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Abstract

In this article, the direction-of-arrival (DOA) estimation problem of wideband signal sources is studied. We pass the
incident signals through a bank of narrowband filters to split the array outputs into several narrowband components.
Then, a novel slice-sparse representation model of the joint narrowband array covariance data is proposed in the
frequency domain to enforce joint sparsity in the concatenated covariance matrix of all frequencies. Based on the
greed matching pursuit algorithm, a multiple measurement slices orthogonal matching pursuit algorithm is proposed
to exploit the joint frequency processing in the case of wideband scenarios. The DOA estimation is achieved by joint
processing of the array covariance data at different frequency bins. The estimated performance is compared with the
representative DOA estimation methods. Simulation experiments are conducted to validate the effectiveness of the
proposed method.
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1 Introduction
Due to the increase use of wideband signals in the fields
of wireless communication system and radar, the problem
of direction of arrival (DOA) estimation of wideband sig-
nals has been of considerable interest to the array signal
processing in recent years. Many methods have been pro-
posed to estimate the DOAs of wideband signals, among
which the maximum-likelihood (ML) methods and sub-
space methods are most studied. TheML estimators show
excellent performance but it needsmultidimensional non-
linear global search [1]. The subspace methods, although
not optimal, are computationally more attractive than
ML methods. The subspace methods can be classified
into two major categories: incoherent signal-subspace
method (ISSM) [2] and coherent signal-subspace method
(CSSM) [3-6]. These methods decompose the incident
wideband signals into narrowband components by pass-
ing them through a bank of narrowband filters, and then
obtain the DOA estimation incoherently or coherently.
The ISSM incoherently constructs the final result by tak-
ing an average of different frequency bins. Although it
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works well at high signal-to-noise ratio (SNR), its per-
formance degrades greatly at low SNR or the SNR varies
at different frequency bins because even a single outlier
from one frequency bin can potentially lead to inaccurate
estimate through the averaging processing. The CSSM
surpasses the ISSM because of the capability to process
the coherent sources by employing the spectral focusing
technique [3]. However, the accuracy of preliminary DOA
estimation which is required for the spectral focusing
largely influences the performance of CSSM [6]. There-
fore, we must explore better solutions for the problem of
wideband DOA estimation.
In recent years, the sparse signal representation has

attracted enormous attention. By now, there has been sev-
eral articles addressed sparse representation (SR)-based
DOA estimation [7-9]. Among them, the l1-SVD method
proposed by Malioutov et al. [8] is a successful attempt.
This method has also been extended to the wideband sig-
nals by treating each frequency band independently [8].
But, repeated using convex optimization technique leads
to heavy computational burden in the multiple measure-
ment vectors (MMV) scenario. The wideband covariance
matrix sparse representation (W-CMSR) method pre-
sented by Liu and Haung [10] forms a new measurement
vector by aligning the lower left triangular elements of
the array output covariance matrix and reconstructs this
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vector on an over-complete dictionary to realize wideband
DOA estimation. But, it relies on some prior information
such as signal modulation types and the pre-estimated
signal power spectrum. These give rise to performance
degradation when the incident signals share different
types of modulations or signal power spectrums. There-
fore, further efforts are required to derive integrative
wideband DOA estimates method.
In this article, we still address the wideband DOA esti-

mation problem by dividing the wideband data into nar-
rowband counterparts. To work in the frequency domain,
we propose a slice-SR model of the joint array covariance
data that are stacked as a tensor matrix. Based on the
greedy matching pursuit algorithm [11,12], we propose a
multiple measurement slices (MMS) orthogonal match-
ing pursuit (MMS-OMP) algorithm. This algorithm pro-
cesses the narrowband covariance data jointly to obtain
the spatial-frequency spectrum. The proposed method
and other representative methods are compared. The sim-
ulation results show that this algorithm has better noise
robustness, higher resolution, and can resolve coherent
sources.
This article contributes to the field of wideband DOA

estimation in the following four aspects,

(1) We use the idea of joint processing of the
narrowband components, so the spectral focusing is
not introduced.

(2) The proposed method is based on the greedy pursuit
algorithms so that, it is a low-complexity and high
resolution estimator for the wideband signal sources.

(3) An important benefit that comes with our algorithm
is the ability to incorporate prior information on the
frequency spectra of the sources.

(4) Furthermore, we can allow the distance between
adjacent array elements larger than the smallest
half-wavelength with respect to the wideband source
frequency, just like what W-CMSR has achieved.

The remainder of the article mainly consists of four
sections. In Section 2, we describe the frequency domain
model of wideband DOA estimation. In Section 3, we
present the viewpoint of the SR of array output covari-
ance vectors. Then, a concept of joint K-slice sparse is
proposed for the stack operation of the MMS in the form
of tensor matrix. Finally, we formulate the MMS-OMP
algorithm in detail. Some numerical results are provided
to demonstrate the performance and computational effi-
ciency of MMS-OMP in Section 4. In Section 5, we make
a conclusion.

2 Datamodel
For wideband signal sources, suppose that K far-field
wideband signals impinge onto an N-element array from

the directions of θ1, θ2, . . . , θK respectively, which are cor-
rupted by additive complex Gaussian white noise. At time
t, the data of the n th array element are collected by

xn(t) =
K∑

k=1
sk(t − τnk) + wn(t) n = 1, 2, . . . ,N (1)

where sk(t) is the waveform of the kth source, τnk is
the propagation delay of the nth element of the array
with respect to the reference element, wn(t) is the zero-
mean complex additive Gaussian white noise. We assume
that the incident signals and the additive noise are mutu-
ally independent. The number of sources K can be esti-
mated by Akaike information criterion (AIC) or minimum
description length (MDL) criterion [13].
Then, the observation time T is divided into L sub-

segments. Each sub-segment has an observation time Td,
apparently, T = LTd. We transform the Td received data
of the lth segment into the frequency domain resulting in
J non-overlapping narrowband components. We denote
the frequency domain data at frequency fj by

Xl(fj) = A(fj)Sl(fj) + Wl(fj)
l = 1, 2, . . . , L j = 1, 2, . . . , J

(2)

where Xl(fj) ∈ C
N×1, Sl(fj) ∈ C

K×1, Wl(fj) ∈ C
N×1 are

derived from the discrete Fourier transform (DFT) of the
received data, signals and noise, respectively.
The array manifold matrix with respect to the above

wideband model is

A(fj) =[ a1(fj) a2(fj) . . . aK (fj) ]∈ C
N×K (3)

Considering a uniform linear array (ULA), the array
steering vector ak(fj) can be expressed as follows

ak(fj) =[ e−j2π fjτ1k e−j2π fjτ2k . . . e−j2π fjτNk ]
(4)

where τnk = 1
c (n − 1)d sin(θk), d is the distance

between adjacent array element, c is the velocity of wave
propagation.
Equation (2) is the frequency domain model of wide-

band signal sources. It is similar to time domain model
of narrowband sources in the form. The estimated array
covariance matrix at frequency fj is given by

R̂(fj) = 1
L

L∑
l=1

Xl(fj)XH
l (fj), j = 1, 2, . . . , J (5)

where R̂(fj) ∈ C
N×N , [ ·]H denotes the complex conju-

gate transpose operator. The wideband DOA estimation
method proposed in next section can be derived from SR
of the array output covariance vectors in R̂(fj).
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3 Proposedmethod
3.1 SR of the array covariance vectors
For the frequency fj, (5) can be reformulated as follows

R̂(fj) = A(fj)R̂S(fj)AH(fj) + σ 2
W (fj)I (6)

where R̂S(fj) is the signal covariance matrix, σ 2
W (fj) is the

noise power, I is an N × N identity matrix. In order to
a convenient derivation, we temporarily neglect the noise
item. Then we have

R̂(fj) = A(fj)[ R̂S(fj)AH(fj)] (7)

According to SR theory [14], it is obviously that (7)
can be rewritten as R̂(fj) = A(fj)G, where G =
R̂S(fj)AH(fj) ∈ C

K×N , A(fj) = [ a1(fj) a2(fj) . . . aK (fj)].
We represent R̂(fj) in the form of column vectors as
R̂(fj) = [

r̂1(fj) r̂2(fj) . . . r̂N (fj)
]
. So each column vector

in R̂(fj) can be regarded as the linear combination of the
array steering vectors in A(fj), i.e.,

r̂n(fj) =
K∑

k=1
gknak(fj) (8)

where gkn is the kth row nth column element of G. To
cast this problem as a SR problem, we introduce an over-
complete representation �j in terms of all possible DOAs.
Then, let {θ̃1, θ̃2, . . . , θ̃Ns} be a sampling grid of all DOAs
of interest. The number of potential DOAs Ns will typi-
cally bemuch greater than the number of sourcesK. Then,
we construct the over-complete basic matrix composed of
steering vectors corresponding to each potential DOA as
its columns

�j =[ a(θ̃1, fj) a(θ̃2, fj) . . . a(θ̃Ns , fj) ] (9)

So (8) can be represented as

r̂n(fj) =
Ns∑

ns=1
bnsa(θ̃ns , fj) (10)

where the linear combination coefficient bns satisfy

bns =
{
gkn θ̃ns = θk

0 θ̃ns �= θk
(11)

So r̂n(fj) is the linear combination of the range space of
�j. We reformulate (10) as the form of matrices, then we
obtain

r̂n(fj) = �jbn,j n = 1, 2, . . . ,N (12)

where bn,j is the Ns × 1 representation coefficient vec-
tor with respect to the above over-complete basis at
frequency fj. Since �j has a nontrivial nullspace, many
solutions of bn,j can fit r̂n(fj) well. To make bn,j unique K-
sparse solution, we should impose the sparsity of the sig-
nals relative to the whole spatial domain. If {θ̃1, θ̃2, . . . , θ̃Ns}
are dense enough, some K angles in {θ̃1, θ̃2, . . . , θ̃Ns} can

be expected to be very close (or even equal) to the actual
{θ1, θ2, . . . , θK }, so an ideal bn,j should be the vector with
all elements zero except for the K elements associated
with these K angles, which are related to the DOAs of the
signals [14].
Then, we rewrite the model in (7) in the form of matrix

as follows

R̂(fj) = �jBj (13)

where Bj = [
b1,j,b2,j, . . . ,bN ,j

] ∈ C
Ns×N . It is clear that

the ideal bn,j, n = 1, 2, . . . ,N should share the same
sparse structure, and the nonzero elements of each ideal
bn,j should occur in the same rows of Bj. In other words,
only K rows of bn,j are nonzero. Such a matrix is called
joint K-rows sparse [12]. We call r̂n(fj), n = 1, 2, . . . ,N
as MMV.
Slices are the two-dimensional sections of a tensor

matrix. Figures 1 and 2 show the horizontal, lateral, and
frontal slices of a tensor matrix [15]. The above analyzes
the SR of the array output covariance vectors at frequency
fj. For all narrowband data of every frequency bins, we
have MMS, which consist of corresponding array output
covariance vectors. Just as shown in Figure 1, the MMS
with respect to corresponding frequency bins are stacked
up as frontal slices. As a result, Bj, j = 1, 2, . . . , J are
stacked up in the form of three-dimensional (3-D) tensor
matrix B. The new tensor matrix B ∈ C

Ns×N×J illustrated
in Figure 3 has a property of nonzero elements occupying
only K horizontal slices, so that it is called joint K-slice
sparse. Therefore, the DOA estimation problem can be
posed as the MMS problem of finding a slice-sparse ten-
sor matrix B to represent the 3-D measurement matrix
R ∈ C

N×N×J under the tensor basic matrix� ∈ C
N×Ns×J .

For the above joint K-slice sparse model, we formulate
our algorithm based on the fundamental OMP algorithm.
In order to facilitate the presentation before introducing
our algorithm, we define some concepts as follows.

(1) ‖·‖2F and ‖·‖2 denote the Frobenius norm for a
matrix and the Euclidean norm for a vector;

(2) R(i)
j , j = 1, 2, . . . , J illustrated in Figure 2 denotes the

residual matrices after i th iteration, where
R(0)
j = R̂(fj), j = 1, 2, . . . , J , the nth column of R(i)

j is
denoted by r(i)n,j;

(3) Si = {s1, s2, . . . , si}, S0 = ∅. We denote this subset
which stores the indices si of the i lateral slices
selected from the tensor basic matrix �;

(4) �i =[ψ s1 ,ψ s2 , . . . ,ψ si ], �0 = ∅. This tensor matrix
named atom set stores the selected lateral slices from
�, where ψ si showed in Figure 2 denotes the selected
lateral slice;

(5) P�i
j
represents the orthogonal projection matrix onto

the range space of �i
j , where �i

j is the j th frontal slice
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Figure 1 The stacking operation of the array covariance matrices at different frequency bins. The MMS with respect to corresponding
frequency bins are stacked up as frontal slices.

which is related to the frequency fj. Its orthogonal
complement is P⊥

�i
j
= (I − P�i

j
), P�0

j
= 0, P⊥

�0
j

= I.

3.2 OMP algorithm
Orthogonal matching pursuit algorithm [11] can pro-
cess the underdetermined equation solution in (12), i.e.,
r̂n(fj) = �jbn,j. Since bn,j has only K nonzero compo-
nents, the vector r̂n(fj) = �jbn,j is a linear combination
of K columns from �j. To identify the ideal bn,j, we need
to determine which columns of �j participate in the mea-
surement vector r̂n(fj). The idea behind the algorithm is
to pick columns in a greedy fashion. At ith iteration, we
choose the column si of�j that is most strongly correlated
with the remaining part of r̂n(fj) by

si = arg max
s

∥∥∥�H
j r̄

(i−1)
j

∥∥∥2 , s = 1, 2, . . . ,Ns (14)

where r̄(i−1)
j is the (i−1)th residual and r̄(0)j = r̂n(fj). Then

we subtract off its contribution to r̂n(fj) by

r̄(i)j = r̂n(fj) − �ib̂(i)
n,j (15)

where �i =
[
�i−1 a(θ̃si , fj)

]
and b̂(i)

n,j =
arg min

b

∥∥r̂n(fj) − �ib
∥∥2. Then, we iterate on the residual.

One hopes that, after K iterations, the algorithm will have
identified the correct set of columns.

3.3 MMS-OMP algorithm
Considering the standard OMP algorithm [11], the sparse
solution can be found by building up a small subset of
column vectors selected from �j (we denote it with sup-
port set) to represent r̂n(fj) sequentially. The selection of
a nonzero row of bn,j equals to selecting a column of �j.
In the joint K-slice sparse scenario, we use an extensional
criterion to select the support set. Consequently, favor-
able performance and lower computational complexity are
achieved. So our method presented in the followings is
motivated by and is extensions of method developed for
J = 1 and n = 1.

Figure 2 The illustration of the denoted concepts for MMS-OMP algorithm. The new residual are stacked up as frontal slices. The selected
lateral slice is ψ si at ith iteration. The corresponding ith horizontal slice is Slice i.
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Figure 3 The slice-sparse architecture of the sparse tensor
matrixB. The sparse tensor matrixB has a property of nonzero
elements occupying only K horizontal slices.

In the MMS-OMP algorithm, we first find the lateral
slice in the tensor matrix �, which is best aligned with the
MMV (i.e., r(i)n,j, j = 1, 2, . . . , J , n = 1, 2, . . . ,N) compris-
ing the lateral slices of R(0) = R, and this is denoted by
ψ s1 . Then, the projection of R(0)

j , j = 1, 2, . . . , J along the
direction ψ s1 , j is removed from R(0)

j , and the residual R(1)

is obtained by stacking each residual R(1)
j from front to

back. Next, the lateral slice ψ s2 in �, which is best aligned
with R(1), is found, and a new residual R(2) is formed. The
algorithm proceeds by sequentially choosing the lateral
slices that best matches the residual matrix. Now, we go
into the detail of the MMS-OMP algorithm by looking at
the ith iteration.
In the ith iteration, we find the slice matrix most closely

aligned with the residual R(i−1) by examining the total
matching error

�(i)
s =

√√√√√ J∑
j=1

∣∣∣�(i)
s,j

∣∣∣2, s = 1, 2, . . . ,Ns (16)

where �
(i)
s,j = P⊥

as,jr
(i−1)
j is the jth sub matching error,

as,j is the sth column vector of �j. The vector which
minimizes the Frobenius norm of the jth sub matching
error is selected, i.e.,

∥∥∥�
(i)
s,j

∥∥∥2
F

= Tr
((

�
(i)
s,j

)H
�

(i)
s,j

)

= Tr
((

P⊥
as,jR

(i−1)
j

)H
P⊥
as,jR

(i−1)
j

)

=
∥∥∥R(i−1)

j

∥∥∥2
F

− Tr
((

R(i−1)
j

)H
Pas,jR

(i−1)
j

) (17)

Theminimization is achieved bymaximizing the second
term in the above expression. Pas,j = as,jaHs,j is employed to
select the index of lateral slice as

si,j = arg max
s

∥∥us,j∥∥2, s = 1, 2, . . . ,Ns (18)

where uHs,j = aHs,jR
(i−1)
j .

According to the joint K-slice sparse model, differ-
ent sub matching error should share the uniform result
of minimization. If all the minimization of sub match-
ing errors �

(i)
s,j is achieved, the total matching error is

achieved, too. Then, we modify (18) as follows

si = arg max
s

∥∥∥∥∥∥∥
√√√√√ J∑

j=1

∣∣us,j∣∣2
∥∥∥∥∥∥∥
2

, s = 1, 2, . . . ,Ns (19)

The support set is update by Si = Si−1 ∪ {si} and
�i = [

�i−1,ψ si
]
. The new residual R(i)

j is respectively
computed as

R(i)
j = P⊥

�i
j
R(i−1)
j = R(i−1)

j − P�i
j
R(i−1)
j , j = 1, 2, . . . , J

(20)

where P�i
j
is the projection matrix of �i

j . The MMS-OMP
algorithm is mainly defined by (19) and (20). The main
steps of the MMS-OMP algorithm can be described as
follows.

The MMS-OMP algorithm.
Input:
Tensor matrixR;
Tensor basic matrix �;
Iterations K.
Output:
Tensor matrix B̂,
The spatial spectrum Pmms omp.
Initialization:
R(0) = R Initial residue;
S0 = ∅ Initial support set;
�0 = ∅ Initial atom set;
i = 0 Initial iteration counter.
Iteration:

(1) Solve the optimization problem

si = arg max
s

∥∥∥∥∥
√

J∑
j=1

∣∣us,j∣∣2
∥∥∥∥∥
2

, s = 1, 2, . . . ,Ns.
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(2) Update the support set and the selected slices
Si = Si−1 ∪ {si} and �i = [

�i−1,ψ si
]
.

(3) Calculate the new residue respectively
R(i)
j = P⊥

�i
j
R(i−1)
j = R(i−1)

j −P�i
j
R(i−1)
j , j = 1, 2, . . . , J .

(4) If i < K , i = i + 1 and return to step 1), otherwise
quit the iteration.

(5) Estimate the tensor matrix B
B̂: j : = arg min

ˆB: j :

∥∥∥R(0)
j − �

(K)
j B̂: j :

∥∥∥2
F
, j = 1, 2, . . . , J .

(6) Finally, Obtain the spatial spectrum by
Pmms omp(ns) =

∥∥∥B̂ns : :

∥∥∥2
F
, ns = 1, 2, . . . ,Ns.

We will quit the iteration if halting condition is true.
For example, we just need K iteration, since the number
of incident signals is known. The algorithm finally obtains
the support set SK . On one hand, we can transform it into
angle value directly. The kth DOA can be computed by
θk = θmin + (sk − 1)h, where θmin and h are the minimum
angle and the step size in the direction grid, respectively.
On the other hand, the estimated tensor matrix B̂ can
be employed to form the spatial-frequency spectrum, and
then the spatial spectrum is obtained via the average of
each frequency counterpart, i.e.,

Pmms omp(ns) =
∥∥∥B̂ns : :

∥∥∥2
F
, ns = 1, 2, . . . ,Ns (21)

where B̂ns : : is the ns th horizontal slice of B̂. B̂ can
be obtained by stacking up the frontal slices B̂: j :, j =
1, 2, . . . , J , which can be calculated by

B̂: j : = arg min
B̂: j :

∥∥∥R(0)
j − �

(K)
j B̂: j :

∥∥∥2
F
, j = 1, 2, . . . , J

(22)

Then, the DOAs can be found by searching the spectral
peak.

4 Simulation results
In this section, some simulations are carried out to check
the performance of MMS-OMP in wideband DOA esti-
mation. The proposed method is compared with the
previous methods, including two conventional subspace
algorithm—MUSIC [2], CSSM [5] and a kind of SR
algorithm—W-CMSR [10], and W-CMSR(SK) [10] repre-
sents that the prior spectrum information on W-CMSR is
known.
In the simulation I, an intuitionistic spectrum compari-

son is given between MMS-OMP and previous methods.
Assume that there are two far-field uncorrelated wideband
signal sources impinging onto an ULA with N = 10 array
elements from the directions of 10◦ and 30◦. The incident
signals are BPSKs with the central frequency 10MHz and
the bandwidth 4MHz, so that the ratio of bandwidth to

central frequency is 40%. The distance between adjacent
array elements equals the half-wavelength with respect
to the highest signal frequency. The distance between
adjacent array elements equals the half-wavelength with
respect to the highest signal frequency. We take Ns = 360
by searching the angle space from −90◦ to 89.5◦ with
step size 0.5◦. The SNR is set to −10 dB and the num-
ber of time domain snapshots is set to 80. We do the
temporal-spectral transformation and collect the spectral
snapshots by decomposing the sources into 80 frequency
bins for MUSIC, CSSM and MMS-OMP. We retain the
whole spatial-frequency spectrum of these two methods
(MUSIC and MMS-OMP) in Figure 4a,b to give a more
composite view of these methods. The 3-D spectrum of
MUSIC shows that the peak locations and amplitudes for
different frequency points are quite different, due to the
fact that it treats each frequency independently. To miti-
gate this artifact, the MMS-OMP algorithm can incorpo-
rate a prior on the continuity of the frequency spectrum
of the sources because of the joint frequency processing
technique. Then, we average the 3-D spectrum of MUSIC
and MMS-OMP in the frequency domain and reprint
the corresponding 2-D spectrum in Figure 4c for a more
convenient comparison with CSSM and W-CMSR. The
results indicate that MUSIC, CSSM, W-CMSR all cannot
express angular distribution correctly and pseudo-peaks
exist in the spectrum of the three while the MMS-OMP
algorithm can gain two correct peaks at 10◦ and 30◦.
In the simulation II, we examine the performance of

MMS-OMP in the presence of spatial aliasing. The inter-
spacing of the array is enlarged to 1.5 times wavelength
associated with the highest signal frequency. 1,200 time
domain snapshots are collected and the SNR is 10 dB.
Figure 5 shows that MUSIC and CSSM suffer from severe
aliasing, and are unable to give any meaningful results.
MMS-OMP can suppress the aliasing effects by employ-
ing the joint frequency processing technique over the
whole frequency range.
In the simulation III, we consider the root mean square

error (RMSE) of MMS-OMP and several existing DOA
estimation methods, in the statistical sense for signals of
various snapshots and SNRs. The curves were obtained
by averaging the results of 500 Monte-Carlo simulations.
We assume that two BPSK signals with bandwidth of 40%
impinge onto the 10-ULA and the direction of the sig-
nal is fixed at 10◦ and 30◦. Firstly, we compare the RMSE
of the four methods in the case of collecting 1,200 snap-
shots. We can see that the RMSE of the proposed method
are smaller than the others in different SNRs indicated
in Figure 6. Although W-CMSR(SK) makes full use of
prior spectrum information such as code-rate for BPSK,
its RMSE is higher than MMS-OMP. These confirm that
our method is a more robust algorithm against DOA esti-
mation error. Secondly, we give a comparison of the RMSE
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Figure 4 The intuitionistic spatial-frequency spectrum comparison of the four algorithms. (a) The 3-D spatial-frequency spectrum of MUSIC
algorithm. (b) The 3-D spatial-frequency spectrum of MMS-OMP algorithm. (c) The 2-D normalized spatial spectrum of MUSIC, CSSM, W-CMSR and
MMS-OMP algorithm. An intuitionistic spectrum comparison is given in these figures. The scenario is composed by two sources located at θ1 = 10◦
and θ2 = 30◦ , N = 10 sensors, T = 80 time snapshots, and SNR = −10 dB. The ratio of bandwidth to central frequency is 40%.
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Figure 5 The 2-D normalized spatial spectrum of the four algorithms when the inter-spacing of array equals 1.5 times the smallest
wavelength. The scenario is composed by two sources located at θ1 = 10◦ and θ2 = 30◦ , N = 10 sensors, T = 1200 time snapshots, and SNR =
10 dB. The ratio of bandwidth to central frequency is 40%. This figure shows the estimated performance of the proposed method when the array
inter-spacing is enlarged to 1.5 times wavelength associated with the highest signal frequency.
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Figure 6 The RMSE of the compared algorithms versus SNR. The
RMSE is defined by the formula

RMSE = 1
K

K∑
k=1

√
1

Mon

Mon∑
mon=1

(θ̂k,mon − θk)
2, where Mon is the number

of Monte-Carlo simulations, θ̂k,mon is the kth DOA estimated value of
the month simulation. The settings are: θ1 = 10◦ , θ2 = 30◦ , N = 10
sensors, T = 1, 200 time snapshots. The number of Monte-Carlo
simulations is Mon = 500.

by fixing the SNR at 10 dB when the snapshots vary from
320 to 1,280. Figure 7 shows that our method also has a
good adaptability to snapshots.
Simulation IV compares the estimated probability of the

four algorithms with the change of SNR, which is derived
from 500Monte-Carlo simulations whose condition is the
same as simulation III. Our method gives higher esti-
mated probability than other algorithm when the SNR
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Figure 7 The RMSE of the compared algorithms versus
snapshots. Two uncorrelated sources located at θ1 = 10◦ and
θ2 = 30◦ , N = 10 sensors, and SNR = 10 dB. The number of
Monte-Carlo simulations is Mon = 500.
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Figure 8 The estimated probability of the four algorithms versus
SNR. The estimated probability is defined by the formula EP = count

Mon ,
where count is the number of successful estimation. If the DOAs are
successfully estimated in one simulation, count = count + 1. The
settings are: θ1 = 10◦ , θ2 = 30◦ , N = 10 sensors, T = 1, 200 time
snapshots. The number of Monte-Carlo simulations is Mon = 500.

varies from −20 to 10 dB as shown in Figure 8. Fur-
thermore, we make a comparison between W-CMSR and
MMS-OMP under the circumstances of the incident sig-
nals sharing different types of modulations. One incident
signal is a BPSK signal with central frequency 9MHz and
bandwidth of 2MHz, the other one is formed as mixture
of sinusoids with central frequency 11MHz and band-
width of 2MHz. The estimated performance of W-CMSR

−20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR(dB)

E
st

im
at

ed
 p

ro
b

ab
ili

ty

W−CMSR
MMS−OMP

Figure 9 The estimated probability of W-CMSR andMMS-OMP
when the two sources share different types of modulations. The
only difference of simulation conditions between Figure 9 and
Figure 8 is that the two sources share different types of modulations
and bandwidths. One incident signal is a BPSK signal with central
frequency 9MHz and bandwidth of 2MHz, the other one is formed as
mixture of sinusoids with central frequency 11MHz and bandwidth of
2MHz.
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Table 1 Computation time comparison

Band width Snapshot number
Times (sec)

MUSIC CSSM W-CMSR MMS-OMP

20%

80 0.0349 0.0125 1.8870 0.1997

320 0.0373 0.0153 1.9040 0.2019

1280 0.0421 0.0217 3.1497 0.2061

40%

80 0.0546 0.0126 1.7160 0.3011

320 0.0562 0.0158 2.0090 0.3014

1280 0.0668 0.0234 2.7909 0.3083

80%

80 0.0855 0.0127 1.8190 0.4329

320 0.0911 0.0168 2.1241 0.4402

1280 0.1023 0.0271 3.0339 0.4547

is deteriorated just as illustrated in the introduction. The
proposed method surpasses the W-CMSR algorithm by
the absolute superiority in Figure 9, because our method
relies less on a priori information of the incident signals
than that of the W-CMSR algorithm.
Finally, the average computation time of those four

methods are compared in different snapshots and signal
bandwidths in the simulation V. In order to get a more
conveniently adjustable bandwidth, we assume that two
0 dB signals which are formed as mixtures of equal-power
sinusoids impinge onto the array from directions of 10◦
and 30◦ simultaneously. The signal bandwidth is set at
20, 40, 80%, and the time domain snapshots are set at
80, 320 and 1,280. For each bandwidth-snapshot pair, 500
Monte-Carlo trials are carried out to obtain the average
computation time of those four methods, and the results
are given in Table 1. The results show that MUSIC and
CSSM are the two fastest methods. W-CMSR consumes
large amount of computation time although its computa-
tional efficiency is not affected by the signal bandwidth.
And MMS-OMP outperforms W-CMSR significantly in
computational efficiency. AlthoughMMS-OMPhas larger
computation time than the conventional methods, it is
more important to note that it performs much better in
DOA estimation.

5 Conclusion
In this article, we are engaged in the DOA estimation of
wideband signal sources. We stack all the array covariance
matrices, which are derived from passing the observed
signal through a bank of narrowband filters, in the form
of 3-D tensor matrix to put forward the slice-SR model in
the frequency domain. We formulize the corresponding
algorithm called MMS-OMP algorithm. This algorithm
processes the array covariance data of each frequency
bin jointly. The DOA estimation is achieved by jointly
finding the sparsest coefficients of the MMS under the
basis matrices. Its superiority embodies not only in the

capability to resolve coherent sources, but also to incor-
porate prior information on the frequency spectra of the
sources. Furthermore, the MMS-OMP is very efficient in
relax the aliasing effects when the distance between adja-
cent array element is larger than the half-wavelength with
respect to the highest frequency. The proposed method
and the representative methods are compared. Simulation
results show that our method has better noise robustness,
higher resolution, and smaller computational complexity.
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