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Abstract

In this article, we investigate the linear precoder based on the maximization of the minimum Euclidean distance
between two received data vectors. This new precoding matrix is expressed as the product of a power allocation
matrix and an input-shaping matrix. The input-shaping matrix is selected as a normalized discrete Fourier
transform-matrix, and the optimal power allocation depends on the channel characteristics. For each number of
available datastreams, we propose a general form of the optimized precoding matrix. These forms are suitable for
different transmit channels and especially for all rectangular quadrature amplitude modulation modulations. We
show, in the simulation results, that the proposed precoder provides a significant improvement in terms of bit error
rate performance compared to other traditional precoding strategies.
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Introduction
In wireless communication, the systems that employ mul-
tiple antennas at both the transmitter and the receiver
known as multiple-input multiple-output (MIMO) sys-
tems, not only offer the diversity and capacity gains, but
also achieve higher link reliability in comparison with
single antenna systems [1]. The idea of using multiple
transceivers and receivers was first proposed by Bell Lab
[2], and, then, has been utilized worldwide to adapt to
various high-speed wireless transmissions.
In order to overcome the multi-path effect and improve

the robustness of MIMO systems, a linear precoding
transceiver can be used. Precoding is a processing tech-
nique that exploits the channel state information at
transmitter (CSIT) by operating on the signal before
transmission [3]. In fact, the transmitted vectors are pre-
multiplied by a precoding matrix, which adapts to various
forms of the channel knowledge. Various optimization cri-
teria can be used to design a precoding matrix such as
maximizing the output capacity [4], minimizing the bit
error rate (BER) [5], maximizing the received signal-to-
noise ratio (SNR) [6], minimizing the mean square error
(MSE) [7], and maximizing the minimum singular value
[8]. These precoders belong to an important set of linear
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precoding techniques called as diagonal precoders. A spe-
cific precoding matrix, which follows the non-diagonal
structure, was proposed in [9]. This design employ Schur-
convex functions in order to optimize MSE-based or
BER-based criteria.
In this article, we consider another non-diagonal linear

precoder that optimizes the minimum Euclidean distance
(max−dmin) between two received data vectors. This
precoder improves the BER performance of the MIMO
systems, especially when an ML detection is used at the
receiver. It is because that theminimumdistance is mutual
information optimal for discrete input at hight SNR [10].
The optimal solution of max−dmin precoder is proposed
in [11,12] for two transmit datastreams with 4-QAM and
16-QAM modulations. By decomposing the channel into
2 × 2 eigen-channel matrices and optimizing the distance
dmin for each sub-system, Vrigneau et al. [13] proposed a
sub-optimal precoder for largeMIMO channels. However,
this solution is also available for low-order Quadrature
Amplitude Modulation (QAM) modulations. It is because
the optimized solution for two-datastreams transmission
depends on the symbol alphabet, the detection rule, and
the characteristic of the transmit channel. Another sub-
optimal design of the max−dmin precoder, which allows
transmitting more than two independent datastreams and
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increasing the order of the modulations, is presented in
[14]. But, the precoding scheme considers just a block-
Toeplitz form of the channel matrix and, therefore, is only
suitable for quasi-stationary MIMO channels. In addition,
we can apply lattice invariant operations with the linear
precoding in order to transform the transmit channel into
a lattice generator matrix with large minimum distance
separation [15].
The problem of high-order QAM modulations and the

number of datastreams for minimum distance-based pre-
coder was settled in this article. The precoding matrix
is then factorized as the product of a diagonal power
allocation matrix and an input-shaping matrix. The input-
shaping matrix is selected as a discrete Fourier transform
(DFT) matrix, and the power allocation matrix varies
depending on the channel characteristics. At that time, the
expression of the precoding matrix is less complex with
only b variables corresponding to the b diagonal entries of
the power allocation matrix. The idea of using the DFT-
based matrix in precoding scheme was also proposed in
[16], but this precoding design is only due to the power
leakage suppression.
We propose, herein, a sub-optimal DFT-based pre-

coding scheme which not only reduces the complexity,
but also improves the minimum distance. A numerical
approach is considered to indicate which difference vec-
tors provide the minimum distances, and by equalizing
these distances, it is possible to obtain the optimized
precoding matrix. For each number of available datas-
treams, we propose a general precoding matrix for all
rectangular QAM modulations. The simulation results
confirm a significant BER improvement of our new pre-
coder in comparison with other traditional precoding
strategies.
The remainder of this article is organized as follows.

Section “System overview” presents a brief introduction
of virtual MIMO channel representations and linear pre-
coding systems. The new parameterized form of the
precoding matrix is described in “Parameterization of
the precoding matrix”. Section “Design of the precoding
matrix” is devoted to the description of the new precoder
which is based on the observation of the SNR-like matrix.
In Section “Optimized precoder for rectangular QAM
modulations”, we propose general extensions of the pre-
coder for large MIMO channels and all rectangular QAM
modulations. Simulation results in comparison with other
traditional precoders are presented in section “Simulation
results”. Finally, the article ends with “Conclusion” section.

System overview
We consider a MIMO system with nT transmit and
nR receive antennas. For each Rayleigh fading channel
used, b independent datastreams are transmitted, with

b ≤ rank(H) ≤ min(nT , nR). The received signal is
expressed as

y = GHFs + Gη, (1)

where y is the b× 1 received symbols vector, s is the b× 1
transmitted symbols vector, η is the nR × 1 additive Gaus-
sian noise vector,H is the nR ×nT channel matrix, F is the
nT × b precoding matrix, and G is the b × nR decoding
matrix.
When full channel state information (CSI) is available at

both transmitter and receiver, the channel can be full-rank
diagonalized by using a successive linear transformations
presented in [11]. The precoding and decoding matrices
are then decomposed as F = FvFd and G = GdGv. In
which, the couple (Fd,Gd) is used to optimize the mini-
mum distance, while (Fv,Gv) is needed to diagonalize the
transmit channel. The MIMO channel representation is
therefore defined by

y = GdHvFds + Gdηv, (2)

where Hv is the b × b virtual channel matrix, ηv = Gvη
is the b × 1 transformed additive Gaussian noise vector.
One should note that the virtual channel matrixHv is now
diagonal and defined by

Hv = diag(√ρ1, . . . ,
√

ρb), (3)

where ρi stands for every subchannel gain and is sorted in
decreasing order.
In this article, an ML detection is considered at the

receiver, and then, the decoding matrix Gd has no effect
on the performance. Hence, Gd is consequently assumed
to be an identity matrix of size b. The virtual systemmodel
can be then simplified as

y = HvFds + ηv. (4)

The precoding matrix Fd is designed under the power
constraint

trace{FdF∗
d} = Es, (5)

where Es is the average transmit power.

Parameterization of the precodingmatrix
We now design a precoding matrix to improve the prob-
ability of error subject to the constraint of transmission
powers. This design is difficult because it is rarely solv-
able in closed form: the solution depends on the symbol
alphabet, the number of parallel datastreams, and channel
characteristics. In general, the average error probability
can be approximated by [17]

Pe � 1
M

M∑
i=1

M∑
j=1
j �=i

Q
(

d̄ij
2
√
N0

× √
Es

)
, (6)
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where N0 is the variance of the white Gaussian noise ηv,
and d̄ij is the normalized Euclidean distance between two
vector si and sj at the receiver. Let us note Ni the number
of distances d̄ij such that d̄ij = dmin, where dmin denotes
the minimum Euclidean distance and is defined by

d2min = min
sk ,sl∈S,sk �=sl

‖HvFd(sk − sl)‖2.

The probability of error in (6) can be now simplified as

Pe ≈ 1
M

M∑
i=1

Ni Q
(

d̄min

2
√
N0

× √
Es

)

≈ Ndmin Q
(

d̄min

2
√
N0

× √
Es

)
, (7)

where M is the number of all possible transmitted vec-

tors s, and Ndmin = 1
M

M∑
i=1

Ni. It is observed that when

an ML detection is considered at the receiver, a key to
reduce the probability of error is maximizing the mini-
mum Euclidean distance between received symbols. We
can now formulate the design problem as follows

argmax
Fd

d2min

subject to: trace{FdF∗
d} = Es. (8)

By using a singular value decomposition, a linear pre-
coder can be considered as a combination of an input
shaper and a multimode beamformer with per-beam
power allocation [3]

Fd = A�B∗, (9)

where A and B∗ are b × b unitary matrices, and � is a
diagonal matrix. The orthogonal beam directions are the
left singular matrix A, of which each column represents a
beam direction (pattern). It is noted that thematrixA con-
tains all eigenvectors of the matrix FdF∗

d, thus it is often
referred to as eigen-beamforming. The matrix � controls
the power allocation on each beam. These powers cor-
respond to the squared singular values of �2. The right
singular matrix B∗ concerns with the rotation and scaling
of the input symbols on each beam and hence is referred
to as the input-shaping matrix.
Let us define x̆ a difference vector as x̆ = sk − sl, with

sk �= sl, and the set which contains all possible difference
vectors as X̆. The optimized criterion is then

d2min = min
x̆∈X̆

‖HvFdx̆‖2

= min
x̆∈X̆

x̆∗F∗
dH

∗
vHvFdx̆

= min
x̆∈X̆

x̆∗B�∗A∗RHA�B∗x̆, (10)

where RH denotes the channel covariance matrix and is
given by RH = H∗

vHv = diag(ρ1, . . . , ρb). One should note

that RH is a diagonal matrix since the virtual channel Hv
is already diagonalized.

Lemma 1. Without loss of optimality, the left singular
matrixA of the optimal precoder Fd can always be chosen
to coincide with an identity matrix.

Proof. See in [15].

From the result in Lemma 1, it follows that the
max−dmin precoder can be parameterized as

Fd = �B∗, (11)

where B∗ is a b × b unitary matrix, and � =
diag(√σ1, . . . ,

√
σb) is a b × b diagonal matrix with non-

negative real numbers on the diagonal. The power con-
straint in (5) can be then rewritten as

trace{FdF∗
d} = trace{��∗} = Es. (12)

Design of the precodingmatrix
Principle of the approach
Design optimizing theminimum Euclidean distance is dif-
ficult to deal with because of two reasons. First, the space
of solution is large and exponentially proportional to the
number of datastreams b. Second, the exact expression of
max−dmin precoder depends on many parameters such
as the symbol alphabet or the characteristic of the virtual
channel. Here, we propose a design that can come close
to the desired goal. Based on (8), the formulation of the
problem can be rewritten as

max
Fd

min
x̆∈X̆

d2x̆ = x̆∗F∗
dH

∗
vHvFdx̆. (13)

Let us define an SNR-like matrix of Fd as SNR(Fd) =
F∗
dH

∗
vHvFd. Instead of optimizing (13), we can obtain a

suboptimal but more general solution by realizing some
properties of SNR(Fd). Scaglione et al. [8] proposed a sub-
optimal precoder which is based on the observation of
the minimum eigenvalue of SNR(Fd). We present, herein,
another suboptimal solution that considers the minimum
diagonal element of the SNR-likematrix. Let us denote the
diagonal elements of SNR(Fd) as δk , we have

d2x̆ = x̆∗SNR(Fd)x̆ =
b∑

i=1
δix2i + O(xixj)xi �=xj , (14)

with x̆ =[ x1, . . . , xb]T . In order to simplify the complex-
ity of the solution, we assume that the function O(xixj)
has little influence on the performance. Then, the design
problem can be simplified as

max
Fd

min
x̆∈X̆

b∑
i=1

δix2i . (15)
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The criterion on the right-hand side of (15) has a lower
bound

min
x̆∈X̆

b∑
i=1

δix2i ≥ δmin min
x̆∈X̆

b∑
i=1

x2i = δmin min
x̆∈X̆

‖x̆‖2,

(16)

where δmin denotes the minimum diagonal element
of SNR(Fd). It is observed that increasing the mini-
mum diagonal element δmin(SNR(Fd)) to higher value
will possibly obtain a suboptimal solution of the min-
imum distance criterion. Therefore, we first deal with
δmin(SNR(Fd)) and then maximize its value. By substitut-
ing (11) into the form of SNR(Fd), we obtain

SNR(Fd) = B�∗H∗
vHv�B∗ = BϒB∗, (17)

where ϒ = diag(ρ1σ1, . . . , ρbσb) = diag(λ1, . . . , λb) is a
diagonal matrix with non-negative real numbers on the
diagonal. For any given ϒ , we first consider an optimal
choice of the unitary matrix B which maximizes the min-
imum diagonal element of SNR(Fd). Such a matrix B is
provided by the following lemma.

Lemma 2. Given a b×b diagonal matrix ϒ whose diag-
onal elements are non-negative and a unitary matrix B of
size b, then we have the following properties

1.

max
BB∗=Ib

min
i

[BϒB∗]i,i = trace(ϒ)

b
. (18)

2. The optimized value in (18) is provided by a
normalized DFT-matrix

B∗ = Db = 1√
b

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω ω2 . . . ωb−1

1 ω2 ω4 . . . ω2(b−1)

...
...

...
...

1 ωb−1 ω2(b−1) . . . ω(b−1)(b−1)

⎞
⎟⎟⎟⎟⎟⎠ ,

(19)

where ω is a primitive b th root of unity, i.e.,
ω = e−

2π i
b .

Proof. First, we prove that the right-hand side of (18) is
the upper-bound for the left-hand side. Then, we show
that the DFT-matrix Db can provide this upper bound.

1. Since B is a unitary matrix and ϒ is a diagonal
matrix, we have

b∑
i=1

δi = trace(BϒB∗) = trace(ϒ). (20)

Furthermore, since the diagonal elements of ϒ are
non-negative, those of BϒB∗ are non-negative, too.
Given the set of b non-negative numbers {αi}bi=1
that sum toM, the minimum number is obviously
less thanM/b. The left-hand side of (18) is,
therefore, upper-bounded by

min
i

[BϒB∗]i,i ≤
∑b

i=1 δi
b

= trace(ϒ)

b
. (21)

2. Let us define βi,j is the (i, j) element of the matrix B∗,
we have

[BϒB∗]i,i =
b∑

j=1
λj‖βi,j‖2. (22)

If B∗ is selected as a DFT-matrix, i.e., the magnitude
of each element of the DFT-matrix Db is equal to
|βi,j|2 = 1/b, we obtain that

[BϒB∗]i,i =
b∑

j=1
λj
1
b

= trace(ϒ)

b
, (23)

for all 1 ≤ i ≤ b.

Lemma provides the key to obtain a sub-optimal solu-
tion for the problem of maximizing the minimum dis-
tance. One should note that the minimum Euclidean dis-
tances on the received constellation are always provided
by some difference vectors. By equalizing these differ-
ence distances, we can obtain an analytical solution of the
precoding matrix.

Proposition 1. In order to equalize any difference dis-
tances, we can retain the input-shaping matrix B∗, and
change only the power allocation matrix �.

Proof. We assume that, at the channel Ĥvdiag
(
√

ρ̂1, . . . ,
√

ρ̂b) and �̂ = diag(
√

σ̂1, . . . ,
√

σ̂b), two dif-
ference vectors x̆1, x̆2 have the same Euclidean distances

⎧⎨
⎩
d2x̆1|Ĥv

= ‖Ĥv�̂Bx̆1‖2

d2x̆2|Ĥv
= ‖Ĥv�̂Bx̆2‖2

(24)

When the channel varies from Ĥv to Hv =
diag(√ρ1, . . . ,

√
ρb), let us define a diagonal matrix �

with real non-negative elements such that

σiρi = κ σ̂iρ̂i, (25)
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where κ is a constant. By substituting σ̂i into the power
constraint in (12), we obtain

trace{��∗} =
b∑

i=1
σi = κ

b∑
i=1

σ̂i

(
ρ̂i
ρi

)
= Es (26)

or

κ = Es∑b
i=1 σ̂iρ̂i/ρi

. (27)

The Euclidean distance provided by x̆1 is then

d2x̆1|Hv
= ‖Hv�Bx̆1‖2
= ‖√κ Ĥv�̂Bx̆1‖2
= κ d2x̆1|Ĥv

.

Similarly, we get

d2x̆2|Hv
= κ d2x̆2|Ĥv

.

Since d2
x̆1|Ĥv

= d2
x̆2|Ĥv

, we obtain d2x̆1|Hv
= d2x̆2|Hv

.
It is obvious that κ does not depend on the difference
vectors x̆1 and x̆2. It means that for any number of differ-
ence vectors, we can equalize their difference distances by
changing only the power allocation matrix �.

Proposedmodel
Now, we present the key to design a new linear pre-
coder. First, the precoding matrix Fd is factorized as the
product of the power allocation matrix � and the scaling
matrix B∗.
Beside the role of controlling the power allocation on

each stream, the matrix � also determines how many vir-
tual channels used to transmit signal. One should note the
maximum number of activate virtual channels is upper-
bounded by the rank of matrix H. In other words, the
non-null diagonal elements of � are less than the number
of datastreams b. We assume that the signal is trans-
mitted on k subchannels, i.e., k ≤ b = rank(H). The
matrix B∗ is then selected as a normalized DFT-matrix of
size k. According to Proposition 1, the diagonal matrix �

depends on the channel characteristics, and has k positive
real elements on the diagonal. We have total b different
expressions of the precoding matrix Fd corresponding to
b precoders which pour powers on 1, 2, . . . , and b virtual
subchannels.
The precoding system structure, which contains an

input-shaping matrix and a power allocation matrix, is
shown in Figure 1. Due to different forms of CSIT, the
precoder first decides number of virtual subchannels used
for transmission, and then maps the data-bits into k sym-
bols. The method used for selecting the modulation will
be discussed in Section “Range of definition”. After that
these symbols are pre-processed by a DFT block of size k.
At the end of the precoder, the transmit signal is directly

operated by a power distribution block, i.e., multiplied to
a diagonal matrix �.
The expression of the power allocation matrix �

depends on the symbol alphabet and the modulation used
at the transmitter. In the following section, we propose
a simple solution for one of the most common schemes:
rectangular QAM.

Optimized precoder for rectangular QAM
modulations
Expressions of the precoding matrix
For a rectangular 4m-QAMmodulation, the transmit sym-
bols belong to the set

S = 1√
Ms

{a + b i ; a − b i ; −a + b i ; −a − b i} ,
(28)

whereMs = 2
3 (4

m − 1) and a, b ∈ {1, 3, . . . , 2m − 1}.
In the new precoding scheme, the input-shaping matrix

B∗ is given by a DFT-matrix of size b. Our objective
becomes to determine the matrix � subject to the power
constraint (12) in order to improve the minimum dis-
tance performance. To derive the analytical solution of the
power allocation matrix � in (11), we have to follow three
main steps:

(i) Eliminate the collinear difference vectors x̆ ∈ X̆ in
order to reduce the space of solution.

(ii) For each transmit channel, implement a numerical
research to determine which difference vectors
providing dmin.

(iii) Equalize all difference distances of the vectors in step
(ii) to obtain analytic solutions of the power
allocation matrix �.

In the case of the 4m-QAM modulation, we have
(2m+1 − 1)2b difference vectors. Some of them cannot
provide the minimum distance. It is due to the collinear
properties, for example, d2

αx̆ = |α|2d2x̆ > d2x̆, with ∀|α| >

1. For that reason, by eliminating all collinear difference
vectors, we can reduce significantly the space of solutions.
In step (ii), we first parameterize the power allocation

matrix � as the form of some trigonometric elements,
such as,

� = √
Esdiag (cosψ1, sinψ1 cosψ2, . . . ,

sinψ1 sinψ2 . . . sinψb)
(29)

For each channel Hv, a numerical search over all angles
ψi ∈ (0,π) in order to maximize the minimum distance
shows us which difference vectors providing the distance
dmin. And finally, the analytic solution of the matrix � can
be derived by equalizing the difference distances given by
these vectors.
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Figure 1 Design model of the precoding matrix.

One should note that the set of difference vectors, which
provide dmin, is not fixed. It changes according to the
channel values, and therefore lead to varies expressions
of the matrix �. For higher order QAM modulations,
the form of our precoding matrix is more complicated.
We propose, in this section, some characterized expres-
sions of the new precoding scheme. These expressions are
only suitable for the small dispersive channels (i.e., there
is no much difference of SNRs between each subchan-
nel). However, we can use them for all transmit channels
because of their large gain in the performance of dmin.
The number of non-null diagonal elements in � repre-

sents the number of virtual-subchannels used for trans-
mission. Let us denote the characterized expression of the
precoder which enables powers on k subchannels as Fk
with k = 1, . . . , b. According to (25) and (27), the diagonal
entries of the power allocation matrix � can be defined by

σi = Es∑k
j=1 φjρ

−1
j

φiρ
−1
i , (30)

where φj denotes the power coefficient of the jth vir-
tual subchannel. It is obvious that the diagonal elements
of � are linearly proportional with φj. We note that the
value of φj depends on the set of the optimization vectors.
By equalizing the difference distances obtained by these
vectors, we can derive the analytic values of φj. Some nor-
malized coefficients φj are described in Table 1. At the end
of this section, we show how to obtain this coefficient and
propose a method for the general case Fk (Table 1).

Precoder F1
It is actually the max-SNR design which pours power
on only the strongest virtual subchannel, i.e., � =
diag{√Es, 0, . . . , 0}. In order to retain the data-rate, the
precoder F1 can use a higher-order QAM modulation. In

other words, it can transforms 4m-QAM signals on b vir-
tual subchannels into a rectangular 4b.m-QAM signal on
the first subchannel (detailed in Section “Range of defini-
tion”). The minimum distance provided by F1 is defined
by

d2F1 = 4
Ms

Esρ1. (31)

Precoder F2
This is the second expression of the N − dmin precoder
which is presented in our previous work [18]. We observe
that the minimum distance is provided by two difference
vectors x̆1 = 1√

Ms
[ 0 2]T , and x̆2 = 1√

Ms
[ 2 − 2]T . By

substituting the DFT-matrix of size b into (11), we have

F2 =
√
Es
2

(
cosψ 0
0 sinψ

) (
1 1
− 1 1

)
. (32)

The normalized distances provided by x̆1 and x̆2 are
given by

{
d̄2x̆1 = 4ρ1 cos2 ψ + 4ρ2 sin2 ψ

d̄2x̆2 = 16ρ2 sin2 ψ

Table 1 Optimized coefficients of the power allocation
matrix�

Expression φ1 φ2 φ3 φ4 φk

�1 1

�2 3 1

�3 6 + 2
√
3 2 + √

3 1

�4 9 5 1 1

�k . . . . . . . . . . . . . . .
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By equalizing d̄2x̆1 = d̄2x̆2 , we obtain ψ = atan(
√

ρ1/3ρ2).
The distance dmin provided by F2 is

d2F2 = 4
Ms

Es
2ρ1ρ2

ρ1 + 3ρ2
. (33)

Figure 2 shows the received constellation provided by
the precoder F2. It is observed that whenever two received
vectors are close on one virtual subchannel, they are
distant on the other (e.g., points A and B).
An exciting property of the precoding matrix F2 is that

the average number of neighbors providing dmin is less
than that of the optimized solution presented in [11]. For
that reason, it provides a slight improvement in term of
BER performance compared to the optimized max−dmin
precoder.

Precoder F3
This precoder pours power on three virtual subchannels,
and has a characterized expression which is defined by

F3 = 1√
3

⎛
⎝ σ1 0 0

0 σ2 0
0 0 σ3

⎞
⎠

⎛
⎜⎝

1 1 1
1 −1 −√

3 i
2

−1+√
3 i

2
1 −1+√

3 i
2

−1 −√
3 i

2

⎞
⎟⎠ .

(34)

A numerical approach shows that the minimum dis-
tance is provided by three difference vectors x̆1 =
1√
Ms

[ 0, 0, 2]T , x̆2 = 1√
Ms

[ 0, 2,−2]T , and x̆3 =
1√
Ms

[ 2,−2 − 2i, 2i]T . One should note that three differ-
ence vectors do not always give the distance dmin. They
are only available for small dispersive channel, i.e., ρ1 is
not too higher than ρ2, and ρ2 is not much higher than
ρ3. It is reasonable to choose these vectors, because when
the channel is large dispersive (ρ3 � ρ2 or ρ2 � ρ1, for
example), we can use the precoding matrix F2 or F1.

By equalizing three difference distances provided by
these vectors, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ2/σ3 = 2 + √
3

ρ2/ρ3

σ1/σ3 = 6 + 2
√
3

ρ1/ρ3

(35)

The distance dmin obtained by F3 is then

d2F3 = 4
Ms

Es
(3 + √

3)ρ1ρ2ρ3
ρ1ρ2 + (2 + √

3)ρ1ρ3 + (6 + 2
√
3)ρ2ρ3

.

(36)

Figure 3 plots the received constellation provided by the
precoder F3 in the case of 4-QAM. Like the case of the
precoder F2, we observe that two received vectors pro-
cessed by F3 are close on one virtual subchannel but can
be distant on the others (e.g., points B and C).

Precoder F4
The characterized expression of the precoding matrix F4
is given by

F4 = 1
2

⎛
⎜⎜⎝

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞
⎟⎟⎠ . (37)

A numerical search shows that the minimum dis-
tance is provided by x̆1 = 1√

Ms
[ 0, 0, 0, 2]T , x̆2 =

1√
Ms

[ 0, 0, 2,−2]T , x̆3 = 1√
Ms

[ 0, 2,−2 − 2i, 2i]T , and
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Figure 2 Received constellations provided by the precoder F2.



Ngo et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:39 Page 8 of 12
http://asp.eurasipjournals.com/content/2013/1/39

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
First virtual subchannel

real part

im
ag

in
ar

y 
pa

rt

C
B

A

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Second virtual subchannel

real part

im
ag

in
ar

y 
pa

rt

B

C

A

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4
Third virtual subchannel

real part

im
ag

in
ar

y 
pa

rt

A

B

C

Figure 3 Received constellations provided by the precoder F3.

x̆4 = 1√
Ms

[ 2,−2, 2,−2]T . Like the case of the precoder F3,
by equalizing their difference distances, we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ3/σ4 = 1
ρ3/ρ4

σ2/σ4 = 5
ρ2/ρ4

σ1/σ4 = 9
ρ1/ρ4

(38)

The distance dmin obtained by F4 is given by

d2F4 = 4
Ms

Es
4

9/ρ1 + 5/ρ2 + 1/ρ3 + 1/ρ4
. (39)

The general case Fk
In the case of k parallel datastreams, a first numerical
approach is first consider to determine all optimization
vectors. This numerical search is implemented for all
angles ψi ∈ (0,π) of the matrix � in (29) to optimize the
distance dmin. Let us denote x̆1, x̆2, . . . , x̆k as k difference

vectors providing the minimum distance. The distance dx̆i
is given by

d2x̆i = x̆∗
i BϒB∗x̆i (40)

=
k∑

j=1
λj|ui(j)|2 (41)

where ϒ = �∗H∗
vHv� = diag(λ1, . . . , λk), and vector ui

is given by

ui = B∗x̆i =[ui(1),ui(2), . . . ,ui(k)]T . (42)

By equalizing k difference distances, we have (k − 1)
equations below

k∑
j=1

λj
(|u1(j)|2 − |ui(j)|2

) =
k∑

j=1
λjvi,j = 0, (43)

where vi,j = |u1(j)|2 − |ui(j)|2 with i = 2, . . . , k. For a 4m-
QAM modulation, it is noted that the difference vector
x̆1 is often defined by x̆1 =[ 0, . . . , 0, 2]T , i.e., |u1(j)|2 = 4
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with j = 1 . . . k. The power constrain in (12) can be now
rewritten as

k∑
j=1

λj/ρj =
k∑

j=1
σj = Es. (44)

Let us define λ =[ λ1, . . . , λk]T , and v1,j = 1/ρj with j =
1, . . . , k, we have⎛

⎜⎜⎜⎝
v1,1 v1,2 . . . v1,k
v2,1 v2,2 . . . v2,k
...

...
...

vk,1 vk,2 . . . vk,k

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1
λ2
...

λk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Es
0
...
0

⎞
⎟⎟⎟⎠ (45)

or

Vλ = ε. (46)

In conclusion, the power coefficients φi are proportional
to the entries of the vector λ which can be defined by λ =
V−1ε. The condition of the existence of the vector λ is that
the matrix V is invertible. When x̆1 =[ 0, . . . , 0, 2]T is one
of the difference vectors providing the minimum distance,
the distance dmin is then defined by

d2Fk = 4
k∑

j=1
λj. (47)

Range of definition
To improve the BER performance of a MIMO system, we
choose from these precoding matrices above the precoder
that provides the highest minimum Euclidean distance.
One should note that the data-rate of a precoder Fi is
different to each other’s. For example, if we both use 4-
QAMmodulation for the precoders F1 and F2, the bit-rate
of F2 is twice as that of F1. Therefore, we have to con-
sider the data-rate of the b precoders when comparing
their distances dmin. The error probability in (7) can be
re-expressed as

Pe ≈ Ndmin Q
(
d̄min
2

×
√
SNR

B
fs

1
log2M

)
, (48)

where M is the number of alternative modulation sym-
bols, B is the bandwidth, and fs is the symbol rate. For a
given modulation order, by comparing the right-hand side
of (48) corresponding to b precoders, we can obtain the
range of definition for each precoding scheme.
Another simple method to retain the data-rate is using

different modulation for each precoder. Lets us come back
to the example of the precoders F1 and F2. If the 4-QAM
modulation is used for the precoder F2, it means that
two 2-bits symbols are transferred on two subchannels.
Instead of transmitting like this, we can transfer one 4-
bits symbols (16-QAM) on the first virtual subchannels.
Then, twominimumdistances that correspond to F1 using
16-QAM and F2 using 4-QAM are compared in order to

determine the range of definition for two precoders F1 and
F2. ⎧⎪⎪⎨

⎪⎪⎩
d2F1 = 2

5
Esρ1

d2F2 = 2Es
2ρ1ρ2

ρ1 + 3ρ2

(49)

In other words, if d2F1 > d2F2 or ρ1/ρ2 > 7: the pre-
coder F1 is chosen, and for ρ1/ρ2 < 7: the precoder F2 is
selected. Other precoders can be implemented in a similar
way.

Simulation results
Comparison of minimum Euclidean distance
In this section, we indicate the improvement of the
proposed precoder in terms of the minimum Euclidean
distance compared to diagonal precoders. Indeed, the
minimum Euclidean distance provided by a diagonal pre-
coder is

d2min = min
s,r∈S,s �=r

‖HvFd(s − r)‖2

= min
s,r∈S,s �=r

b∑
i

ρif 2i |si − ri|2 (50)

where s =[ s1, s2, . . . , sb]T , r =[ r1, r2, . . . , rb]T , and
Fd = diag(f1, . . . , fb). One should note that the mini-
mum Euclidean distance is obtained when the two vectors
s and r are different from only a symbol. The minimum
Euclidean distance of Fd is then given by

d2min = min
s,r∈S,s �=r

min
i=1...b

ρif 2i |si − ri|2

= min
i=1...b

ρif 2i min
s,r∈S,s �=r

|si − ri|2

= 4
Ms

min
i=1...b

ρif 2i . (51)

It is noted that the diagonal entries of Hv =
diag(√ρ1, . . . ,

√
ρb) are sorted in decreasing order, i.e.,

ρ1 ≥ ρ2 ≥ · · · ≥ ρb. By comparing all of elements
on right-hand side of (51), the minimum distances cor-
responding to some traditional precoders such as beam-
forming, max−λmin [8], Water-filling [4], and MMSE [7],
can be determined. Table 2 illutrates the distance dmin
obtained by these diagonal precoders in comparison with
our proposed precoder, in which (x)+ def= max(x, 0).
The normalized minimum distances provided by these

precoder above, in the case of b = 2 virtual subchannels
and 4-QAM modulation, are illustrated in Figure 4. It is
observed that our precoder provides a large improvement
in terms of dmin compared to the diagonal precoders. In
comparison with the max−dmin precoder presented in
[11], the proposed precoder has a small difference in the
minimumdistance. However, its average number of neigh-
bors providing the minimum distance is less than that of
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Table 2 Comparison of theminimum Euclidean distances

Precoder Minimum Euclidean distance d2min

Beamforming 4
Ms
Esρ1

Water-filling 4
Ms

(
ρb

Es+∑b
j=1 1/ρj
b − 1

)+

MMSE 4
Ms

(√
ρb

Es+∑b
j=1 1/ρj∑b

j=1 1/
√

ρj
− 1

)+

max−λmin
4
Ms

Es∑b
j=1 1/ρj

Our proposed

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4

Ms
Esρ1 for F1

4

Ms
Es

2ρ1ρ2
ρ1 + 3ρ2

for F2

. . . . . . . . .

the max−dmin precoder [18]. According to that improve-
ment, an enhancement in terms of BER is expected for our
new precoder (Table 2).

BER performance
In this section, the BER performance of the proposed pre-
coder is considered in comparison with other traditional
precoding strategies. The proposed precoder obtains a
significant improvement of BER in comparison with the
diagonal precoders:Water-filling,MMSE, andmax−λmin.
A gain about 6 dB can be observed at high SNR. Further-
more, as discussed above, our precoder has the number
of neighbors providing dmin less than that of the opti-
mal solution max−dmin in [11], although it has a small
difference in terms of dmin. Therefore, the new precoder
provides a slight BER improvement compared to the
max−dmin solution. The BER performance with respect
to SNR for two transmit datastreams and 4-QAM modu-
lation is plotted in Figure 5.
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Figure 4 Normalized minimum Euclidean distance for two
datastreams and 4-QAMmodulation, with the channel angle
γ = atan

√
ρ2/ρ1.

The optimal solution for max−dmin precoder is pre-
sented in [11,12], but it is only available for two trans-
mit datastreams with 4-QAM and 16-QAMmodulations.
By decomposing the channel into 2 × 2 eigen-channel
matrices and optimize the distance dmin for each pair of
datastreams, Vrigneau et al. [13] proposed a sub-optimal
precoder for large MIMO channels. This extension is
split into four steps: virtual diagonalization of the chan-
nel, combination in pairs of sub-channels, application of
the optimal 2D max−dmin solution, and power allocation
on each sub-system. However, this solution is also suit-
able for low-order QAM modulations. A main advantage
of our new precoder is that the solution is available for
all rectangular QAM-modulations and for any number of
datastreams.
For large MIMO simulations, we consider a system with

nT = 5 transmit and nR = 4 receive antennas. The bit-
streams are separated into b = 4 independent virtual
subchannels, and the channel matrixH is i.i.d. zero-mean
complex Gaussian. For each SNR, the precoders are opti-
mized for about 30,000 randommatricesH. It is observed
in Figure 5 that the BER performance of the max−λmin
solution is better than those of MMSE and Water-filling.
Therefore, the max−λmin precoder is chosen to compare
with our proposed precoder. Beside that some sophisti-
cated transceivers such as: the Schur-convex ARITH-BER
design [9], the linear precoder using Decision Feedback
Equalization (DFE) [19], and the linear transceiver with bit
allocation [20] are also mentioned in the comparison with
our precoder. Figure 6 illustrates the BER performance for
MIMO (5,4) systems using 4-QAMmodulation. The com-
parison of the proposed precoder and other schemes for
b = 4 transmit datastreams shows that the performance
is significantly enhanced in terms of BER. It is obvious
that our precoder performs much better than diagonal
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Figure 5 Uncoded BER performance for b = 2 datastreams.
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Figure 6 Comparison of BER performance for large MIMO(5,4)
systems.

precoders such as max−λmin and Water-filling. Further-
more, we observe that the new precoder also presents a
significant improvement of BER compared to the DFE,
the Schur-convex ARITH-BER, and themaximum bit-rate
solutions, especially when the SNR is high. The new pre-
coder was found to be better than E − dmin schemes and
this is due to the fact that not only the minimum distance,
but also the number of neighbors providing dmin is taken
into consideration.
We also consider, in this section, the impact of imperfect

CSI estimation on the BER performance of the proposed
precoder. Figure 7 illustrates the BER performance with
respect to SNR in the case of perfect CSI and imperfect
CSI estimation. The estimated channel matrix of imper-
fect CSI system can be modeled asHest = H+Herr, where
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Figure 7 BER performance for perfect CSI and imperfect CSI
estimations.

Herr represents the channel estimation error. The optimal
training signals for the MIMO-OFDM channel estimation
can be found in [21]. One should note that if the trans-
mit channel is quasi-stationary, i.e., remains constant for
several symbol periods, the precoding across time could
be replaced by precoding across subcarriers [14]. In this
simulation, we assume that the entries of Herr are com-
plex Gaussian i.i.d random with mean zero and variance
σ err = 0.3 σ , where σ is the variance of the complex Gaus-
sian entries ofH. It is observed that the BER performance
of our precoder decreases at high SNR, but it still remains
better than the other precoding strategies. Furthermore,
the BER enhancement obtained by the proposed precoder
is much better than the case of full CSI in comparison with
the E-dmin solution: a gain of 2 dB in SNR can be observed
at BER = 10−5.

Conclusion
We proposed, in this article, a new linear precoder that
is based on the maximization of the minimum Euclidean
distance between two received data vectors. The sub-
optimal design was obtained by observing the SNR-like
matrix of the precoding matrix. An approximation of
the minimum distance is derived, and its maximum
value was obtained by maximizing the minimum diag-
onal element of the SNR-like matrix. We then showed
that the minimum diagonal element can be attained
by a specific set of the precoder. Firstly, the precoding
matrix is parameterized as the product of a diagonal
power allocation matrix and an input-shaping matrix.
The input-shaping matrix concerns with the rotation
and scaling of the input symbols on each virtual sub-
channel. We demonstrated that the minimum diagonal
entry of the SNR-like matrix is obtained from a special
choice of the input-shaping matrix, i.e., a DFT-matrix,
and our objective becomes determining the power allo-
cation matrix �. As its name implies, the matrix �

decides how many subchannels are used by the pre-
coder for data transmission. For each number of available
datastreams, we proposed a simple characterized expres-
sion of the precoding matrix for all rectangular QAM
modulations.
We also presented some performance comparisons to

demonstrate that the proposed precoder obtains a sig-
nificant improvement in terms of BER. The improve-
ment may be more than several dB at reasonable BER
levels. In comparison with the optimal max−dmin solu-
tion, our proposed precoder also provides a slight BER
improvement. One main advantage of our design is that
the solution can be available for all rectangular QAM-
modulations and for any number of datastreams. It is
because that the precoder has a simple analytic form, and
the space of the solution is smaller than the full design of
minimum distance based precoders.
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