 15 Inpainting example 3 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(818 × 546 pixels, 11.5% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

The biggest difference between [41] and other works
including our method is priority estimation. Thus, by
introducing an improved priority estimation scheme, the
performance of the proposed method will be improved.
Furthermore, Figure 16 shows that results obtained by our
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Figure 16 Inpainting example 4 obtained by applying the
proposedmethod to larger missing areas. (a) Original image
(480 × 362 pixels, 25.2% loss), (b) flag image of (a), and (c) results
obtained by the proposed method.

method are comparable to results in [24] and [30]. Note
that the flag images of this test image are different from
each other in these methods, and we found that perfor-
mance was affected by generation of flag images. This was
also observed in the image shown in Figure 14.
As shown in the above discussion, it becomes difficult

in the proposed method to perform successful struc-
ture reconstruction. In order to understand this prob-
lem easily, we show some examples in Figures 17 and
18. From the two images (512 × 512 pixels) shown
in Figures 17a and 18a, we artificially added missing
blocks (16 × 16 pixels) to obtain the corrupted images
in Figures 17b and 18b. As shown in the results recon-
structed by the proposed method in Figures 17c and 18c,
it can be seen that texture regions and simple structure
regions can be reconstructed successfully. On the other
hand, in some complex structure regions including sev-
eral directional edges simultaneously, it becomes difficult
to perfectly recover those structure components by our
method. This is because the proposed method consid-
ers the structure components only in the patch priority
determination. This means the inpainting algorithm in
the proposed method is optimized only for the texture
reconstruction.
In order to simultaneously reconstruct the structure

and texture regions, several methods have been proposed
[23,25,42]. Themethod in [23] proposed a fragment-based
algorithm which could preserve both structures and tex-
tures. A confidence map is used to determine which pixels
have more surrounding information available. The recon-
struction is performed from more confident pixels and is
proceeded in a multiscale fashion from coarse to fine. Fur-
thermore, a similar image fragment is found and copied
to current unknown location, where a fragment is a circu-
lar neighborhood, and its radius is defined adaptive to its
underlying structure. In contrast to the above advantage,
it is reported in [24,41] that this algorithm is extremely
slow and may introduce blurring artifacts. The fragment
is selected based on the absolute distance, and this tends
to cause the problem, i.e., the blurring artifacts, simi-
lar to that caused when using the MSE-based distance.
The method in [42] introduced a sparse representation
model representing both structure and texture compo-
nents to realize their simultaneous reconstruction. On the
other hand, this method is based on least-square approx-
imation, and the problem of using the MSE may occur.
Therefore, by introducing this simultaneous representa-
tion model into the proposed SSIM-based approach, suc-
cessful reconstruction can be expected. Furthermore, the
method in [25] introduced interactive image editing tools
to realize highly accurate structure reconstruction. Since
the guide for the reconstruction can be provided by users,
this improves the inpainting performance. Although this
approach does not realize the perfectly automatic image
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a b c
Figure 17 Inpainting results obtained by applying the proposedmethod to the test image ‘Lena’. (a) Original image (512 × 512 pixels), (b)
corrupted image including missing blocks (16 × 16 pixels), and (c) results obtained by the proposed method.

inpainting, it will also improve the performance of the
proposed method by adopting the interactive image edit-
ing tools.

6 Conclusions
In this paper, we have presented an inpainting method
based on sparse representations optimized with respect
to a perceptual metric. Using sparse representation, the
proposed method adaptively provides subspaces opti-
mal for reconstructing target patches including miss-
ing areas. In this approach, the SSIM-based criterion
is introduced into calculation of the dictionary and
inpainting algorithm. This enables perceptually optimized
inpainting, and successful results can be obtained by the
proposed method.

Although the proposed method can reconstruct large
missing regions without blurring artifacts, it has more
computational complexity than other existing approaches
and also generates some artifacts in the output image as
shown in Figure 14. The computation cost and some arti-
facts caused by the proposedmethod should be concerned
and solved in the future work.
Furthermore, extension of the algorithm to reconstruc-

tion of other types of missing image data is desirable for
various applications. These topics will be future works and
results will be presented in subsequent reports.

Endnotes
aIn this paper, signal-atoms are simply referred to as

‘atoms’ hereafter according to [38].

a                                                  b c
Figure 18 Inpainting results obtained by applying the proposedmethod to the test image ‘Barbara’. (a) Original image (512 × 512 pixels),
(b) corrupted image including missing blocks (16 × 16 pixels), and (c) results obtained by the proposed method.
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bThe experiments were performed on a personal
computer using Intel(R) Core(TM) i7 950 CPU 3.06 GHz
with 8.0 GB RAM. The implementation was performed
using MATLAB.

Appendix
In this appendix, we show the details of the derivations in
Equations 26 and 27. Since the optimization problem in
Equation 25 is still nonconvex, it is converted into a quasi-
convex optimization problem as follows:
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Since minimization of τ is the same as finding the least
upper bound of Equation 25, the first equivalence rela-
tionship holds. The second equivalence relationship holds
since the denominator in Equation 25 is strictly positive,
allowing us to multiply through and rearrange terms. In
this way, we can derive Equation 26. Then, τ becomes a
true upper bound if

Sτ = τ
(
σ 2
yi + x(t)

i,j
′
K(t)
i,j x

(t)
i,j + C2

)
−
(
2k(t)

i,j
′
x(t)
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)
(47)

optimized in Equation 46 has a nonnegative optimal value,
and the optimal vector x̂(t)

i,j

(
ρ

(t)
i,j

)
in Equation 25 can

be obtained. Thus, by applying the Lagrange multiplier
approach to the above equation under the constraint
μD(t)

i,j

′x(t)
i,j = ρ

(t)
i,j , Equation 27 can be obtained.
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