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Abstract

A hyperspectral image (HSI) is always modeled as a three-dimensional tensor, with the first two dimensions indicating
the spatial domain and the third dimension indicating the spectral domain. The classical matrix-based denoising
methods require to rearrange the tensor into a matrix, then filter noise in the column space, and finally rebuild the
tensor. To avoid the rearranging and rebuilding steps, the tensor-based denoising methods can be used to process
the HSI directly by employing multilinear algebra. This paper presents a survey on three newly proposed HSI
denoising methods and shows their performances in reducing noise. The first method is the Multiway Wiener Filter
(MWF), which is an extension of the Wiener filter to data tensors, based on the TUCKER3 decomposition. The second
one is the PARAFAC filter, which removes noise by truncating the lower rank K of the PARAFAC decomposition. And
the third one is the combination of multidimensional wavelet packet transform (MWPT) and MWF (MWPT-MWF),
which models each coefficient set as a tensor and then filters each tensor by applying MWF. MWPT-MWF has been
proposed to preserve rare signals in the denoising process, which cannot be preserved well by using the MWF or
PARAFAC filters. A real-world HYDICE HSI data is used in the experiments to assess these three tensor-based denoising
methods, and the performances of each method are analyzed in two aspects: signal-to-noise ratio and improvement
of subsequent target detection results.

1 Review
1.1 Introduction
Hyperspectral images (HSI) attract more and more inter-
est in recent years in different domains, such as geography,
agriculture, and military [1-3]. They use the HSI to do the
target detection [4] or classification [5] to find objects or
materials of interest on the ground. Unfortunately, in the
capturing procedure, the HSI is usually impaired by sev-
eral types of noise, such as thermal noise [6], photonic
noise [7], and strip noise [8]. Therefore, denoising meth-
ods [9-13] have become a critical step for improving the
subsequent target detection and classification in remote
sensing imaging applications [14].
In HSI processing, images are modeled as a three-

dimensional tensor, i.e., two spatial dimensions and one
spectral dimension. The classical denoising methods
[15-18] rearrange the HSI into a matrix whose columns
contain the spectral signatures of all the pixels, then esti-
mate the signal subspace bymethods based on the analysis
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of second-order statistics, and finally rebuild the original
HSI structure after processing.
Since matrix-based techniques cannot take advantage

of spectra in hyperspectral images, therefore, in order to
treat the HSI as a whole entity, some new techniques were
developed. For example, an HSI was treated as a hyper-
cube in order to take into account the correlation among
different bands [19,20], tensor-algebra was brought to
jointly analyze the 3D HSI, etc. In this paper, we mainly
focus on the problem of applying tensor algebra in reduc-
ing noise in HSIs. Unlike the matrix-based denoising
methods which are based on matrix algebra, the newly
proposed tensor-based denosingmethods utilize multilin-
ear algebra to analyze the HSI tensor directly. It is well
known that SVD (singular value decomposition) is impor-
tant for matrix analysis. Similarly, there are two important
tensor decompositions: TUCKER3 and PARAFAC. These
two decompositions play significant roles in analyzing
tensors. Therefore, in this paper, we focus on compar-
ative methods based on multilinear algebra for sake of
coherence with the recently developed method which
combines multidimensional wavelet packet transform and
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TUCKER3 decomposition: The three methods involve a
tensor decomposition either TUCKER3 or PARAFAC.
TUCKER3 decomposition, also known as lower rank-

(K1, . . . ,KN ) tensor approximation (LRTA-(K1, . . . ,KN )),
has been firstly used as multimode PCA, which uses
the first Kn PCA components in mode n, n =
1, . . . ,N , to restore the multidimensional signal. The
LRTA-(K1, . . . ,KN ) has been employed for seismic wave
separation [21], face recognition [22], and color image
denoising [23]. Although the LRTA-(K1, . . . ,KN ) can
obtain good results in denoising, it is not an optimal
solution for filtering noise in the aspect of the mean
squared error (MSE). The multidimensional Wiener filter
(MWF) has been proposed to overcome this drawback of
LRTA-(K1, . . . ,KN ) [24]. MWF calculates the filter in each
mode under the criterion of minimizing theMSE between
the desired signal and the estimated signal, therefore it
can been understood as an optimal LRTA-(K1, . . . ,KN ).
Moreover, MWF can also be understood as an extension
of the classical matrix-based Wiener filter to the tensor
model by using multilinear algebra tools. MWF has been
used in seismic wave denoising [24] and HSI denoising
[12,25], and obtained good results. Recently, a statistical
criteria has been adapted to estimate the rank of sig-
nal subspace in each mode [13], which makes MWF an
automatic method to reduce noise in the data.
Apart from TUCKER3, the PARAFAC [26] decomposi-

tion, also known as CANDECOMP [27], is another way to
decompose a tensor into lower rank factors. Distinguish-
ing from TUCKER3, PARAFAC decomposes a tensor into
a sum of rank-one tensors and only one rank K needs
to be estimated for the tensor. Moreover, the PARAFAC
decomposition is unique when the rank K is greater than
one, whereas TUCKER3 cannot be. PARAFAC decom-
position has recently been applied to chemical sciences
[28], array processing [29], telecommunications [30], and
HSI denoising [14]. As a comparison of MWF, refer-
ence [31] shows the potential of PARAFAC in the HSI
denoising. However, there is not an efficient way to
estimate the rank of PARAFAC, which constrains it in
automaticdenoising.
In a HSI, a rare signal is the one that is represented

by only a few number of pixels, while the abundant sig-
nal is the one that contains a large number of pixels
compared to a rare signal [17]. MWF and PARAFAC
treat a HSI as a whole entity in the denoising opera-
tion; therefore, the abundant signals and the rare signals
are processed together, which inhibits a drawback: the
rare signals may be unintentionally removed. In fact, the
energy of the rare signal is so weak compared to that
of the abundant signal that the estimated signal sub-
space cannot include the rare signal, and as a result,
the rare signal is removed. MWPT-MWF (multidimen-
sional wavelet packet transform (MWPT) with multiway

Wiener filter) has been proposed to overcome this draw-
back of MWF and PARAFAC [32]. Instead of treating
the HSI as a whole entity, MWPT-MWF firstly decom-
poses the HSI into several coefficient sets, also called
components, by employing MWPT, therefore the abun-
dant signal and the rare signal can be separated. After
this step, each component is filtered by MWF auto-
matically. Because the rare signal and the abundant sig-
nal are separated into different components, the signal
subspace in each component can be estimated more
exactly.
The goal of this paper is to present a survey of the

tensor-based denoising methods applied in filtering the
HSI. Some recent simulations and comparative results
on a real-world HYDICE HSI are also presented. The
reminder of this paper is organized as follows: Section 1.2
briefly introduces some basic knowledge about multi-
linear algebra. Section 1.3 introduces the signal model
used in this paper. Sections 1.4, 1.5, and 1.6 present the
recently proposed denoising methods MWF, PARAFAC,
andMWPT-MWF, respectively. Section 1.7 supplies some
comparative denoising and detection results. And finally,
Section 2 concludes this paper.

1.2 Basics on tensor tools andmultilinear algebra
1.2.1 Tensormodel
Amultiway signal is also called tensor. A tensor is a multi-
dimensional array,X ∈ R

I1×I2×...×IN , in whichR indicates
the real mainfold, andN is the number of dimensions. The
elements in this tensor can be expressed as xi1i2...iN , with
i1 = 1, . . . , I1; i2 = 1, . . . , I2; · · · ; iN = 1, . . . , IN . The
n-th dimension of this tensor is called n-mode. In partic-
ular, tensor X is called a rank-one tensor when it can be
written as the outer product of N vectors [33]:

X = a1 ◦ . . . ◦ aN , (1)

where ◦ indicates the outer product [34].

1.2.2 Multilinear algebra tools
n-mode unfolding Xn ∈ R

In×Mn denotes the n-mode
unfolding matrix of a tensor X ∈ R

I1×I2×...×IN , where
Mn = In+1 . . . I1IN . . . In−1. The columns of Xn are the
In-dimensional vectors obtained from X by varying index
in while keeping the other indices fixed. Here, we define
the n-mode rank Kn as the n-mode unfolding matrix rank,
i.e., Kn = rank (Xn).

n-mode product The n-mode product is defined as the
product between a data tensor X ∈ R

I1×I2×...×IN and a
matrix B ∈ R

J×In in mode n. This n-mode product is
denoted by

C = X ×n B, (2)

whose entries are given by
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ci1...in−1jin+1...iN �
In∑

in=1
xi1...in−1inin+1...iN bjin , (3)

where C ∈ R
I1×I2×...×In−1×J×In+1×...×IN .

1.3 Problem formulation and signal modeling
Anoisy HSI is modeled as a tensorR ∈ R

I1×I2×I3 resulting
from a pure HSI X ∈ R

I1×I2×I3 impaired by an additive
noiseN ∈ R

I1×I2×I3 . The tensorR can be expressed as:

R = X + N . (4)

In this paper, we assume that the noise N is zero-mean
white Gaussian noise and independent from the signal X .
The aim of this paper was to estimate the desired signalX
from the noisy HSIR.

1.4 MultiwayWiener filtering
1.4.1 Denoisingmodel
MWF provides an estimate X̂ of the desired signal X
from data tensorR by using a three-dimensional filtering,
which can be expressed as follows [35]:

X̂ = R ×1 H1 ×2 H2 ×3 H3. (5)

From the signal processing point of view, the n-mode
product is a n-mode filtering ofR; therefore,Hn is named
as n-mode filter.
In order to obtain the optimal n-mode filters {Hn, n =

1, 2, 3}, the usually used criterion is the mean squared
error (MSE) between the estimated signal X̂ and the
desired signal X :

e(H1,H2,H3) = E
[
‖X − X̂ ‖2

]

= E
[‖X − R ×1 H1 ×2 H2 ×3 H3‖2

]
.

(6)

Then, the optimal n-mode filters are the ones which can
minimize the MSE given in (6).

1.4.2 Calculation ofHn

To minimize the MSE given in (6) with respect to n-mode
filters {Hn, n = 1, 2, 3}, the derivation is employed and
the calculation details are presented in [24]. By setting
the derivation of the MSE to zero, the expression of the
optimal n-mode filterHn is [24]:

Hn = V(n)
s �(n)V(n)

s
T , (7)

where V(n)
s is a matrix containing the Kn orthonormal

basis vectors of the signal subspace in the column space of
the n-mode unfolding matrix Rn, and

�(n) = diag

⎛
⎝λ

γ
1 − σ

(n)2
γ

λ�
1

, . . . ,
λ

γ

Kn
− σ

(n)2
γ

λ�
Kn

⎞
⎠ , (8)

in which {λγ
i , i = 1, . . . ,Kn} and {λ�

i , i = 1, . . . ,Kn}
are the Kn largest eigenvalues of matrices γ

(n)
RR and �

(n)
RR

respectively, where

γ
(n)
RR = E

[
Rnq(n)RT

n

]
(9)

�
(n)
RR = E

[
RnQ(n)RT

n

]
(10)

with

q(n) = Hp1 ⊗ Hp2 , (11)

Q(n) = HT
p1Hp1 ⊗ HT

p2Hp2 (12)

where p1 �= n, p2 �= n, p1, p2 = 1, 2, 3 and ⊗ defines the
Kronecker product. Moreover, σ

(n)2
γ is equal to the In −

Kn smallest eigenvalues {λγ
i , i = Kn + 1, . . . , In} of γ

(n)
RR .

However, in the practice, the In − Kn smallest eigenvalues
are generally different. Hence, σ (n)2

γ can be estimated by:

σ̂ (n)2
γ = 1

In − Kn

In∑
i=Kn+1

λ
γ
i . (13)

1.4.3 Estimation of Kn
Being used in the computation of the n-mode filter Hn,
expression (7) requires the unknown Kn value, i.e., the
number of largest eigenvalues of the covariance matrix
of γ

(n)
RR , for n=1, 2, 3. Choosing a small Kn makes that

some signals are lost whereas choosing a large Kn makes
that noise is included after restoration. For this case, the
optimal Kn should be estimated to yield an optimum
restoration. Akaike information criterion (AIC) is a crite-
rion used to measure the information lost; therefore, it is
employed in MWF to determine the optimal rank Kn [13].
For mode n, the AIC can be expressed as:

AIC(kn) = − 2Mn

In∑
i=kn+1

log λ
γ
i

+ 2Mn(In − kn) log

⎛
⎝ 1
In − kn

In∑
i=kn+1

λ
γ
i

⎞
⎠

+ 2kn(2In − kn),
(14)

where {λγ
i , i = 1, . . . , In} are the eigenvalues of γ (n)

RR ,Mn is
the column number of γ (n)

RR and kn changes in the range of
{1, . . . , In − 1}. The estimated n-mode rank Kn is the value
of kn which minimizes AIC criterion.

1.4.4 ALS algorithm
To jointly find n-mode filters {Hn, n = 1, 2, 3} that
minimize (6), an Alternating Least Square (ALS) algo-
rithm [13] is necessary. Owing to this procedure, any filter
along a given mode depends on the filters along all other
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modes. The steps of this algorithm can be summarized as
presented here.

1. Input: Data tensorR
2. Initialization k = 0:

X 0 = R ⇐⇒ Hn = IIn∀n = 1, 2, 3. Where IIn is the
In × In identity matrix.

3. ALS loop: Repeat until convergence, that is, for
example, while ‖X k+1 − X k‖ > ε

(a) Estimation of Kn, n = 1, 2, 3,
Kn = argminkn [AIC(kn)] , kn = 1, . . . , In −1.

(b) Estimation ofHk+1
n for n = 1, 2, 3.

(i) X k
n = R ×p Hk+1

p ×q Hk
q.

p, q = 1, 2, 3, p, q �= n and p < q
(ii) Hk+1

n = argmin
Zn

‖X − X k
n ×n Zn‖2

subject to Zn ∈ R
In×In .

(c) Multidimensional Wiener filtering
X k+1 = R ×1 Hk+1

1 ×2 Hk+1
2 ×3 Hk+1

3 .
(d) k ← k + 1.

4. Output: Estimated signal tensor
X̂ = R ×1 Hkc

1 ×2 Hkc
2 ×3 Hkc

3 , where kc is the
convergence iteration index.

As the calculation of n-mode filter Hn in step 33b uti-
lizes the filters in other modes {Hi, 1 ≤ i ≤ 3andi �= n}, it
shows that the MWF considers the relationships between
elements in all modes of the data set.

1.5 PARAFAC filtering
1.5.1 Denoisingmodel
Since the decomposition by TUCKER3 model is not
unique and needs to estimate the rank Kn in each mode,
another tensor decomposition model PARAFAC was
recently introduced to reduce noise in R [14]. Different
from TUCKER3model, PARAFACmodel can decompose
a tensorR uniquely into a sum of rank-one tensors:

R̂ =
K∑

k=1
ak1 ◦ ak2 ◦ ak3 + N̂ , (15)

where N̂ is the decomposition error. Under the assump-
tion that signal can be expressed by finite rank PARAFAC
factorization, the estimate X̂ of the desired signal X can
be expressed by the PARAFAC model:

X̂ =
K∑

k=1
ak1 ◦ ak2 ◦ ak3 = I ×1 A1 ×2 A2 ×3 A3, (16)

where I is a identity tensor, and An =[a1n, . . . , aKn ],
n = 1, 2, 3. In order to obtain the optimal An, the error
between X̂ andR should be minimized:

e(A1,A2,A3) = ‖R − I ×1 A1 ×2 A2 ×3 A3‖2. (17)

Nonetheless, it is worth noting that the criterion of
PARAFAC is the squared error between the estimate X̂
and the noisy HSI R, while that of MWF is the mean
squared error between the estimate X̂ and the desired
signal X (see (6)). For a given rank K, minimizing (17)
means removing as little signal as possible in the denoising
process.

1.5.2 Calculation ofAn

To obtain An in each mode, the error given in (17) should
be minimized:

An = argmin(e) = argmin
(
‖X̂n − Rn‖2

)
, (18)

where X̂n is the n-mode unfolding matrix of X̂ in (16):

X̂n = An(Ap � Aq)
T , (19)

where p, q = 1, 2, 3 and p �= q �= n. By substituting (19)
into (18), we can obtain

An = argmin
(
‖An(Ap � Aq)

T − Rn‖2
)
. (20)

Obviously, the estimation ofAn needs information ofAp
and Aq, which are not known. In this situation, an ALS
algorithm should be employed to calculate the optimalAn.

1.5.3 PARAFAC ALS algorithm
To jointly estimate An, a ‘PARAFAC ALS’ algorithm is
introduced and its steps are listed as follows:

1. Input:
Data tensorR.

2. Initialization:
Set k = 0 and ek = 0. Randomly initialize
A0
n ∈ R

In×K , n = 1, 2, 3.
3. Loop:

(a) Estimate Ak+1
n

(i) Uk+1
1 = Ak

3 � Ak
2

Ak+1
1 = X1U

k+1
1 (Uk+1

1
TUk+1

1 )

(ii) Uk+1
2 = Ak

3 � Ak
1

Ak+1
2 = X2U

k+1
2 (Uk+1

2
TUk+1

2 )

(iii) Uk+1
3 = Ak

2 � Ak
1

Ak+1
3 = X3U

k+1
3 (Uk+1

3
TUk+1

3 )

(b) Compute X̂k+1
3 = Ak+1

3 Uk+1
3

T

(c) ek+1 = ‖R3 − X̂k+1
3 ‖2, if | ek+1 − ek |> ε and

k is less than the maximum number of
iteration, k ← k + 1 and then go back to
step 33a. Otherwise, break the loop.

4. Output:
Return An = Ak+1

n , n = 1, 2, 3.
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1.5.4 Rank estimation
As described in Section 1.5.1, PARAFAC filtering is an
algorithm which minimizes e(A1,A2,A3) in (17) under a
given rank K. In other words, it is assumed that the rank K
is known in PARAFAC filtering. Unfortunately, the rank K
is generally unknown in practice; therefore, an algorithm
used to estimate K is presented in this section. The details
are as follows:

1. Input:
Data tensorR

2. Initialization:
Set i = 1. Set rank-searching-set K-SCOPE.

3. Loop:

(a) Set K = K-SCOPE[ i].
(b) Do PARAFAC decomposition:

R = ∑K
k=1 ak1 ◦ ak2 ◦ ak3 + N̂ .

(c) At n=1,2,3, calculate the covariance matrix
Cn of N̂n, the n-mode unfolding matrix of N̂ .

(d) If

(i) σ 2
diag =

1/In
∑In

i=1(ci,i−1/In
∑In

i=1 ci,i)2 < δ1,
where ci,i is the diagonal elements of
Cn.

(ii) | ‖Cn‖2 − ∑In
i=1 c

2
i,i |< δ2

these two conditions are satisfied for all
n = 1, 2, 3 at the same time, break the loop.
Otherwise, i ← i + 1.

4. Output:
Return the rank K.

1.6 MWPT-MWF
1.6.1 Denoisingmodel
MWF and PARAFAC treat R as an entire entity in the
denoising process. This works well when there are only
abundant signals or the rare signals can be neglected.
However, in the situation where the rare signals cannot
be neglected, such as the target detection, MWF and
PARAFAC might remove rare signals in the denoising
process.
MWPT-MWF has been proposed to preserve rare sig-

nals in the denoising process and hence improve the
denoising performance. In MWPT-MWF, X is estimated
by minimizing MSE between the desired signal X and its
estimate X̂ :

MSE = E
[
‖X̂ − X ‖2

]
. (21)

Nevertheless, unlike MWF or PARAFAC, MWPT-
MWF reduces noise by jointly filtering the wavelet packet

coefficient set. The details of MWPT-MWF will be
described in the following subsections.

1.6.2 Multidimensional wavelet packet transform
The multidimensional wavelet packet transform (MWPT)
can be written in tensor form as:

CR = R ×1 W1 ×2 W2 ×3 W3 (22)

and the reconstruction can be written as:

R = CR ×1 WT
1 ×2 WT

2 ×3 WT
3 , (23)

where Wn ∈ R
In×In , n = 1, 2, 3 indicate the wavelet

packet transformmatrices. When the transform level vec-
tor is l =[l1, l2, l3]T , where ln ≥ 0 denotes the wavelet
packet transform level in mode n, the coefficient tensor
CR
l,m, which is also called a component in this paper, of

scale m =[m1,m2,m3], where 0 ≤ mn ≤ 2lk − 1, can be
extracted by

CR
l,m = CR ×1 Em1 ×2 Em2 ×3 Em3 (24)

and the corresponding inverse process is

CR =
∑
m1

∑
m2

∑
m3

CR
l,m ×1 ET

m1 ×2 ET
m2 ×3 ET

m3 , (25)

where the extraction operator Emn is defined as

Emn =[01, I In
2ln

× In
2ln

, 02]∈ R
In/2ln×In , (26)

where 01 is a zero matrix with size In
2ln × mnIn

2ln and 02 is a

zero matrix with size In
2ln × (2ln−1−m)In

2ln .

1.6.3 MultiwayWiener filter inmultidimensional wavelet
packet domain

After the MWPT, abundant and rare signals can be sep-
arated into different components; therefore, the signal
subspace of each component can be estimated more accu-
rately than that of the entire dataset. Furthermore, a better
estimation of the signal subspace can improve the per-
formance of MWF in each component. However, the
denoising criterion of MWPT-MWF is the minimization
of the MSE between X and X̂ but not the component and
its estimate; therefore, this subsection proves the ability of
MWPT-MWF in minimizing the MSE between X and X̂ ,
which is defined in (21). By performing MWPT to tensor
R, X andN in expression (4), we obtain

R ×1 W1 ×2 W2 ×3 W3

= (X + N ) ×1 W1 ×2 W2 ×3 W3

= X ×1 W1 ×2 W2 ×3 W3 + N ×1 W1 ×2 W2 ×3 W3.
(27)
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The coefficient tensor of each part:

CR
l = R ×1 W1 ×2 W2 ×3 W3 (28)

CX
l = X ×1 W1 ×2 W2 ×3 W3 (29)

CN
l = N ×1 W1 ×2 W2 ×3 W3 (30)

and the coefficient tensor of the estimate X̂ :

ĈX
l = X̂ ×1 W1 ×2 W2 ×3 W3. (31)

Extracting the components of each frequency CR
l,m, CX

l,m
and CN

l,m from CR
l , CX

l and CN
l respectively by using (24),

we obtain

CR
l,m = CX

l,m + CN
l,m. (32)

From Parseval’s theorem, the following expression can
be obtained:

‖X − X̂‖2 = ‖CX
l − ĈX

l ‖2 =
∑
m

‖CX
l,m − ĈX

l,m‖2 (33)

which means that minimizing the MSE between X and its
estimate X̂ is equivalent to minimizing the MSE between
CX
l,m and ĈX

l,m for each m. If ĈX
l,m is estimated by Tucker3

decomposition of CR
l,m:

ĈX
l,m = CR

l,m ×1 H1,m ×2 H2,m ×3 H3,m (34)

then H1,m,H2,m,H3,m are the n-mode filters of the mul-
tiway Wiener filter aforementioned in Section 1.4. After
estimating ĈX

l,m for each m, we obtain ĈX
l by concatenat-

ing ĈX
l,m. Furthermore, the estimate X̂ can be obtained by

inverse MWPT:

X̂ = ĈX
l ×1 WT

1 ×2 WT
2 ×3 WT

3 (35)

1.6.4 Best transform level and basis selection
In MWPT-MWF, several parameters should be deter-
mined, as presented here.

1. Level of transform: the performance of the algorithm
is affected by the level of transform, which depends
on the size of tensorR. The maximum level can be
calculated by

NLk = �log2 Ik� − 5, k = 1, 2, 3, (36)

where �·� rounds a number upward to its nearest
integer, and the constant 5 is subtracted from
�log2 Ik� to make sure there are enough elements in
each mode so that the transform is meaningful.
Then, the set of possible transform levels can be
expressed as:

Lk = {0, 1, · · · ,NLk }, k = 1, 2, 3, (37)

where {·} denotes a set.
2. Basis of transform: there are many wavelet bases

designed for different cases. For the simplicity of
expression, we define

W = {w1, w2, · · · , wNW } (38)

to denote the set of possible wavelet bases, where
NW is the number of wavelets in this set.

The best transform level and basis should minimize
the MSE or risk Rc(X , X̂ ) = E

[
‖X − X̂ ‖2

]
[36], whose

equivalent form for each component can be expressed as:

Rc(X , X̂ ) =
∑
m

E
[
‖CX

l,m − ĈX
l,m‖2

]
(39)

Then, the best transform level and basis can be selected
by

l,w = argmin
lk∈Lk , w∈W

∑
m

E
[
‖CX

l,m − ĈX
l,m‖2

]
, k = 1, 2, 3.

(40)

While selecting the optimal l,w depends on X which
is generally unknown. To overcome this drawback,
an alternative solution should be found. Denoting by
ĈX
l,m[d] the estimate of CX

l,m at the d-th ALS loop afore-
mentioned in Section 1.4.4 and noticing that, when
‖ĈX

l,m[d]−ĈX
l,m[d − 1] ‖2 is minimized, ĈX

l,m � ĈX
l,m[d] is

the optimal estimate of CX
l,m obtained by MWF, and at the

same time, E
[
‖CX

l,m − ĈX
l,m‖2

]
is minimized according to

Section 1.4.2. Therefore, (40) can be replaced by

l,w = argmin
lk∈Lk , w∈W

R̂c, k = 1, 2, 3, (41)

where

R̂c =
∑
m

‖ĈX
l,m[d]−ĈX

l,m[d − 1] ‖2. (42)

1.6.5 Summary of theMWPT-MWF
The proposed algorithm, which is denoted by
MWPT-MWF, can be summarized as presented here.

1. Input:
Data tensorR.

2. Initialization:
Set L = {1, . . . ,NLk },W = {w1, . . . ,WNw} and the
risk threshold ε.

3. Loop:
For each l1, l2, l3 ∈ L andw ∈ W . Loop l1, l2, l3 and w:

(a) Decompose the whitened dataR by MWPT:
CR
l = R ×1 W1 ×2 W2 ×3 W3.

(b) Extract component CR
l,m from CR

l by (24), for
m =[m1,m2,m3]T , where 0 ≤ mk ≤ 2lk − 1,
k = 1, 2, 3.

(c) Filter component CR
l,m by MWF:

ĈX
l,m = CR

l,m ×1 H1,m ×2 H2,m ×3 H3,m.
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(d) Calculate the risk
R̂c = ∑

m
‖ĈX

l,m[ d]−ĈX
l,m[d − 1] ‖2. If R̂c

reaches a fixed threshold ε, return the
optimal l1, l2, l3,w and ĈX

l,m.

4. Output: Concatenate ĈX
l,m to obtain CX

l and perform
inverse MWPT: X̂ = ĈX

l ×1 W1T ×2 W2T ×3 W3T .

1.7 Experimental results
In this section, we use a real-world high spatial resolution
image acquired by HYperspectral Digital Imagery Collec-
tion Experiment (HYDICE). The HYDICE image contains
65 rows, 100 columns, and 160 spectral bands, and ismod-
eled as a 65× 100× 160 tensor in this paper. Six targets of
interest are selected in the image as shown in the ground-
truth map in Figure 1 and the corresponding mask is
shown in Figure 2. The spectral signatures of these six tar-
gets are presented in Figure 3. These six targets are chosen
because they have different spectral signatures and sizes,
so that the denoising and target detection performance on
different target sizes can be evaluated.
White Gaussian noise is added into the HSI with signal-

to-noise ratio (SNR) ranged from 15 to 30 dB (with a
step of 5 dB) to reproduce different simulation scenarios.
MWF, PARAFAC, and MWPT-MWF are used to reduce
noise in the HSI. The rank-searching-set of PARAFAC is
set as [51,101,151,201], and wavelet db3 is selected to do
MWPT with transform levels [l1, l2, l3]=[1, 1, 0].

1.7.1 Denoising performance evaluation and comparison
To present the denoising results intuitively, Figure 4 shows
the target spectral signatures of the noisy HSI and the HSI
denoised byMWF, PARAFAC, andMWPT-MWF, respec-
tively. By comparing the four sub-figures in Figure 4, it is
evident that denoising is a necessary procedure to restore
the target spectral signatures. Moreover, we can see that
there still exists more noise in Figure 4b than Figure 4c and
Figure 4d. Especially, the spectral signatures of targets 1,

Figure 1 Ground-truth map of real-world image HYDICE.

Figure 2 Target mask of real-world image HYDICE.

3, and 5 are almost mixed together in Figure 4b. Figure 4c
and Figure 4d are much better, at least the residual noise is
small after denoising. However, the spectral signatures are
changed more greatly after denoising by PARAFAC than
by MWPT-MWF, which can be seen obviously from the
signatures of targets 5 and 6. In Figure 4c, the signatures of
targets 5 and 1 are almost overlapped, while in Figure 4d,
these two signatures can be distinguished easily.
To compare the performances of MWF, PARAFAC, and

MWPT-MWF, the SNR of the image after denoising, also
named as SNR output, is defined as below [12]:

SNROUTPUT = 10 log(
‖X ‖2

‖X̂ − X ‖2 ). (43)

If SNROUTPUT is greater than SNRINPUT, we can con-
clude that the algorithm improves the SNR of the image.
The SNROUTPUT values obtained when SNRINPUT is

varying from 15 to 30 dB by different denoising methods
are shown in Table 1. It is obvious that MWPT-MWF out-
performs the other two denoising methods significantly.
When the SNRINPUT is low, from 15 to 25 dB in Table 1,
the denoising result of PARAFAC is better than that of

Figure 3 Spectral signatures of the six targets.
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Figure 4 Comparison of target spectra in (a) the noisy HSI and HSI denoised by (b) MWF, (c) PARAFAC, and (d) MWPT-MWF,
SNRINPUT = 15dB.

MWF. But when the SNRINPUT is high, from 25 to 30 dB,
the performance of MWF is slightly better than that of
PARAFAC. Moreover, it is worth noting that all of these
three methods can improve the SNR significantly. When
the SNRINPUT is 15 dB, the SNROUTPUT after denoising is
30 dB maximum by MWPT-MWF and 24 dB minimum
by MWF. The denoising results shown in Table 1 give the
experimental evidence of the benefits derived from the
denoising procedure.

1.7.2 Target detection performance evaluation and
comparison

In the last subsection, we have compared the denois-
ing performances of different methods in the aspect of
SNROUTPUT. However, sometimes SNROUTPUT cannot
reflect the denoising performance we want, especially

Table 1 SNROUTPUT vs. SNRINPUT obtained after denoising
bymethodsMWF, PARAFAC, andMWPT-MWF

SNROUTPUT(dB)

SNRINPUT(dB) MWF PARAFAC MWPT-MWF

15 23.55 28.80 30.27

20 29.68 32.04 33.58

25 35.54 35.19 36.60

30 38.35 38.07 39.19

when we consider preserving small targets in the HSI
while removing noise. Hence, in this subsection, we
compare the target detection performance after denoising
by MWF, PARAFAC, and MWPT-MWF.
Spectral Angle Mapper (SAM) detector [37] is used in

the experiment to detect targets in the HSI. As SAM does
not require the characterization of the background, it can
avoid the inaccuracy of the comparison result caused by
the noise covariance matrix estimation error. The SAM
detector can be expressed as

TSAM(x) = sTx
(sTs)1/2(xTx)1/2

, (44)

where s is the reference spectrum and x is the pixel
spectrum.
To assess the performances of detection, the probability

of detection (Pd) is defined as

Pd =
∑ns

i Nrd
i∑ns

i Ni
(45)

and the probability of false alarm (Pfa) is defined as

Pfa =
∑ns

i Nfd
i∑ns

i (I1 × I2 − Ni)
, (46)
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Figure 5 Detection result obtained after denoising by MWFwith
parameters Pfa=10−4 and SNRINPUT = 15 dB.

where ns is the number of spectral signatures, Ni the
number of pixels with spectral signature i, Nrd

i the num-
ber of correctly detected pixels, and Nfd

i the number of
false-alarm pixels.
Figures 5, 6, and 7 are the target detection results

after denoising by MWF, PARAFAC, and MWPT-MWF,
respectively, in the noise environment SNRINPUT = 15dB.
In the images, the black pixel indicates no-target, the
green the correct-detection, the red the false alarm, and
the blue the missed target. From Figure 5, which shows
the detection result after denoising by MWF, we can see
that all of the three small targets (targets 1, 3, and 5)
are missed in the detection. Moreover, most of the pix-
els of target 5 are also missed. The detection result after
denoising by PARAFAC, in Figure 6, is slightly better
than that by MWF, but all of the small targets are also
lost in the detection. MWPT-MWF shows its capability
of preserving small targets in Figure 7, in which two of
the three small targets are detected correctly. Apart from
preserving small targets, MWPT-MWF can also improve

Figure 6 Detection result obtained after denoising by PARAFAC
with parameters Pfa=10−4 and SNRINPUT = 15 dB.

Figure 7 Detection result obtained after denoising by
MWPT-MWF with parameters Pfa=10−4 and SNRINPUT = 15 dB.

the detection performance of the large-size-small-energy
target 6, which is obvious by comparing Figures 5, 6, and 7.
To evaluate the detection performance in different

noise environments, Table 2 shows the Pd values versus
SNRINPUT of different denoising methods with SNRINPUT
ranged from 15 to 30 dB.
It is obvious that the detection result after denoising

by MWPT-MWF outperforms the two other methods. By
comparing Table 2 with Table 1, we can understand that
the denoising process can improve the target detection
performance.

2 Conclusion
In this paper, a survey has been presented on three
recently proposed tensor filtering methods: MWF,
PARAFAC, and MWPT-MWF. They utilize multilinear
algebra in analyzing a multidimensional data cube to
jointly filter it in each mode.
TheMWF extends the classicalWiener filter to the mul-

tidimensional case by using the TUCKER3 decomposition
while minimizing theMSE between the desired signal ten-
sor and the estimated signal tensor. As the filter in one
mode relies on the filters in the other modes, the ALS
algorithm is used to jointly calculate the MWF filters. In
the filtering process, the signal subspace rank in mode n
needs to be known to remove the noise in the orthogonal

Table 2 SNRINPUT vs. Pd obtained after denoising by
methodsMWF, PARAFAC, andMWPT-MWF

Pd

SNRINPUT(dB) MWF PARAFAC MWPT-MWF

15 0.724 0.878 0.922

20 0.972 0.998 0.998

25 1 1 1

30 1 1 1
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complement subspace of the signal subspace. For this rea-
son, the AIC algorithm is taken to estimate the rank in
mode n, which implies that the MWF can reduce noise
automatically.
The PARAFAC filteringmethodwas proposed to reduce

the number of rank values to be estimated. As aforemen-
tioned, the rank in each mode must be estimated inMWF,
while only one rank must be estimated in PARAFAC fil-
tering. Moreover, the low-rank PARAFAC decomposition
is unique for rank values higher than one, whereas the
TUCKER3 decomposition is not. However, there is not
an efficient way to estimate the PARAFAC rank automat-
ically. Though we have shown a rank estimation method
in this paper, it is a time-consuming brute force searching
way.
The MWF and PARAFAC were proposed to process the

HSI as a whole entity, but this may remove the small tar-
gets in an HSI in the denoising process. Distinguishing
from MWF and PARAFAC, MWPT-MWF firstly trans-
forms the HSI into different wavelet packet sets, also
called components in this paper, and then filters each
component as a whole entity. As the small targets are
separated from the large ones, the former can be well
preserved in the denoising process.
A real-world HYDICE HSI is used in the compara-

tive study. Quantitative and visual evaluation of the three
methods is shown. From the experimental results, we
can conclude that MWPT-MWF is a suitable tool for
denoising especially when there exist small targets in the
HSI.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors would like to thank the reviewers for their careful reading and
helpful comments which improve the quality of this paper.

Received: 16 August 2013 Accepted: 2 December 2013
Published: 17 December 2013

References
1. K Kotwal, S Chaudhuri, Visualization of hyperspectral images using

bilateral filtering. IEEE Trans. Geosci. Remote Sens.
48(5), 2308–2316 (2010)

2. S Lewis, A Hudak, R Ottmar, P Robichaud, L Lentile, S Hood, J Cronan, P
Morgan, Using hyperspectral imagery to estimate forest floor
consumption from wildfire in boreal forests of Alaska, USA. Int. J. Wildland
Fire 20(2), 255–271 (2011)

3. K Tiwari, M Arora, D Singh, An assessment of independent component
analysis for detection of military targets from hyperspectral images. Int. J.
Appl. Earth Obs. Geoinf. 13(5), 730–740 (2011)

4. T Veracini, S Matteoli, M Diani, G Corsini, Nonparametric framework for
detecting spectral anomalies in hyperspectral images. IEEE Geosci.
Remote Sens. Lett. 8(4), 666–670 (2011)

5. S Prasad, W Li, JE Fowler, LM Bruce, Information fusion in the
redundant-wavelet-transform domain for noise-robust hyperspectral
classification. IEEE Trans. Geosci. Remote Sens.
50(9), 3474–3486 (2012)

6. J Kerekes, J Baum, Full-spectrum spectral imaging system analytical
model. IEEE Trans. Geosci. Remote Sens. 43(3), 571–580 (2005)

7. ML Uss, B Vozel, VV Lukin, K Chehdi, Local signal-dependent noise
variance estimation from hyperspectral textural images. IEEE J. Sel. Topics
Signal Process. 5(3), 469–486 (2011)

8. N Acito, M Diani, G Corsini, Subspace-based striping noise reduction in
hyperspectral images. IEEE Trans. Geosci. Remote Sens. 49(4), 1325–1342
(2011)

9. L Shao, R Yan, X Li, Y Liu, From heuristic optimization to dictionary
learning: a review and comprehensive comparaison of image denoising
algorithms. IEEE Trans. Cybernet. (2013) in press.

10. R Yan, L Shao, Y Liu, Nonlocal hierarchical dictionary learning using
wavelets for image denoising. IEEE Trans. Image Process.
22(12), 4689–4698 (2013)
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