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Abstract

Unequal error protection (UEP) codes provide a selective level of protection for different blocks of the information
message. The effectiveness of two sub-optimum soft-decision decoding algorithms, namely generalized Chase-2 and
weighted erasure decoding, is evaluated in this study for each protection class of UEP block codes. The performances
of both algorithms are compared to that of the maximum likelihood algorithm in order to evaluate the performance
loss of each protection class provided by less complex algorithms as well as their complexities are evaluated
according to the number of arithmetic operations performed at each decoding step. Finally, numerical results and
examples are provided which indicate that a trade-off between performance and complexity for each protection class
is obtained. The results of this study can be used to select appropriate UEP coding and decoding schemes in
applications that demand low energy consumption.
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1 Introduction
One of the main challenges in the design of battery-
supplied wireless devices is the minimization of their
energy consumption [1-4]. It is known that forward error
correction (FEC) decoders are responsible for a large part
of energy consumption of such devices [5,6]. Since max-
imum likelihood (ML) decoding is often infeasible due
to its complexity of exponential order, it is of interest to
investigate sub-optimumdecoding techniques in search of
less complex alternatives.
Concerning block codes, a class of sub-optimum algo-

rithms that deserves attention is composed of reliability-
based soft-decision decoding techniques [7]. In this
category, Chase-2 and weighted erasure decoding (WED)
algorithms are recognized by their ease of implemen-
tation and reduced complexity when compared to the
ML algorithm. The performance of the Chase-2 decoding
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algorithms applied to Bose–Chaudhuri–Hocquenghem
codes is analyzed in [8].
In a number of wireless protocols, the importance of dif-

ferent bits in the information sequence often varies and
certain blocks of this sequence need higher protection
level than other blocks. This property is called unequal
error protection (UEP) and can be obtained either by hier-
archical modulation techniques [9,10] or by FEC schemes
[11,12]. Such UEP methods have been applied to wireless
and mobile computing applications [13-15], apart from
several video and image coding standards as set parti-
tioning hierarchical trees [16], ITU-T H.264 [17], and its
extensions [18], and joint photographic expert group 2000
(JPEG 2000) [19]. Concerning UEP coding, the analysis
of suboptimal decoding algorithms applied to UEP block
codes has not been considered in the literature.
In this study, the effectiveness of sub-optimum soft-

decision decoding algorithms (generalized Chase-2 algo-
rithm [20] and WED algorithm [21]) for each protection
class of UEP block codes is evaluated using binary trans-
mission over an additive white Gaussian noise (AWGN)
channel. Performances of both algorithms are compared
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to that of the ML algorithm in order to evaluate the per-
formance loss of each protection class provided by less
complex algorithms. We also analyze the arithmetic
decoding complexity of each algorithm to decode a
received sequence. In addition, an analysis of the trade-off
between performance and complexity of the algorithms
for each protection class is done. Based on this analysis,
we discuss the choice of the parameters of the decoder
with the best complexity-performance trade-off, such as
the number of test patterns, the error-correcting capabil-
ity of the binary decoder, and the number of quantization
levels.
The remainder of this article is structured as follows: In

Section 2, concepts related to UEP coding are described.
The soft-decision decoding algorithms are defined in
Section 3, while the analysis of their decoding com-
plexity in terms of mathematical operations is presented
in Section 4. Section 5 presents simulation results. A
trade-off between performance and complexity for both
decoding algorithms is established in this section. Finally,
conclusions are drawn in Section 6.

2 UEP block codes
Consider a binary linear code Cj(n, k, d) in which n is the
codeword length, k is the dimension of the code, and d
is the minimum Hamming distance of Cj. The genera-
tor matrix of Cj is denoted by Gj. Assume that w(uGj) is
the Hamming weight of the codeword x = uGj related
to the information vector u. The separation vector of Cj,
sj = [ s0j , . . . , sij, . . . , s

k−1
j ], measures the UEP provided by

the code Cj for ML decoding [22]. The ith position of sj is
given by [22]

sij = min{w(uGj) : u ∈ GF(2)k, ui �= 0}, 0 ≤ i ≤ k−1,
(1)

where GF(2) is the binary Galois field. The smallest ele-
ment of sj is the minimum Hamming distance of Cj. A
code Cj is said to have equal error protection capability
if all elements of sj are equal, otherwise Cj has the UEP
property. The error-correcting capability of the code Cj is
denoted by t∗j .
To illustrate these concepts, consider the linear block

codes C1(16, 5, 5) and C2(25, 8, 5)with generator matrices
G1 andG2 (calculated using the method proposed in [23])
given by

G1 =

⎡
⎢⎢⎢⎢⎣
0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1
0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎦ (2)

G2=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦ .

(3)

Their separation vectors are s1 = [ 8, 8, 5, 5, 5] and s2 =
[ 12, 12, 5, 5, 5, 5, 5, 5], respectively. Thus, we can say that
both codes are UEP codes with two distinct protection
classes, denoted by cp1 (higher protection class) and cp2
(lower protection class).

3 Soft-decision decoding algorithms
Two decoding algorithms that deal with the least reliable
positions of the received sequence, namely the generalized
Chase-2 (GC-2) [20] and the WED [21] algorithms, are
described in this section.

3.1 Generalized Chase-2 decoding algorithm
The GC-2 algorithm uses the sequence of real val-
ues observed at the output of the matched filter, r =
[ r0, r1, . . . , rn−1], and the binary sequence y obtained
by a hard quantization of r. For the AWGN chan-
nel, the real values of the sequence r correspond to
the reliabilities αi such that αi = |ri|. Thus, the
higher the value of αi, the lower the probability that
the corresponding symbol had been strongly affected by
the noise.
Let p be the number of least reliable positions of the

sequence r, i.e., the positions that have the least values
of αi. The value of p determines the set of test patterns
Sb = {bi}, i = 0, . . . , 2p − 1, with cardinality |Sb| = 2p. At
first, the GC-2 algorithm applies a binary decoder (with
error-correcting capability t) to find an error pattern z
associated to the sequence yi = y ⊕ bi, in which ⊕ rep-
resents sum modulo-2. If an error pattern z is obtained
by the binary decoder,a it is added to the test pattern bi,
resulting the pattern zi = z ⊕ bi. After that, the analog
weightWα of the pattern zi is figured out according to

Wα(zi) =
n−1∑
k=0

αkzik . (4)

If z is not found by binary decoding, the next test pattern
bi is selected. The objective of the GC-2 algorithm is to
find the pattern zi� with minimum analog weight Wα to
estimate the transmitted codeword x, as x̂ = y⊕zi� . When
a pattern zi is not selected (for all test patterns), then
x̂ = y.
A detailed description of the GC-2 algorithm is found in

[20,24] and a summary of its steps is presented in Table 1.
For a better understanding of the GC-2 algorithm, we

consider the following example.
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Table 1 Description of the steps of the GC-2 algorithm

Step Description

1 Get the sequence y from the sequence
r. Do i = 0. Select a test pattern bi

2 Obtain the sequence yi = y ⊕ bi

3 Compute the syndrome associated with
the sequence yi (binary decoding)

and search the corresponding error pat-
tern z

4 If z is found, then get the pattern zi =
z ⊕ bi , compute its analog weight

Wα , store the pattern zi
�
that has the

minimum analog weight, and go to the

Step 5. Otherwise, go to Step 5

5 If there is still test patterns to generate,
do i = i + 1, select bi , and go to

Step 2. Otherwise, go to Step 6

6 If a pattern zi
�
was stored, obtain the

estimate x̂ = y ⊕ zi
�
. Otherwise, x̂ = y

Example 1. Consider the Hamming code C(7, 4, 3)
whose error-correcting capability is equal to one. Assume
that the codeword x = [1, 0, 0, 1, 0, 1, 1] is BPSK
modulated and is transmitted over the AWGN chan-
nel. Suppose that the received sequence is r =
[1.5, 0.05,−0.8, 2.2, 0.1, 1.2, 0.3].
According to the first step of the GC-2 algorithm, the

sequence y = [ 1, 1, 0, 1, 1, 1, 1] is obtained by hard quan-
tization of r. Let us assume that p = 2, so the two least
reliable positions are the second and the fifth ones. Thus,
considering all the combinations of 0’s and 1’s in these
two least reliable positions, we have four test patterns b
according to the set

Sb = {b0, b1, b2, b3}
= {0000000, 0100000, 0000100, 0100100} .

To obtain the sequence y0, the test pattern b0 is selected,
resulting in y0 = y ⊕ b0 = [1, 1, 0, 1, 1, 1, 1]. After com-
puting the syndrome associated to this y0, we get the error
pattern z = [0, 0, 1, 0, 0, 0, 0]. Since the error pattern z
exists, the sequence z0 = z ⊕ b0 = [0, 0, 1, 0, 0, 0, 0]
is achieved and its analog weight Wα(z0) is 0.8, accord-
ing to (4). Repeating this procedure with the other test
patterns from Sb, the algorithm stores zi� = z2 =
[0, 1, 0, 0, 1, 0, 0] as the sequence with the minimum ana-
log weight (Wα(z2) = 0.15). Finally, the estimate x̂ =
y ⊕ z2 = [1, 0, 0, 1, 0, 1, 1] is obtained, characterizing the
correct codeword.

3.2 WED Algorithm
The WED algorithm is based on the quantization of the
sequence r in Q = 2m regions that are uniformly spaced

by the quantization step δ. Figure 1 illustrates the quan-
tization regions (denoted by RDj , 0 ≤ j ≤ Q − 1) for
Q = 8 (m = 3). The optimal value of δ, denoted by δop,
that minimizes the bit error probability, can be obtained
algebraically [25] or through computer simulations.
Given r and Q, two sequences (v and q) are obtained.

First, consider the sequence v = [ v0, . . . , v�, . . . , vm−1],
where each component v� is given by

v� = 2m−�−1

Q − 1
, 0 ≤ � ≤ m − 1. (5)

The Q-ary sequence q = [q0, q1, . . . , qi, . . . , qn−1], qi ∈
{0, . . . ,Q− 1} is defined such that qi = j, if ri ∈ RDj . Then,
a matrix A of dimensions m × n is determined such that
the ith column of A is the binary representation of qi.
Next, a matrix A′ having the same dimensions of A is

obtained from the binary decoding of the rows of A. The
syndrome of each row of A is computed in order to find
its associated error pattern. If an error pattern is found,
it is added to the row of A to generate the row of A′.
Otherwise, the row of A′ is equal to the row of A.
We also define the vector f = [ f0, . . . , f�, . . . , fm−1],

where each component f� is the number of positions of the
�th row of A′ that differs from the �th row of A. Using f,
the reliability R� of the �th row of A′ is computed as [21]

R� = max
{
0, d − 2f�

}
. (6)

In the WED algorithm proposed in [21], the error-
correcting capability of the binary decoder is t = t∗ =
�(d − 1)/2	. To allow the use of an arbitrary value of t, we
propose a new reliability R′

� given by

R′
� = max

{
0, 2t + 1 − 2f�

}
. (7)

It is assumed that R′
� = 0 if the binary decoder cannot

find the error pattern associated with the syndrome of the
�th row of A. This consideration is intended to reduce
the reliability of sequences in which the high number of
errors has made impossible the binary decoding. Also, the
candidate sequences with fewer errors are favored.
Let Si0 corresponds to the set of indices of the rows ofA′

containing the bit 0 in ith column and Si1, the set of indices
for the presence of the bit 1 in ith column. The ith bit is
decoded as 0 if∑

�∈Si0
R′

�v� >
∑
�∈Si1

R′
�v�

0 1 2 3D 4D 5D 6D 7D

−3δ −2δ −δ 0 +δ +2δ +3δ

Figure 1 Distribution of the quantization regions forQ = 8.
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or as 1 if
∑
�∈Si0

R′
�v� <

∑
�∈Si1

R′
�v�.

If
∑

�∈Si0 R
′
�v� = ∑

�∈Si1 R
′
�v�, the ith bit is obtained by

hard-decision decoding of the component ri.
A detailed description of the WED algorithm is found

in [21], and a summary of its steps is presented in Table 2.
For a better understanding of this algorithm, we con-
sider in the following example the same code, transmitted
codeword, and received sequence of Example 1.

Example 2. Assume the mapping of r into four quan-
tization regions (Q = 4) with δ = 0.2. According
to the first step of the WED algorithm, the sequences
q = [3, 2, 0, 3, 2, 3, 3] and v = [0.666, 0.333] are obtained.
Given q, the matrix A is obtained as

A =
[
1 1 0 1 1 1 1
1 0 0 1 0 1 1

]
. (8)

Next, applying a binary decoding (with t = 1) to each row

of A, we obtain the matrix A′ as

A′ =
[
1 1 1 1 1 1 1
1 0 0 1 0 1 1

]
. (9)

From A and A′, we obtain f = [
f0, f1

] = [1, 0]. Assuming
t = 1, the reliabilities of the rows of the A′ are R′

0 = 1 and
R′
1 = 3. For the first column of A′ , we have S00 = {∅} and

S01 = {0, 1}, resulting in x̂0 = 0. For the second column of
A′ , S10 = {1} and S11 = {0}. Since R′

1υ1 > R′
0υ0 (1 > 0.666),

we have x̂1 = 0. Continuing with the decoding, the esti-
mate x̂ = [1, 0, 0, 1, 0, 1, 1] is obtained. This is the correct
codeword as it was obtained in the GC-2 algorithm.

Table 2 Description of the steps of theWED algorithm

Step Description

1 Quantize the sequence r in Q levels,
obtaining the sequences v and q

2 Construct the matrix A according to the
binary representation of the sequence q

3 Decode the m rows of the matrix A by
binary decoding obtaining thematrixA

′

4 Get the vector f and compute R
′
�

5 Get the sets Si0 and Si1. Make compar-
isons

∑
�∈Si0 R

′
�v� �

∑
�∈Si1 R

′
�v� , obtain-

ing x̂

4 Arithmetic complexity of the GC-2 andWED
algorithms

The complexity of both algorithms considered in this arti-
cle is evaluated according to the number of arithmetic
operations performed at each decoding step.b Consider
Ns, Ng , Nm, and Nc, the number of additions, additions
modulo-2, multiplications and comparisons, respectively.
Table 3 indicates the number of operations performed

at each step of the GC-2 algorithm, as described in
Table 1, for each decoded sequence. In Step 3, mul-
tiplications and additions modulo-2 correspond to the
syndrome computing. Also in Step 3, we assume that
there is no arithmetic operations associated to the search
of an error pattern z (a lookup table may be used for
this purpose). Operations related to Steps 1, 5, and 6
are omitted because either they are not performed for
each test pattern or do not require arithmetic operations.
Thus, they represent a very small percentage of the whole
operations.
It is noteworthy that the operations in Step 4 depend on

the result obtained in Step 3, i.e., depend on the success
of the binary decoder in the search for an error pattern z
associated with the sequence yi. Thus, it is necessary to
estimate the average value of the operations performed in
Step 4. For this, we define the relative frequency of com-
putingWα as fA = NW/2p, in which NW is the number of
times that the analog weight Wα is computed in the main
loop of the algorithm. This value is evaluated via computer
simulations in the next section (see also [26]).
In the case of the WED algorithm, defined Q and δ,

the implementation of the algorithm follows the steps
described in Table 2. The computing of the sequence v
depends only on Q and does not need to be executed for
each received sequence. Therefore, these operations are
not considered in Table 4 that relates the number of oper-
ations required to implement theWED algorithm for each
decoded sequence. In Step 1, it is considered the binary
treemapping [27], in which, forQ regions,m comparisons
are needed to the quantization of a component ri. Step
2 is omitted, because it does not require mathematical
operations.
Finally, in Step 5, depending on the sequence that is

being decoded, it may be necessary either (m−1) or (m−
2) additions to perform the comparison

∑
�∈Si0 R

′
�v� �

Table 3 Number of mathematical operations performed in
the GC-2 algorithm for each decoded sequence

Step Ns Ng Nm Nc

2 - n2p - -

3 - 2p(n − k)(n − 1) 2p(n − k)n -

4 fA2p(n − 1) fA2pn fA2pn fA2p
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Table 4 Number of mathematical operations performed in
theWED algorithm for each decoded sequence

Step Ns Ng Nm Nc

1 - - - mn

3 - m[ n + (n − k)(n − 1)] mn(n − k) -

4 m(n + 1) mn 2m m

5 n(m − 1) - mn n(m + 1)

∑
�∈Si1 R

′
�v�. It is considered the worst case for all n posi-

tions, totalizing n(m−1) additions per decoded sequence.

5 Numerical results
The performance of three decoding algorithms (ML, GC-
2, and WED) is evaluated via computer simulations for
the two UEP codes defined in Section 2 using binary
transmission over the AWGN channel. Various config-
urations of the GC-2 and WED algorithms are consid-
ered by changing their parameters (t and p for GC-2;
t and Q for WED), in order to compare their perfor-
mance to that of the ML algorithm for each protection
class. Using these results together with the operations
in Tables 3 and 4, a trade-off between performance and
complexity for both decoding algorithms is also estab-
lished. In the following sections, the GC-2 and the WED
algorithms will be denoted by GC-2(t, p) and WED(t,Q),
respectively.

5.1 GC-2 decoding algorithm
Figure 2 shows the curves of the bit error probability (Pb)
versus signal-to-noise ratio (SNR) Eb/N0, in which Eb is
the energy per information bit and N0 is the power spec-
tral density of the noise, of the GC-2(2, 2) and GC-2(3, 4)
algorithms for both classes of the UEP code C1. For this
code, the maximum value of the error-correcting capabil-
ity of the binary decoder (t) is assumed equal to 3 and
the maximum value of p is such that the cardinality of Sb
is always lower than the search set of the ML algorithm
(|Sb| < 2k − 1).
For the GC-2(2, 2) algorithm, we observe that there is

virtually no performance difference between the classes
cp1 and cp2. In addition, considering Pb = 10−4,
the SNR difference compared to the ML algorithm is
approximately 2 and 1.1 dB for the classes cp1 and cp2,
respectively. For the GC-2(3, 4) algorithm, the SNR dif-
ference to the ML algorithm is 0.1 dB (cp1) and 0.03
dB (cp2).
To assess the complexity of the GC-2 algorithm, it

is necessary to evaluate fA, as mentioned in Section 4.
Figure 3 illustrates the values of fA as a function of Eb/N0
for GC-2(2, 2), GC-2(2, 7), GC-2(3, 2), GC-2(3, 7), GC-
2(6, 2), and GC-2(6, 7) algorithms applied to the UEP

code C2. For p = 2 and considering t = 2, t = 3,
and t = 6, fA reaches its maximum value (it is esti-
mated for all test patterns bi), when Eb/N0 = 9.5, 8,
and 4 dB, respectively. The reduction of SNR occurs
due to the increased possibility of an error pattern z
be found, a consequence of the increasing of the error-
correcting capability of the binary decoder. We observe
that for t = 2 and t = 3 (p = 7), there are test pat-
terns b which do not produce calculations of Wα (fA <

1), even in regions of high SNR (Eb/N0 > 7.5 dB).
For example, considering the GC-2(2, 7) algorithm and
Eb/N0 > 7.5 dB, it is very probable that the bit inver-
sion resulting from the addition of test patterns bi causes
errors in the sequence y. As the binary decoder used is
able to correct only 2 errors in this algorithm, 31 esti-
mates of Wα(NW = 31) occur, which represents the
sum of all test patterns of weight less than 2, resulting in
fA = 31/128 � 0.242.
Finally, it is analyzed the compromise between perfor-

mance and complexity of the GC-2 algorithms in terms
of the SNR difference with respect to the ML algo-
rithm related to the class cpi (for Pb = 10−4), namely
�i (dB), and the number of mathematical operations
executed in the algorithm, defined as a 4-tuple MO =
[Ns;Ng ;Nm;Nc]. For the estimation of MO, it is necessary
to determine in Step 4 of Table 3 the value of fA used
to weight the number of operations. Provided the GC-2
algorithm and the protection class cpi, i = 1, 2, the SNR
value corresponding to Pb = 10−4 is determined. With
this SNR, we can identify the correspondent value of fA
(see Figure 3).
Tables 5 and 6 summarize the complexity-performance

trade-off for various configurations of the GC-2 algo-
rithm applied to the UEP codes C1 and C2, respec-
tively. For each intersection of a row (t) with a column
(p), the values of �i (dB) and MO required to achieve
Pb = 10−4 are shown for each protection class. For
both codes, these results indicate that an increasing in p
(for a fixed t) provides better performance, however
increases the complexity, since each operation shown
in Table 3 grows exponentially with p. On the other
hand, an increasing in t (for a fixed p) also results in an
improved performance, but with a smaller increasing of
complexity. For example, considering the class cp1 of the
code C1 and the GC-2(2, 2) algorithm, we have �1 =
2.0 dB and MO = [Ns;Ng ;Nm;Nc]�[ 58.3; 790; 770; 3.89].
Moreover, the GC-2(3, 2) provides �1 = 0.9 dB
and MO = [Ns;Ng ;Nm;Nc]�[ 59.5; 790; 770; 3.96], while
the GC-2(2, 4) yields �1 = 0.8 dB and MO =
[Ns;Ng ;Nm;Nc]�[ 159.6; 3, 100; 3, 000; 10.6], which rep-
resents a significant complexity increase related to the
previous two cases, while the value of �1 is approx-
imately the same as obtained by the GC-2(3, 2) algo-
rithm. This analysis led us to conclude that the increase



de Albuquerque et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:28 Page 6 of 10
http://asp.eurasipjournals.com/content/2013/1/28

Figure 2 Performance of ML and GC-2 (t,p) decoding algorithms for UEP codeC1(16, 5, 5) considering the use of binary antipodal
modulation and AWGN channel.

of the error-correcting capability of the binary decoder
is more advantageous than the increase of the num-
ber of test patterns of the GC-2 algorithm. Also, it
is possible to observe (analyzing Tables 5 and 6) that,
in most of the cases, �2 is smaller than �1, indicat-
ing that the performance achieved by the class cp2
is closer to the ML one than the obtained by the
class cp1.

5.2 WED algorithm
The WED(t,Q) algorithm uses the reliability R′

� defined
in (7). The number of quantization regions considered
is Q = 4, 16 and 1024. Table 7 illustrates the opti-
mal value of the quantization step, δop, (in the sense of
minimizing Pb) for the WED(2,Q) algorithm (class cp1)
applied to the codes C1 and C2. In general, increasing
the number of quantization regions causes a decrease

Figure 3 Relative frequency of the execution of the calculation of the analog weightWα in the GC-2 (t,p) algorithm applied to the code
C2(25, 8, 5) as a function of Eb/N0. Parameters of the GC-2 algorithm: (black square symbol): t = 2, p = 2; (red square symbol): t = 2, p = 7;
(green circle symbol): t = 3, p = 2; (blue circle symbol): t = 3, p = 7; (cyan triangle symbol): t = 6, p = 2; (magenta triangle symbol): t = 6, p = 7.
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Table 5 Results of performance andarithmetic complexity of theGC-2(t,p) algorithms applied to theUEP code C1(16, 5, 5)

p = 2 p = 3 p = 4

MO MO MO

�i(dB) [Ns − Ng] �i(dB) [Ns − Ng] �i(dB) [Ns − Ng]

[Nm − Nc] [Nm − Nc] [Nm − Nc]

t = 2 2.0 [ 58.3− 786.2] 1.4 [ 101.4− 1, 556.1] 0.8 [ 159.6− 3, 100.0]

[ 766.2− 3.9] [ 1, 516.1− 6.8] [ 3, 000.0− 10.6]

cp1 t = 3 0.9 [ 59.5− 787.4] 0.5 [ 116.6− 1, 573.8] 0.1 [ 218.6− 3, 130.0]

[ 767.4− 4.0] [ 1, 533.8− 7.8] [ 3, 050.0− 14.6]

t = 4 0.6 [ 60.0− 788.0] 0.2 [ 119.6− 1, 575.6] 0.1 [ 238.8− 3, 150.0]

[ 768.0− 4.0] [ 1, 535.6− 8.0] [ 3, 070.0− 15.9]

t = 2 1.1 [ 58.4− 786.3] 0.6 [ 102.0− 1, 556.8] 0.3 [ 162.2− 3, 070.0]

[ 766.3− 3.9] [ 1, 516.8− 6.8] [ 3, 000.0− 10.8]

cp2 t = 3 0.5 [ 59.7− 787.7] 0.1 [ 118.0− 1, 570] 0.03 [ 223.2− 3, 130.0]

[ 767.7− 4.0] [ 1, 530.0− 7.9] [ 3, 050.0− 14.9]

t = 4 0.4 [ 60.0− 788.0] 0.1 [ 119.9− 1, 575.8] 0.0 [ 239.3− 3, 150.0]

[ 768.0− 4.0] [ 1, 535.8− 8.0] [ 3, 070.0− 15.9]

Table 6 Results of performance andarithmetic complexity of theGC-2(t,p) algorithms applied to theUEP code C2(25, 8, 5)

p = 2 p = 3 p = 5

MO MO MO

�i(dB) [Ns − Ng] �i(dB) [Ns − Ng] �i(dB) 0.8[Ns − Ng]

[Nm − Nc] [Nm − Nc] [Nm − Nc]

t = 2 4.1 [ 93.5− 1, 829.4] 3.5 [ 126.3− 3, 595.6] 2.7 [ 367.1− 14, 200]

[ 1, 797.4− 3.9] [ 3, 531.6− 5.3] [ 13, 980− 15.3]

t = 3 3.1 [ 95.0− 1, 831.0] 2.6 [ 169.1− 3, 640.2] 1.6 [ 577.5− 14, 400]

[ 1, 799.0− 3.96] [ 3, 576.2− 7.0] [ 14, 200− 24.0]

cp1 t = 4 2.2 [ 95.4− 1, 831.4] 1.7 [ 183.2− 3, 654.8] 0.8 [ 687.4− 14, 600]

[ 1, 799.4− 3.98] [ 3, 590.8− 7.6] [ 14, 300− 28.6]

t = 5 1.3 [ 95.7− 1, 831.7] 0.9 [ 188.3− 3, 660.2] 0.3 [ 742.7− 14, 630]

[ 1, 799.7− 3.99] [ 3, 596.2− 7.8] [ 14, 400− 30.9]

t = 6 1.0 [ 96.0− 1, 832.0] 0.6 [ 191.4− 3, 663.4] 0.2 [ 764.9− 14, 700]

[ 1, 800.0− 4.0] [ 3, 599.4− 8.0] [ 14, 400− 31.9]

t = 2 1.9 [ 91.8− 1, 829.7] 1.4 [ 126.2− 3, 593.5] 0.6 [ 365.6− 14, 230]

[ 1, 797.7− 3.9] [ 3, 529.6− 5.2] [ 14, 000− 15.2]

t = 3 1.0 [ 94.7− 1, 830.8] 0.6 [ 169.1− 3, 640.7] 0.1 [ 596.7− 14, 500]

[ 1, 799.3− 3.96] [ 3, 576.6− 7.0] [ 14, 220− 24.9]

cp2 t = 4 0.6 [ 95.2− 1, 831.4] 0.3 [ 182.9− 3, 655.0] 0.06 [ 728.1− 14, 600]

[ 1, 800.6− 3.99] [ 3, 590.1− 7.64] [ 14, 400− 30.3]

t = 5 0.5 [ 95.5− 1, 832] 0.3 [ 191.1− 3, 663.2] 0.02 [ 763.4− 14, 600]

[ 1, 801.2− 4.0] [ 3, 598.8− 7.9] [ 14, 400− 31.8]

t = 6 0.5 [ 95.5− 1, 832] 0.3 [ 191.2− 3, 663.9] 0.02 [ 763.4− 14, 600]

[ 1, 801.2− 4.0] [ 3, 598.6− 7.9] [ 14, 400− 31.8]
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Table 7 Values of optimal quantization step δop of the classcp1 for theWED(2,Q) algorithm and different values of Eb/N0

δop

C1(16, 5, 5) C2(25, 8, 5)

Eb/N0(dB) Q = 4 Q = 16 Q = 1024 Q = 4 Q = 16 Q = 1024

0 0.31 0.07 0.0011 0.27 0.05 0.0011

1 0.37 0.09 0.0013 0.23 0.07 0.0011

2 0.37 0.09 0.0013 0.27 0.07 0.0011

3 0.37 0.09 0.0013 0.27 0.07 0.0011

4 0.39 0.09 0.0013 0.33 0.07 0.0011

5 0.45 0.09 0.0015 0.29 0.07 0.0011

6 0.47 0.11 0.0015 0.35 0.09 0.0013

7 0.51 0.11 0.0015 0.37 0.09 0.0013

8 0.67 0.11 0.0017 0.49 0.11 0.0017

9 0.67 0.15 0.0017 0.57 0.09 0.0019

in the value of δop, reducing even more the spacing
between adjacent regions. In addition, we can observe
that the higher the value of Q, the lower the varia-
tion of δop over the range of SNR considered. This
behavior indicates that as Q increases, the optimal
value of the quantization step becomes approximately
constant.
Figure 4 shows the curves of Pb versus Eb/N0 of the

WED(2, 4) and WED(3, 16) algorithms for both classes of
the UEP code C1. Similarly to observed in the GC-2(2, 2)
algorithm, there is no performance difference between the
two classes for the case t = 2, while for t = 3, the SNR
difference to the ML algorithm is 0.9 dB (cp1) and 1.2
dB (cp2).

Table 8 summarizes the complexity-performance trade-
off for various configurations of the WED algorithm
applied to the UEP codes C1 and C2. For each inter-
section of a row (t and cpi) with a column (Q and a
code Cj), we have �i (dB) for Pb = 10−4. For code C1,
the error-correcting capability of the WED algorithm is
t = 2, 3 and 4, while for code C2, t = 2, 3, 4, 5 and
6, as it was considered for the GC-2 algorithm. Thus,
considering the complexity-performance trade-off, it is
more advantageous to increase t, as in the GC-2(t, p)
algorithm, than increase the number of quantization
regions Q.
Finally, we compare both soft-decision decoding algo-

rithms for a specific protection class, such as the higher

Figure 4 Performance of ML andWED (t,Q) decoding algorithms for UEP codeC1(16, 5, 5) considering the use of binary antipodal
modulation and AWGN channel.
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Table 8 Results of performance (�i in dB) and arithmetic complexity (MO) of theWED(t,Q) algorithms applied to the UEP
codes C1(16, 5, 5) and C2(25, 8, 5)

C1(16, 5, 5) C2(25, 8, 5)

Q 4 16 1024 4 16 1024

MO [Ns − Ng] [ 50− 394] [ 116− 788] [ 314− 1, 970] [ 77− 916] [ 179− 1, 832] [ 485− 4, 580]

[Nm − Nc] [ 388− 82] [ 776− 148] [ 1, 940− 346] [ 904− 127] [ 1, 808− 229] [ 4, 520− 535]

t = 2 2.7 2.1 1.7 4.5 4.1 3.7

t = 3 1.2 0.9 0.8 3.4 3.0 2.5

cp1 t = 4 1.3 0.9 0.9 2.3 1.9 1.4

t = 5 – – – 1.3 1.0 1.0

t = 6 – – – 1.2 1.1 1.1

t = 2 1.9 1.4 1.2 2.4 2.0 1.8

t = 3 1.0 0.8 0.7 1.7 1.4 1.3

cp2 t = 4 1.5 0.8 0.7 1.5 1.3 1.2

t = 5 – – – 1.6 1.4 1.3

t = 6 – – – 1.6 1.4 1.3

protection one (cp1). To do this, we define a binary
decoding ratio, denoted by γ , as

γ = 2p

log2Q
. (10)

The parameters p andQ are associated with the number of
binary decodings that the GC-2(t, p) andWED(t,Q) algo-
rithms, respectively, execute. When decoding a received
sequence, the GC-2(t, p) algorithm does 2p binary decod-
ings, while the WED(t,Q) algorithm does log2 Q ones.
Thus, for making a fair comparison of the algorithms,
we choose configurations where γ ∼= 1. In this case,
the WED algorithm can offer a performance closer to
the ML curve (for the higher protection class), but at the
price of increased complexity. For γ = 1 and code C2,
we can see this comparing GC-2(5, 2) and WED(5, 16)
algorithms (see Tables 6 and 8). For the GC-2(5, 2) algo-
rithm, �1 = 1.3 dB and MO �[ 95.7; 1, 800; 1, 800; 3.99],
while for the WED(5, 16) one, �1 = 1.0 dB and MO
�[ 179; 1, 832; 1, 808; 229]. Another example is verified if
the GC-2(4, 3) and WED(4, 1024) are compared (γ = 0.8
and code C2). For the GC-2(4, 3) algorithm, �1 = 1.7
dB andMO�[ 183; 3, 655; 3, 591; 7.63],while for theWED
one, �1 = 1.4 dB and MO �[ 485; 4, 580; 4, 520; 535]. It
should also be observed in Table 8 that the performance of
the WED algorithm degrades when t is high. The authors
conjecture that this behavior is due to some limitation of
the reliability R′

� adopted.

6 Conclusions
In this study, the effectiveness of two sub-optimum soft-
decision decoding algorithms (GC-2(t, p) and WED(t,Q)

algorithms) was investigated for each protection class
of UEP block codes using binary transmission over an

AWGN channel. It was verified the performance of both
algorithms compared to that of the ML one. The behav-
ior of the GC-2 algorithm was investigated for estimating
the analog weight (Step 4) according to the variation of
its parameters (t and p), while the WED algorithm was
examined for a new proposed reliability according to the
variation of its parameters (t andQ). To estimate the com-
plexity of each algorithm, it was computed the number
of arithmetic operations per decoded sequence. An anal-
ysis of the trade-off between performance and complexity
of the algorithms was performed for each protection class
assuming various configuration options. These analyses
led us to conclude that, when choosing the parameters of
the algorithms, the increase of the error-correcting capa-
bility of the binary decoder (t) was more advantageous in
both cases. In addition, choosing the values of p and Q
such that γ is close to one (for a fixed value of t), it was
verified that the GC-2 algorithm is less complex, while
the WED algorithm can offer (depending on the code
adopted) a performance closer to the ML one.

Endnotes
aError pattern z associated with the syndrome of the

sequence yi.
bThe complexity of decoding algorithms should be taken

into consideration additional factors besides the arith-
metic operations (like memory reads and writes). Since
these factors are architecture dependent, we omit their
contribution in this article.
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