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Abstract

The spring model algorithm is an important distributed algorithm for solving wireless sensor network (WSN)
localization problems. This article proposes several improvements on the spring model algorithm for solving WSN
localization problems with anchors. First, the two-dimensional (2D) localization problem is solved in a
three-dimensional (3D) space. This “dimension expansion” technique can effectively prevent the spring model
algorithm from falling into local minima, which is verified both theoretically and empirically. Second, the Hooke spring
force, or quadratic potential function, is generalized into Lp potential functions. The optimality of different values of p
is considered under different noise environments. Third, a customized spring force function, which has larger strength
when the estimated distance between two sensors is close to the true length of the spring, is proposed to increase
the speed of convergence. These techniques can significantly improve the robustness and efficiency of the spring
model algorithm, as demonstrated by multiple simulations. They are particularly effective in a scenario with anchor
points of longer broadcasting radius than other sensors.

1 Introduction
Localization is an essential tool in many sensor network
applications. Over the years, a rich literature has been
developed to solve the sensor localization problem from
different perspectives [1-3]. Franceschini et al. character-
ized them according to four criteria in their survey article
[1]: anchor-based vs. anchor free, incremental vs. concur-
rent, fine-grained vs. coarse-grained, and centralized vs.
distributed.
In this article, we propose several techniques to improve

the robustness and computational efficiency of an anchor
based, concurrent, fine-grained, and distributed spring-
model-based sensor localization algorithm. We start our
discussion by reviewing several representative distributed
sensor localization algorithms.

2 Related study
Savarese et al. [4] proposed an incremental and anchor-
based localization algorithm that uses a two-phase
approach, including an initial position estimation stage
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and a second stage for position refinement using trilater-
ation. It is accurate compared to traditional incremental
methods, which are prone to error propagation. How-
ever, the method can produce dramatically incorrect node
displacement when measurement noise is present.
To increase accuracy in a noisy environment, Moore

et al. [5] argue that measurement noise can cause flip
ambiguities during trilateration. They proposed a robust
incremental algorithm, dramatically reducing the amount
of error propagation. However, this algorithm has rela-
tively high computational complexity and its third stage
can hardly be handled without a centralized node [1]. Fur-
thermore, Franceschini et al. [1] points out that, under
large measurement noise, the algorithm may fail to local-
ize enough nodes.
Ihler et al. [6] proposed a distributed localization algo-

rithm from a different perspective. It is based on graph
models and requires a prior distribution for the sensor
locations. It is accurate and fully distributed. Furthermore,
in [7], a graph model based cooperative algorithm is pro-
posed and tested with real measurements. The algorithm
requires knowledge of the distributions of range measure-
ments between pairs of sensors. However, prior knowl-
edge of the sensor deployment and range distribution
might not be available in many applications.
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Algorithms based on machine learning techniques have
also been proposed [8,9]. These algorithms typically
assume that a large number of anchor points are present,
which is impractical in many cases.
The algorithms reviewed above are all range-based

algorithms. The range information in sensor networks
can be obtained with various methods, such as time of
arrival (TOA) based ranging techniques, even for mul-
tipath environments [10]. Nonetheless, many methods
also try to take advantage of additional/alternative infor-
mation beyond range/distance measurements, including
sector/bearing information [11], information about con-
nectivity among sensor nodes [12], information about
connectivity to anchor nodes [13] and measurement
errors (vertex errors and edge errors) [14].
These methods use the additional/alternative informa-

tion above to improve accuracy, accelerate convergence
and reduce computational complexity. Because of the
diversity of information available for sensor network local-
ization, Shen et al. proposed a theory to quantify the limits
of localization accuracy for wideband wireless networks
in [15] and [16], by introducing the concept of squared
position error bound.
Priyantha et al. [17] proposed a two stage anchor-free

distributed algorithm (AFL). The first stage, the initial-
ization stage, produces a qualitative network node graph,
while the second stage refines the result by using a spring
model, which is the most relevant to our algorithm.
In the spring model method, any pair of sensors with

knowledge of mutual distance are considered to be nodes
connected by a spring of the same length. The force each
spring applies to the nodes depends on the difference
between inter-node estimated distances and actual dis-
tances. Given sufficient connections amongst the sensors,
the system has a unique zero-energy state with all the
sensors in correct relative position, up to global transi-
tion, rotation and mirror transformation. Furthermore, if
enough anchor nodes (sensors with knowledge of their
true coordinates) are introduced, the absolute coordinates
of the sensors can also be estimated.
One of the advantages of the spring model is the ease

with which it can be implemented as a fully distributed
algorithm, i.e., each sensor needs to communicate only
with its neighbors, repeatedly updating its estimated loca-
tion until convergence. However, there are several draw-
backs to the spring model.
The most prominent problem is the “folding” phe-

nomenon in which the spring system falls into an energy
local minimum and cannot unfold itself. To tackle this
problem, many pre-processing methods have been pro-
posed, such as the first stage of the AFL algorithm, which
may fail due to an insufficient number of nodes or to mea-
surement noise. Gotsman et al. [18] improved the first
stage of the AFL algorithm, by solving an eigenvector

problem. It can be distributized, but requires many itera-
tions, thus incurring significant communication cost.
Another problem with the spring model (with Hooke’s

law) is that the potential energy, measured by the squared
error between the true distance and the estimated dis-
tance, is sensitive to measurement error, and hence is not
robust enough for many applications.
Moreover, in [17] and [18], all scenarios are established

on relative coordinates with no anchor. In the case of
the presence of anchors, or if absolute coordinates are
required, another round of information propagation is
needed to transform the coordinates of each sensor to the
corresponding absolute coordinates.
In this article, we propose a new spring-model algo-

rithm to resolve the problems mentioned above with the
presence of anchors. First, we solve a two-dimensional
(2D) sensor localization problem in a three-dimensional
(3D) space, which significantly reduces the occurrence of
“folding”. This algorithm requires no preprocessing, and
operates in a distributed manner, which converges with
competitive rate compared to algorithms in [17] and [18].
Moreover, to improve the noise resistance of the algorithm
to rangemeasurement noise, we investigate the estimation
error of different types of spring potential functions under
different noise distributions. Furthermore, we design a
customized spring force so that the spring has a larger
strength coefficient once the estimated distance between
two sensors is close to the measured distance between
them. This customized spring can effectively accelerate
the convergence speed of the system and also reduce the
estimation error.
The rest of this article is organized as follows. In Section

3, the spring model sensor localization problem is defined.
In Section 3.2, a distributed algorithm is proposed to
solve the spring model sensor network localization prob-
lem. The idea of dimension reduction is explained and
simulated in Section 4. In Section 5, the optimal spring
potential function under different noise distributions is
explored via extensive simulations. In Section 6, a cus-
tomized spring force is proposed to increase convergence
speed as well as to reduce estimation error, and Section 7
concludes our article.

3 Springmodel with anchors
3.1 Basic model
Suppose we have N sensors, and each sensor has a com-
munication radius r. We denote the set of sensors within
the communication radius r of the jth sensor by Nj(r),
and the measured distance between sensor i and j by dij
(assuming sensor i and sensor j have reached consen-
sus, i.e., dij = dji). If the distance between the estimated
locations of sensor i, xi, and sensor j, xj, is denoted as
‖xi − xj‖, and the potential energy Eij caused by the
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difference between the measured distance and the esti-
mated distance is defined by the potential function

Eij = P
(‖xi − xj‖ − dij

)
, (1)

then the localization problem can be described as

argminxi,i=1,...,N
1
2

N∑
i=1

∑
j∈Ni(r)

P
(‖xi − xj‖ − dij

)
. (2)

Assume that A is the set of indices of the anchor sen-
sors; then their coordinates should be excluded from the
variables of the optimization problem. Therefore, (2) can
be specialized as

argminxi,i∈Ac
1
2

N∑
i=1

∑
j∈Ni(r)

P
(‖xi − xj‖ − dij

)
, (3)

given {xi, i ∈ A} known and fixed.
Next, we will introduce an iterative, distributed algo-

rithm that solves (2), and further specialize this algorithm
to solve its derived problems for different network config-
urations and noise types.

3.2 Distributed algorithm solving the spring model for
sensor localization

The basic idea of the spring model is to run the system
in a physical world with energy dissipation until it reaches
its lowest potential state. Each sensor is deemed to be a
ball of mass m and negligible size, and the entire system
is immersed in a damping liquid of viscosity β . At time
t, each sensor is pushed/pulled by the force exerted by
the tension of the spring connected to its neighbors, and
also dragged by the damping force opposite to its velocity.
Under these assumptions, a distributed, iterative algo-
rithm is proposed to find a solution to (2). The algorithm
is summarized as Algorithm 1 below:
The basic idea of Algorithm 1 is to set up a physical

environment with appropriate damping for the system to
run freely until the kinetic and elastic potential energy
dissipates. The steady state of the system is a local min-
imum of the objective function, which is likely to be the
desirable solution of the localization problem. The conver-
gence to the global minimum is not guaranteed. However,
with proper control of parameters and wise choice of the
initial condition, we can improve the possibility of success.

Algorithm 1 Distributed algorithm for spring model
while Termination Condition is false do

/∗ Local Communication Stage ∗/
for i ∈ {1, . . . ,N} do

Sensor i collects {xj, j ∈ Ni(r)} from its
neighbors

end
/∗ Local Computation Stage ∗/

for i ∈ {1, . . . ,N} do
ai ← ∑

j∈Ni(r)
p′(‖xi−xj‖−dij)

m
xj−xi

‖xj−xi‖ − βvi
m

end
for i ∈ {1, . . . ,N} do

vi ← vi + ai�t
xi ← xi + vi�t

end
end

Moreover, Algorithm 1 is purely distributed. There are
two stages in the algorithm:

1. Local communication stage: Each sensor collects the
current estimates of the coordinates from its
neighbors. This process is purely local within the
radius r.

2. Local computation stage: Each sensor updates the
estimate of its coordinates (and corresponding
virtual speed and acceleration) based on the
information collected locally.

Most importantly, this model is highly configurable by
setting the mass, viscosity, spring strength, and spring
force type of the system. Next, we will discuss a special
formulation that introduces anchor nodes into the system.

3.3 Introducing anchors: long-range anchor scenario
Intuitively, when the anchors’ coordinates are known
accurately, they can be deemed to be ordinary sensor
nodes, except with infinite mass, so that they will not
update their coordinates. When the anchors’ coordinates
are known up to a confidence level, they can bemodeled as
ordinary sensors, connected to an imaginary anchor (with
infinite mass and set at the believed location) by a hard
spring, with strength k much higher than others, reflect-
ing the confidence level of the anchor in its coordinates.
In our simulations, we assume that the anchors have accu-
rate absolute coordinates, and hence do not update their
own coordinates at all.
Moreover, since the anchors do not need to update their

coordinates, they are not part of the iterative algorithm.
Their only task is to broadcast their coordinates and dis-
tance measurements to their neighbors once. This gives
rise to an interesting scenario, discussed next, in which the
anchors have longer broadcasting ranges than ordinary
sensors.
Since we are interested in finding the absolute coordi-

nates of all the sensors in a distributed manner, the speed
at which the information provided by the anchors spreads
throughout the network is essential to the convergence
speed of our algorithm. In principle, only when each sen-
sor knows, directly or indirectly, the coordinates of at least
three anchors, and the relative distance to them, can it
estimate its absolute coordinates. Therefore, it is desirable
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for more sensors to know their distances to at least one
anchor, and this can greatly accelerate the speed at which
anchor information spreads throughout the network.
Following the arguments described previously, we intro-

duce a scenario shown in Figure 1, in which the four
anchors have longer communication ranges than ordi-
nary sensors, and do not enter into the iterations of the
algorithm.
In Figure 1, the four anchors are located at the four

vertices of the unit square, with communication radii
approximately ranchor = 0.35. All the other sensors have
a smaller communication radii of r = 0.1. The red
region is completely out of the range of anchors. Simula-
tions in Section 6, in which we combine all techniques to
improve the spring model algorithm for sensor localiza-
tion, employ this configuration.

4 Dimension expansion
4.1 “Folding” phenomenon and dimension expansion
The most prominent problem when running Algorithm 1
is the “folding” phenomenon. In a 2D space, two parts of
the system could fold together, with a few springs strained,
becoming stuck in an energy local minimum. Figure 2
illustrates a typical example of the folding phenomenon.
For example, in Figure 2, the left graph represents the

global minimum, yet the middle graph is a “folding” sce-
nario, with four springs strained. Unfortunately, once the
spring system falls into a folding local minimum in a 2D
space, it is rather difficult for the system to resolve on its
own, without external perturbation, since all forces are
within the same plane. However, if the 2D spring system
is allowed to evolve in a 3D space, a small displacement
in the third dimension can effectively unfold the system
that falls into a “folding” local minimum, as shown in
the right part of Figure 2. We refer to this technique as
dimension expansion.

By initializing the third dimension of the sensor coordi-
nates according to a uniform distribution, the probability
of the “folded” sensors lying exactly on the same 2D plane
is zero. As a result, dimension expansion can resolve many
folding scenarios and hence circumvent local minima
(more detailed discussion can be found in Section 4.2).
Moreover, since the anchors are located on the same 2D
plane, the global minimum of the relaxed system remains
the same as the original problem (given that all the dis-
tance measurements are accurate), with all the sensors
lying in the same 2D plane as the anchors.
However, the benefits come with a price. First, compu-

tationally, dimension expansion adds onemore coordinate
that the sensors need to maintain and communicate. Sec-
ond, with measurement noise, this may cause the third
dimension to overfit to the noise.
Nonetheless, our simulations demonstrate that the

dimension expansion technique has almost the same con-
vergence rate as its 2D counterpart while significantly
reducing the chances of “folding”, and performs well for
large noise scenarios when there is a sufficient number of
anchor points. These properties will be demonstrated via
simulations next and in Section 6.
Before demonstrating more empirical results, we will

first explore a simple case of a three-body scenario
to explain the theoretical foundation of the efficacy of
dimension expansion.

4.2 Why dimension expansion works
Although simulations in later sections will confirm our
intuition that dimension expansion resolves the “folding”
problem, in this section we provide a mathematical expla-
nation of this intuition to better understand the capability
and limitations of dimension expansion.
Since the derivation is very intricate for high dimen-

sional cases, in this subsection, we illustrate the math-
ematical foundation of dimension expansion using a 1D

Alien Region 
of Interest

Communication
Region

of Anchor 2

Communication
Region

of Anchor 1

Communication
Region

of Anchor 3

Communication
Region

of Anchor 4

Figure 1 Anchor setup. A case of four long-range anchors with large communication radii.
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Figure 2 Illustration of the folding phenomenon. Left: correct displacement of the sensors, global minimum; middle: folding phenomenon,
system reaches local minimum—forces within the 2-D space cannot unfold the system; right: the system unfolds easily with the introduction of the
third dimension.

to 2D expansion with a three-body model. Although this
simplified model has some differences from our 2D to 3D
simulation and application, it still sheds some light on the
fundamental ideas of dimension expansion.

4.2.1 Model and setup
Suppose that we have three balls numbered 1, 2, and 3.
They are connected by springs of intrinsic lengths l12, l13,
and l23. Without loss of generality, we assume that x1 <

x2 < x3, where xi denotes the coordinate of the ith ball.
Under the assumption that the three balls are confined in
a 1D space and there is no observational error, we have an
extra constraint

l12 + l23 = l13. (4)

Therefore, the elastic potential energy of the entire system
can be expressed as

L(x1, x2, x3) =
∑

1≤i<j≤3

k
2
(|xi − xj| − lij)2. (5)

In the globally optimal state, i.e., when the “correct”
configuration of the relative positions of the balls are
reached, the potential energy in (5) is 0. However, it can
be shown that, if the balls are confined in 1D, then there
exist stable configurations that are not globally optimal
(i.e., they are local minima), and hence lead us to “incor-
rect” configurations if we use the spring model without
discretion.

4.2.2 Existence of stable suboptimal equilibrium (SSE)
Without loss of generality, we assume k = 2, l13 = 1 and
l12 = α, in which 0 < α < 1. According to (4), l23 = 1−α.
Any equilibrium configuration of the system needs to

satisfy

∂L
∂xi

= 0,∀i ∈ {1, 2, 3}. (6)

Hence, by substituting (5) into (6), we obtain

⎧⎪⎨
⎪⎩
2x1 − x2 − x3 − l12sgn(x1 − x2) − l13sgn(x1 − x3) = 0
2x2 − x1 − x3 − l12sgn(x2 − x1) − l23sgn(x2 − x3) = 0
2x3 − x1 − x2 − l13sgn(x3 − x1) − l23sgn(x3 − x2) = 0

.

(7)

Equations (7) provide us with the necessary condition
for a stable equilibrium. However, to sufficiently guar-
antee that an equilibrium is stable, we also need the
Hessian matrix of L(x1, x2, x3) to be semi-positive defi-
nite. By deriving the second-order partial derivatives of
L(x1, x2, x3), we obtain

∂2L
∂x2i

= 2 − 2
∑
j 	=i

lijδ(xi − xj) (8)

and

∂2L
∂xi∂xj

= −1 + 2lijδ(xi − xj), i 	= j, (9)

where δ is the Dirac delta function, and i, j ∈ {1, 2, 3}.
From (8) and (9), we can conclude that as long as (7)

does not yield solutions for which

∃(i, j) s.t. xi = xj, (10)

the Hessian matrixH(x1, x2, x3) is a constant matrix

H(x1, x2, x3) =
⎡
⎢⎣
, 2 − 1 − 1
− 1 2 − 1
− 1 − 1 2

⎤
⎥⎦ . (11)

The Hessian matrix in (11) is semi-positive definite,
which guarantees that almost any equilibrium given by the
solution of Equation (7) is stable, as long as condition (10)
is not satisfied. Therefore, we can solve (7) to show that
sub-optimal solutions do exist.
Since only the relative coordinates of the balls matter,

without loss of generality, we fix ball 1 at the origin, i.e., let
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x1 = 0. Then, there are three unique non-trivial scenarios
excluding symmetric equivalent ones:

• Scenario 1: 0 < x2 < x3;
• Scenario 2: 0 < x3 < x2;
• Scenario 3: x2 < 0 < x3.

Compared to Scenario 1, which has the global optimum as
the solution to (7), i.e.,

x2 = α, x3 = 1, (12)

Scenarios 2 and 3 are more of interest to us. Under the
assumption of Scenario 2, the solution to (7) turns out to
be

x2 = α + 2
3

, x3 = 2α + 1
3

. (13)

Obviously, x2 	= x3, so (13) is a stable equilibrium, which
is a concrete example of the “folding phenomenon” in 1D
space. Similarly, we can find the solution in Scenario 3 as

x2 = −α

3
, x3 = 1 − 2α

3
. (14)

By arguments similar to that for Scenario 2, (14) is also a
stable equilibrium.
Therefore, we have shown the existence of stable sub-

optimal equilibrium (SSE) configurations for the three
body spring model in 1D space.

4.2.3 Eliminating SSEs by dimension expansion
Although SSEs exist for the three body model in 1D space,
they can be eliminated by dimension expansion, which, in
this case, is to allow the 1D system to evolve in a 2D space.
Denoting the coordinates of the balls by (xi, yi), i ∈

{1, 2, 3}, the potential function in (5) can then be rewritten
as

L (
x1, x2, x3, y1, y2, y3

)
=

∑
1≤i<j≤3

k
2
(

√
(xi − xj)2 + (yi − yj)2 − lij)2

(15)

The standard method to find out all equilibria for (15) is
to solve the six equations derived from

∂L
∂xi

= 0,∀i ∈ {1, 2, 3}
∂L
∂yi

= 0,∀i ∈ {1, 2, 3}.

However, a simple argument can save us the effort: We
claim that the three-body spring model has an equivalent
set of equilibria in 2D space, as in 1D space, with possible
changes in stability.
The reasoning behind this claim is as follows. First,

notice the fact that each ball in the three-body system
is pulled/pushed by exactly two springs. For each ball to

be in equilibrium, the two forces must both be 0, or co-
linear. The former situation is achieved only in the unique
globally optimal state, in which the three balls are co-
linear. Therefore, the three balls must always be co-linear
(located in a 1D space) in any equilibrium, and hence the
2D equilibrium solutions must be equivalent to the 1D
ones.
Although the 2D equilibria are equivalent to the 1D

ones, the stability of those equilibria may not necessarily
be the same. And the essence of dimension expansion is to
expand the system into a higher dimension so that the sta-
ble local optimal configurations in the lower dimensional
space become unstable in the higher dimensional space,
which is exactly what happens in this case.
To investigate the stability of an equilibrium, we need

to investigate the semi-positive-definitness of the Hessian
matrix at the equilibrium. To show that theHessianmatrix
is no longer semi-positive definite, it is sufficient to show
that one of the diagonal element of the Hessian matrix is
negative.
Let us first take Scenario 2 as an example. Without loss

of generality, we assume that the equilibrium has y1 =
y2 = y3 = 0. Further assuming k = 2, from (15), we can
derive

∂2L
∂y21

= 2 − l12(x1 − x2)2√
(x1 − x2)2 + (y1 − y2)2

− l13(x1 − x3)2√
(x1 − x3)2 + (y1 − y3)2

.
(16)

Substituting x1, x2, x3, y1, y2, y3 from the solution of Sce-
nario 2, which is

x1 = 0, x2 = α + 2
3

, x3 = 2α + 1
3

, y1 = y2 = y3 = 0,

we obtain
∂2L
∂y21

= −2
(α − 1)2

(α + 2)(2α + 1)
, (17)

by the assumption that 0 < α < 1. Therefore (18) is
strictly less than 0, which means that the Hessian matrix
for the equilibrium in Scenario 2 is no longer stable. Con-
sequently, by dimension expansion from 1D to 2D, we
eliminate an SSE configuration of the three-body system.
A geometric explanation of this phenomenon is that, in

1D space, an equilibrium can be a stable local optimum,
while in the 2D situation, the local optimum becomes a
saddle point.
Similarly, by substituting x1, x2, x3, y1, y2, y3 from the

solution of Scenario 3, we obtain
∂2L
∂y21

= −1 − 1
3 − 2α

, (18)

which is also strictly negative. And the same arguments
follow.
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Therefore, both SSE configurations are unstable in the
2D case, which leaves us with a unique solution—the
desired global optimum.

4.2.4 Conclusions
With the analysis on 1D to 2D dimension expansion using
a three-body model, we have come up with two important
conclusions:

1. For a 1D three-body spring model with no
measurement noise, the “folding phenomenon”
always exists, since there are two non-trivial SSE
configurations; and

2. If we expand the space from 1D to 2D, all the SSE
configurations become unstable and the system will
evolve into the unique globally optimal configuration.

Although the model for the analysis above is simple com-
pared to more general cases, the conclusion is quite
insightful: by allowing the system to have onemore degree
of freedom, the local optima are converted into saddle
points and hence eliminated, which is the essence of
dimension expansion.
To further demonstrate the efficacy of dimension expan-

sion in more general cases, we resort to numerical simu-
lations in the following section.

4.3 Efficacy of dimension expansion
The theoretical model only shows us the situation in the
1D/2D case with a simple three-body model. To fully
explore the capability of dimension expansion, we com-
pare the performance of the spring system with and
without dimension expansion in a 2D/3D configuration.

We assume that the springs obey Hooke force in the
experiment, i.e., the potential function is p(x) = kx2. N =
500 sensors are scattered at random in a 1 × 1 2D square.
On each vertex, the midpoint of each side, and the center
of the square, there is an anchor (a total of 9). Assuming all
measurements of distance within communication radius
r are accurate, we run a series of simulations for different
values of r, with m = 1 for all sensors, k = 5, �t = 0.01,
and β = 1, where m is the mass of the sensor, and β is
the viscosity of the liquid, as described in Section 3. The
simulation results are shown in Figure 3.
The initial location of each sensor is a uniformly dis-

tributed random point in the unit square. For the 3D
algorithm, the coordinate for the third dimension is ini-
tialized as a uniformly distributed value on [−0.1, 0.1].
Assuming that x0i is the true location of sensor i, the
localization error E is measured by

E =
√√√√ 1

N

N∑
i=1

‖xi − x0i ‖2.

For small values of r, some sensors do not have sufficient
constraints to specify their absolute coordinates. Hence,
both 2D and 3D algorithms have large estimation errors.
When r grows larger, the 3D algorithm performs very well,
consistently converging to the desired global minimum.
However, as the links among the sensors increase, the
2D algorithm has many chances to fall into local minima
and hence incurs a large estimation error. Therefore, this
experiment confirms the efficacy of dimension expansion.
Another important issue is the convergence speed. As is

common for many optimization algorithms, the selection
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Figure 3 Comparison of accuracy for 2D and 3D algorithms. Average localization errors of 100 trials for 2D and 3D algorithms.
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of parameters is essential to the convergence speed. The
value of k and m can be selected arbitrarily, because the
effect of ratio k/m can be compensated by the choice of β
and �t. The choice of �t should follow the general rules
for choosing step sizes for optimization problems: too
large of a �t leads to poor accuracy in the vicinity of the
optimal region, and too small of a �t results in very slow
convergence. Lastly, β is chosen following the guidance of
damped harmonic oscillation of springs. Large β leads to
over-damping, which results in slow convergence and sus-
ceptibilities to local minimum; on the other hand, small
β leads to under-damping, which causes a long time of
oscillation and slow convergence. In practice, β is selected
slightly less than the critical damping factor 2

√
k/m (in

our set up, the critical damping factor is approximately
4.47, and β is chosen as 1), to avoid unnecessarily pro-
longed oscillation, while provide the system with enough
freedom to avoid bad local minima.
Figure 4 compares the convergence rates for the case

of N = 1000 and r = 0.15, for both 2D and 3D algo-
rithms. The graph shows that they converge at similar
speeds despite the fact that the 3D algorithm has onemore
dimension.
In these and other examples, we find that the 3D algo-

rithm, though having one more dimension, does not have
an observable disadvantage in terms of the rate of reduc-
ing the localization estimation error.

5 Optimal spring potential
Besides changing the dimension of the space in which we
run the algorithm, the distributed spring model algorithm
also has the advantage that it can easily adapt to different
types of noise, with the mere change of the force/potential

(use non-Hooke force). Various types of potentials can be
designed to adapt to different types of noise.
To simplify the problem, in this section, we analyze the

group of potentials of the form

Eij = P
(‖xi − xj‖ − dij

) = ∣∣‖xi − xj‖ − dij
∣∣p , (19)

where p ≥ 1, to identify the optimal spring potential, i.e.,
we seek optimal values of p, for different types of noise.
For simplicity, we henceforth call the potential function
represented in Equation (19) the Lp potential.
Let us first consider a simplified model with N anchors

and only one sensor to be localized, with noisy dis-
tance/range measurements. Let Ai, i = 1, . . . ,N , be
anchors located uniformly on a unit circle in two dimen-
sional space, with locations denoted as xAi, ‖xAi‖ = 1.
Suppose the only sensor to be localized, S, is located at the
center of the circle. The distance measurements between
S and the anchorsAi, i = 1, . . . ,N , are corrupted by differ-
ent types of noise with mean 0 and standard deviation σ .
Given the range measurements and xAi , i = 1, . . . ,N ,

sensor S can easily estimate its location, xS, using the dis-
tributed spring model algorithm described in Section 3,
with the desired force/potential. For each specific type of
noise and potential, sensor S solves the following opti-
mization problem:

minxS

N∑
i=1

∣∣‖xAi − xS‖ − (1 + ξi)
∣∣p , (20)

where ξi, i = 1, . . . ,N , are independent and identically
distributed (i.i.d.) random variables with means 0 and
standard deviations σ .
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Given a particular p and the joint distribution of ξi, i =
1, . . . ,N , the optimization result of (20) forms a distribu-
tion distp(xS). In order to investigate Lp potentials with
different values of p, we compare the group of distribu-
tions distp(xS), p ≥ 1, to find the optimal potential, in
terms of accuracy, for different types of noise.
Intuitively, we desire the distribution distp(xS) to con-

centrate around the origin as closely as possible. Specif-
ically, we desire a potential function, as specified by
parameter p, that has a spiky distp(xS) centering around
the true location (0, 0), since this demonstrates the robust-
ness of the spring potential to resist noise. Therefore a nat-
ural measure of the performance would be the q-quantile
of the distributions of the distance from our estimate to
the true location, and deem the potential with smallest
q-quantile distribution the q-optimal Lp potential for the
particular noise.
To be more specific, the distance from our estimate to

the true location (0, 0) is simply ‖xS‖; so from the dis-
tribution function of xS, i.e., distp(xS), we can derive the
distribution of ‖xS‖, i.e.,

	p(r) = P{‖xS‖ ≤ r}. (21)

For a given system and noise distribution, the distribu-
tion function 	p(r) is a function of the parameter p only.
Therefore, the q-optimal value of p is defined as

p∗ = argminp	−1
p (q), (22)

where 	−1
p (q) is the inverse function of the distribution

function of ‖xS‖.
Since the optimization problem (20) is non-convex, it

is difficult to find the analytical form of distp(xS) and

thus the q-optimal spring potential. Therefore we turn to
numerical methods to investigate the q-optimal potential
for different types of noise.
In the numerical experiments, N anchors are

fixed uniformly on the unit circle, with coordinates
(cos 2π i

N , sin 2π i
N ). Then, a large number of rounds of sim-

ulations are run to generate the distribution distp(xS) for
a specific p. At each round, the distance measurements
between S and the anchors Ai, i = 1, . . . ,N , are corrupted
by the desired additive noise. In order to find the local-
ization result of sensor S, i.e., the global minimum of the
optimization problem (20), we search in fine grids within
the square circumscribed about the unit circle. The total
number of times each grid point becomes the global
minimum in all rounds are counted, and the distribution
distp(xS) is then represented by the frequency of “hits”
received at each grid point.
Figure 5 shows the setting and resulting distp(xS) of a

particular run of the experiment, where p = 2. In this
experiment, the range measurements are corrupted by
additive Gaussian noise, with mean 0 and standard devia-
tion 0.2. Ten anchors are used and ten thousand rounds of
simulations are run to generate the distribution dist2(xS),
in which, at each round, a 100-by-100 grid is searched for
the global minimum of (20).
On the left hand graph of Figure 5, ten dots on the unit

circle show the positions of the anchors, while color rep-
resents the number of “hits” received by each grid point.
The right hand graph is a 3D mesh plot of the left hand
graph, which shows dist2(xS) under Gaussian noise.
Given distp(xS) represented by the frequency of “hits”

received at each grid point, the distribution function
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	p(r) can be naturally interpreted as the frequency of
“hits” received at the grid points located within radius r
from the origin.
Figure 6 shows a group of 	p(r) for distributions

distp(xS) with various p values, where the x-axis repre-
sents the radius r. In this experiment, the range mea-
surements are corrupted by additive Gaussian noise (left
graph) and Laplacian noise (right graph), respectively,
with mean 0 and standard deviation 0.2. The anchor loca-
tions are the same as the previous simulation, and 10,000
rounds of simulations are run to generate	p(r) for each p
value under each type of noise.
A distribution with 	p(r) that is close to the upper-

left corner of the graph is desired, since it is spikier and
demonstrates the robustness of the corresponding spring
potential with respect to the specific type of noise. There-
fore, as shown in Figure 6, the spring potential with p = 2
works the best under Gaussian noise, while the potential
with p around 1.3 performs well with Laplacian noise.
We further compare the q-quantile of the distribu-

tions, to find the q-optimal Lp potential as described
above, under Gaussian and Laplacian noise. The simu-
lation results are shown in Figure 7, where the x-axis
represents the p values and the y-axis shows the radius
r. The left and right hand graphs show the quantile com-
parison under Gaussian and Laplacian noise respectively.
The same simulation settings are used as the previous
experiment, and 20%, 50%, 80%, and 90% quantiles of
distributions with various p values are compared.
It is easy to read the q-optimal spring potential from

Figure 7. For example, p = 2 is the 90%-optimal spring
potential under Gaussian noise in the group of Lp poten-
tials, while p = 1.3 is the 80%-optimal spring potential
under Laplacian noise.

To conclude, the distributed springmodel algorithm has
the advantage that it can easily adapt to different types of
noise, and the appropriate spring potential can be cho-
sen according to the numerical scheme described in this
section.

6 Customizing the potential for faster
convergence

In the previous section, all the potential functions that we
have discussed are generic Lp norms. Different types of
potential functions work for different types of noise. How-
ever, in practical scenarios, situations can be more con-
voluted. Searching for the optimal value of p may not be
enough. Moreover, as the system grows large, with more
sensors to localize, convergence speed becomes a more
important measure of the performance of our algorithm.

6.1 Spring with “lock-in” mode
A commonly observed phenomenon in the spring model
algorithm is that even when some part of the system has
approximately reached the correct configuration, due to
the soft spring and under-damped environment, the sys-
tem continues to oscillate before eventually converging to
a low-estimation-error state. This can significantly pro-
long the convergence time of the system. Increasing the
spring strength or the viscous coefficient of the environ-
ment may not be effective either because these changes
may cause the system to fall into local minima and reach
premature convergence.
To cure this problem, one simple idea is to design the

springs so that they can “lock in” when the actual dis-
tance between two sensors is approximately the same as
the length of the spring. To be more specific, we would
like the strength coefficient to be significantly higher when
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the spring approaches its natural state. This way, in the
situation where the sensors have approximately reached
the correct configuration, the system will “harden-up” to
keep the current configuration so as to avoid being dis-
turbed into disorder again. If handled properly, the newly
designed spring system can reach the correct configura-
tion faster than the vanilla spring model algorithm.
This idea can be viewed from another perspective: The

incremental methods [4,5] are actually the case in which
all springs are rigid (with infinite strength), so that all
locally resolved configurations are kept unchangeable.
The concurrent method (e.g., the vanilla spring model)
is another extreme in which nothing is kept fixed until
the very end. This new spring model with “lock-in” mode
is something in between. Specifically, we make well-
configured parts of the entire system more rigid than the
ill-configured parts, so that we can take potential benefits
from both methods.
Tomake things simple and concrete, we assume the new

spring to be a Hooke spring (linear force), with differ-
ent strengths for different �d = ‖xi − xj‖ − dij values.
For �d greater than a critical distance ρ, we assume that
the spring is softer, with strength coefficient k0; and for
�d less than ρ, we assume that the spring is harder, with
strength coefficient k1, where k1 > k0. Therefore, the force
function is as shown below:

f (x) =
{ − k1x |x| ≤ ρ

− k0x |x| > ρ
. (23)

A typical potential function for the customized spring
potential is shown in Figure 8. Note that there is a
“potential well” with radius ρ. Therefore, when �d is no
more than ρ, the two sensors will be locked in with a
strong bond.

6.2 Numerical caveats
Ideally, the “lock-in” mode strength coefficient k1 should
be very high compared to the normal strength so that
the length is effectively fixed. However, since we need to
evolve the spring model numerically with a fixed time
step �t, a very high spring strength can result in unstable
numerical results. Therefore, in our simulation, the lock-
in mode spring strength is chosen to be 3 to 5 times that of
the normal spring strength. Despite themoderate k1 value,
the customized spring potential is proven to be effective
by the simulation result next.

Figure 8 An example potential function with customized
strength.
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Figure 9 Comparison of convergence rates. Left: range measurements with no noise; Right: range measurements corrupted with Gaussian noise
with zero mean and σ = 0.1.

Meanwhile, the choice of variable ρ is also essential
to fully exploit the benefits of the customized spring
potential. Too small values of ρ have almost no effect on
improving the computational efficiency, since it is rather
difficult for the springs to fall into the very narrow “lock-
up” mode. Too large ρ leads to premature lock up of too
many springs, which forces the system into an undesirable
local minimum. In practice, the rule of thumb is to select
ρ to be of similar magnitude as the noise level.

6.3 Simulation results
To demonstrate the efficacy of the spring model algorithm
with “lock-in” mode, we compare the convergence speed
of the following three cases:
1. Hooke spring with soft strength k0;
2. Hooke spring with hard strength k1;
3. Customized spring potential with k1 within ρ and k0

beyond that range.

It is worth noting that dimension expansion is applied in
all three cases.
The setup with long-range anchors discussed in

Section 3 (shown in Figure 1) is employed, which includes
800 normal sensors with communication radius 0.1, and
four anchors with broadcast radius 1

2
√
2 . We choose vis-

cosity β = 1, critical radius ρ = 0.05, and k1 = 5k0 = 250.
The aforementioned three cases are compared under two
scenarios: range measurements with no noises and range
measurements corrupted by additive Gaussian noise with
mean 0 and standard deviation 0.1.
Figure 9 illustrates the comparison for one particular

run of the three cases. It is clear from the figure that
the customized spring case converges at a much faster
rate, with or without noise. In both situations, the case
with customized spring potential reaches the same level
of estimation error with about 150 fewer iterations than
its counterparts.

Table 1 Comparison of average convergence rates under different noise levels

Noise level Spring type Error rate at iterations of multiples of 100

σ = 0.00 Soft spring 0.2467 0.1468 0.1514 0.1402 0.0702 0.0419 0.0256 0.0174

Strong spring 0.2501 0.1568 0.1796 0.1077 0.0750 0.0437 0.0277 0.0189

“Lock-in” mode 0.1347 0.1651 0.1013 0.0527 0.0325 0.0213 0.0144 0.0100

σ = 0.05 Soft spring 0.2486 0.1458 0.1499 0.1406 0.0693 0.0419 0.0259 0.0181

Strong spring 0.2508 0.1566 0.1784 0.1085 0.0745 0.0437 0.0285 0.0190

“Lock-in” mode 0.1340 0.1651 0.1004 0.0519 0.0323 0.0216 0.0151 0.0128

σ = 0.10 Soft spring 0.2485 0.1478 0.1528 0.1389 0.0710 0.0427 0.0270 0.0204

Strong spring 0.2507 0.1569 0.1791 0.1082 0.0742 0.0438 0.0288 0.0215

“Lock-in” mode 0.1363 0.1640 0.1016 0.0528 0.0334 0.0236 0.0199 0.0214

Table 1 records the average error rate of 100 independent simulations, at iterations of multiples of 100. The results in Table 1 demonstrate that the algorithm with
customized spring potential works consistently better than the other two cases.



Yu et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:20 Page 13 of 14
http://asp.eurasipjournals.com/content/2013/1/20

0

0.02

0.04

0.06

0.08

0.1

0.12

In
te

gr
at

ed
 L

oc
al

iz
at

io
n 

E
rr

or

Hooke force with soft spring
Hooke force with strong spring
Spring with  Lock−in  Mode

σ = 0 σ = 0.05 σ = 0.1

Figure 10 Comparison of integrated convergence rates. Comparison of integrated convergence rate under Gaussian noise with standard
deviation 0.00, 0.05, and 0.10.

More detailed simulation results are shown in Table 1,
which records the average error rate of 100 independent
simulations, at iterations ofmultiples of 100. The results in
Table 1 demonstrate that the algorithm with customized
spring potential works consistently better than the other
two cases.
Note that there are rises and falls in the aggregated local-

ization error in Table 1, because of the oscillations in the
spring model. To better quantify the difference in con-
vergence speed, we compute the integrated localization
error of the entire process of the algorithm, i.e., the ratio
between the total area under the convergence curve and
the total number of iterations (800 in this experiment),
and depict the results in Figure 10. It is obvious that under
different noise levels, the customized spring model out-
performs the other two cases significantly. The average
localization error throughout the process of convergence
is merely about 60% of those of its counterparts.
It is worthmentioning that both extreme cases, with soft

and strong springs, underperform the customized spring
case, which is a compromise of two types of springs. It is
the combination of the two that creates effective improve-
ment in convergence speed, without compromising the
final localization error.

7 Conclusion
In this article, we have discussed several techniques to
improve a spring-model-based algorithm that solves sen-
sor localization problems in a fully distributed manner.
Our prototype algorithm, with no prior knowledge of the
coordinates of the sensors except a few anchor points,
iteratively localizes the sensors using only short-range
communication among neighboring sensors.

The first technique to improve the prototype algorithm
is based on expanding a two-dimension problem into
three dimensions. The dimension expansion technique
can greatly reduce the occurrence of the “folding” phe-
nomenon and hence prevent the algorithm from falling
into local minima.
Second, we have investigated the optimality of different

types of spring potential functions under different types
of noise. Using a simplified model, our simulation demon-
strates that Lp potential works best for Gaussian noise
when p ≈ 2, while p ≈ 1.3 works best for Laplacian
noise. This simulation based conclusion sheds some light
on spring-model selection under different noise circum-
stances.
Third, we have discussed the customized design of a

spring model beyond Lp potential functions to acceler-
ate convergence speed. The customized spring model has
higher strength when the distance between sensors is
close to the true length of the spring. Extensive simula-
tions demonstrate that this customized spring model can
effectively “lock in” correctly localized sensors and hence
make the iterative algorithm more efficient. From another
perspective, this customized spring model can be deemed
to be a compromise between incremental and concurrent
sensor localization algorithms.
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