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Abstract

In this article, we investigate the limiting spectral distribution of the sample covariance matrix (SCM) of
weighted/windowed complex data. We use recent advances in randommatrix theory and describe the distribution of
eigenvalues of the doubly correlated Wishart matrices. We obtain an approximation for the spectral distribution of the
SCM obtained from windowed data. We also determine a condition on the coefficients of the window, under which
the fragmentation of the support of noise eigenvalues can be avoided, in the noise-only data case. For the commonly
used exponential window, we derive an explicit expression for the l.s.d of the noise-only data. In addition, we present
a method to identify the support of eigenvalues in the general case of signal-plus-noise. Simulations are performed to
support our theoretical claims. The results of this article can be directly employed in many applications working with
windowed array data such as source enumeration and subspace tracking algorithms.

1 Introduction
The distribution of the eigenvalues of the sample covari-
ance matrix (SCM) of data has important impact on the
performance of signal processing algorithms. Over the
last decade, the properties of complex Wishart matri-
ces are used in the analysis and design of many signal
processing algorithms such as in array processing. Our
knowledge about the distribution of eigenvalues, eigen-
vectors and determinants of complex Wishart matrices
and their limiting behavior is emerging as a key tool in
a number of applications, e.g., in data compression and
analysis of wireless MIMO channels [1,2], array process-
ing, source enumeration and identification [3-5], adaptive
algorithms [6,7]. The densities of the singular values of
random matrices and their asymptotic behavior (as the
matrix size tends to infinity) has been employed in some
applications [8-10]. The eigenvalues of the SCM are often
used to describe many signal processing problems. For
example in [8], they are used as sufficient statistics for
array source enumeration.
Let X1, . . . ,XN be N independent zero mean Gaussian

random vectors with covariance matrix of A, i.e.,
NM(0,A), where A is a nonnegative M × M Hermitian
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matrix. The SCM RN is defined as RN = 1
N
∑N

i=1 XiXH
i =

1
NXXH , where X =[X1, . . . ,XN ] contains N snapshots of
the received data. In this article, we refer to this SCM as
the SCM with rectangular window (SCM-R) as all data
samples have equal weights, i.e., a rectangular window is
used. In this case RN has a Wishart distribution [11] and
for more than four decades, it has been known that the
joint probability density function (PDF) of its eigenvalues,
can be expressed in terms of hyper-geometric functions
[12]. More recently, a simpler form of this joint PDF was
derived in terms of the product of two determinants [13].
However, this form is applicable if the array is small and
the eigenvalues of the covariance matrix of the observed
data are distinct. Several articles have investigated the
behavior of the eigenvalues of RN when M,N → ∞
assuming M

N → c > 0 [14,15]. This is a more realistic
assumption than assuming M is finite and N is infi-
nite, because in most practical applications the covariance
matrixA slowly varies, hence, the effective window length
could not be arbitrary long. For instance, the eigenvalue
estimators that are consistent in this asymptotic regime
are more robust to finite sample size than other estima-
tors which are only guaranteed to converge for fixed M
and N → ∞ [9]. There are many works on the distri-
bution of eigenvalues in this asymptotic regime, such as
information-plus-noise [16] and spiked models where all
eigenvalues are equal excluding a small number of fixed
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eigenvalues (spikes) [17]. Specifically, the distribution of
the largest noise eigenvalue is widely studied [18,19].
Some signal processing algorithms process a batch of

data together and deal with the SCM-R. In addition,
the existing results in literature about the behavior of
the eigenvalues mainly consider the rectangular window.
However in a number of practical signal processing algo-
rithms, the SCM is estimated by applying a window as
follows

RN = 1
N

N∑
i=1

wiXiXH
i , (1)

where {wi ≥ 0, i = 1, . . . ,N} is a non-negative sequence.
Hereafter, we refer to RN as the SCM. The SCM-R is
obtained using a rectangular window, i.e., where wi is
non-zero and constant for i = 1, . . . ,N . These weights
allow to flexibly emphasize or deemphasize some of the
observations. For example smaller weights for old data
samples allows to improve the agility of the algorithms.
For instance in cognitive radio, it is important to detect
the activities of users and the idle channels as fast as pos-
sible, thereby reducing the detection time and improving
the agility of the system [20,21]. Among all windows, the
exponential window, wi = w0pi, is commonly used. Two
reasons for this popularity are (1) this window allows to
develop fast recursive algorithms which are considerably
less expensive in terms of computational complexity,
thereby facilitate the real-time implementation of these
algorithms (e.g. see [22,23]) and (2) allows to forget
the old data, thereby improving the tracking ability in
non-stationary environments. For instance exponentially
windowed data is used in most of the existing subspace
tracking algorithms[24,25]. That is because only a rank-
one update is required for each new data vector to update
the underlying SCM, which leads to simple low cost
subspace tracking algorithms.
In this article, we study the effects of windowing on the

distribution of the eigenvalues of the SCM. In this case,
the SCM in (1) has a doubly correlated Wishart distri-
bution [26-30]. We must note that, there are numerous
research results for the case ofWishart matrices, however,
the spectral properties in the doubly correlated case has
not been sufficiently studied.
Manipulating the joint PDF of the eigenvalues which

is a very complex function is not practical, particularly
for large matrices. An alternative approach used in the
literature, is to employ the following empirical spectral
distribution (e.s.d.) of a square matrix A ∈ CM×M

FA(x) �= 1
M

#{λi ≤ x|i = 1, . . . ,M}, (2)

where λ1, λ2, . . . , λM are eigenvalues ofA and #{.} denotes
the cardinality of a set. Note that, in this definition all
eigenvalues of A are assumed to be real. Although this

formulation is less explicit than the joint PDF of eigen-
values, it describes the statistical behavior of the eigen-
values. In many practical cases A is a random matrix and
the e.s.d. FA(x) is a random function which converges
almost surly to a deterministic cumulative distribution
function as the dimension of the system grows. In such
cases, limM→∞ FA(x) is referred to as the limiting spectral
distribution (l.s.d.) of A.
In recent years, some results have been obtained on

the limiting behavior of the e.s.d. of correlated Wishart
matrices. In this article, for the white noise case, we study
the behavior of eigenvalues of the SCM. In particular for
the exponential window, we extend the results previously
demonstrated in [31] and give more details along with the
proofs of the required theorems. We then consider the
case of signal plus noise and present a method to deter-
mine the support of eigenvalues. The main contributions
in this article are

• A method is proposed to approximate the spectral
distribution of the SCM using arbitrary windows with
that of an equivalent Wishart Distribution. For the
especial case of white noise (noise only), this
approximation is the Marchenko–Pastur (M–P)
distribution, which is the known distribution for the
case of a rectangular window.

• In Theorem 2, we derive an accurate and explicit
equation for the l.s.d. of the SCM of noise-only data
for the exponential window. Many simulations are
performed to show the accuracy of this l.s.d.

• In Theorem 3 we present a systematic method to
compute the support of eigenvalues in the signal plus
noise data case using an exponentially weighted
window. In addition to the results, we follow up a
different and novel approach in proving this theorem
compared with the existing proof for the rectangular
window case where the Stieltjes transformm(z) has
the explicit inverse [15]. This approach can be easily
utilized for other window types where the Stieltjes
transform is expressed explicitly or implicitly as a
function of z.

The demonstrated results provide a key step toward
characterization of the distribution of eigenvalues in the
general Covariance matrix of windowed data. The results
of this work are useful in the design and implementa-
tion of robust algorithms using windowed snapshots. Our
derivations in Theorems 2 and 3 can be directly used
to design unbiased eigenvalue and eigenvector estima-
tors. These estimators are important especially because
the exponential window is used in numerous applications.
They can be used as a basis to improve the perfor-
mance and accuracy of many existing algorithms which
are based on exponentially windowed data, in many fields
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such as subspace tracking, DOA estimation and source
enumeration.
The remainder of this article is organized as follows:

Section 2 introduces the system model and some impor-
tant mathematical tools. We derive an approximation for
the Stieltjes transform of l.s.d. of eigenvalues of weighted
windowed array data in Section 3. Asymptotic spectrum
of the eigenvalues in noise-only data case is analyzed
in Section 4. The signal plus noise case is studied in
Section 5. Section 6 provides simulation results. Finally,
we conclude this work and suggest future works in
Section 7.

2 Systemmodel for windowed SCM
We assume that Xi ∈ CM in (1) is a circularly symmet-
rical independent Gaussian random vector process with
zero mean and covariance matrix of A ∈ CM×M, i.e.,
Xi ∼ NM(0,A). In this case, we can rewrite (1), suppos-
ing that SCM is estimated using a window of size N with
positive coefficients w1, . . . ,wN ,

RN = 1
N

N∑
i=1

wiA
1
2UiUH

i A
1
2 = 1

N
A

1
2UWNUHA

1
2 ,

(3)

where U =[U1, . . . ,UN ] is an M × N matrix contains
i.i.d. zero-mean unit-variance complex Gaussian entries
andWN

�= diag (w1, . . . ,wN ). The matrix RN has a doubly
correlatedWishart distribution. In practice, it is very com-
plex to directly characterize the e.s.d. of RN thus, we use
the Stieltjes transform of this distribution and indirectly
characterize the behavior of the eigenvalues. Then, in the
asymptotic regime as M,N → ∞ given M

N → c > 0, the
inverse transform of the limit gives the l.s.d of SCM.

Definition 1. [15] Stieltjes transform m(z), z ∈ C+ ≡
{z ∈ C : Im (z) > 0} of a distribution function FR(x) is
defined as

m(z) =
∫ 1

λ − z
dFR(λ). (4)

The inverse Stieltjes transform formula is as follows:

FR(x) = 1
π

lim
y→0+

∫ x

−∞
Im {m(t+ iy)}dt, ∀x ∈ R. (5)

Hence, in order to characterize the asymptotic distribu-
tion of the sample eigenvalues, we alternatively character-
ize the asymptotic behavior of the corresponding Stieltjes
transform, and then use the Stieltjes inversion formula in
(5) to obtain l.s.d. of SCM f R(x). We use the following
theorem which gives the Stieltjes transform of the corre-
lated Wishart matrix [29] and is the basis for derivations
in this article.

Theorem 1. For a finite length window with
length of N, consider the matrix defined by RN =
1
NAN

1
2UWNUHAN

1
2 . Assume that all elements of

U ∈ CM×M are i.i.d. random variables with zero-mean,
unit variance and finite E{|Uij|4}. In addition, suppose
that AN ∈ CM×M is a Hermitian nonnegative definite
matrix, WN = diag(w1, . . . ,wN ), FAN D→ FA, FWN D→ FW

when M,N → ∞ with M
N → c > 0. In this case, the

empirical distribution FRN , with probability 1, converges
weakly to a probability distribution function FR whose
Stieltjes transform m(z), for z ∈ C+, is given by

m(z) =
∫ 1

a
(∫ w

1+cwe(z)dFW(w)
)

− z
dFA(a), (6)

where e(z) is the unique solution of the following equation
in C+

e(z) =
∫ a

a
(∫ w

1+cwe(z)dFW(w)
)

− z
dFA(a) (7)

Proof 1. See [29] for proof. Similar results are also
demonstrated in [26,28] with some differences in the
assumptions on correlation matrices.

We emphasize that (6) and (7) give the exact distribution
in the asymptotic regime as M,N → ∞ with M

N → c >

0. Since in practice, the array dimension and/or sample
size are usually finite numbers, this method gives a deter-
ministic approximation for the actual sample eigenvalue
distribution.
To show how this method works, we now consider the

simplest case (where the distribution is well known) using
a rectangular window and white Gaussian noise, i.e.,W =
IN×N and A = σ 2IM×M. In this case, we have dFW(w) =
δ(w − 1)dw and dFA(x) = δ(x − σ 2)dx, where δ(x) is the
Dirac delta function. Thus with straightforward manipu-
lations of (6) and (7), the Stieltjes transform is found to be
the solution of

z = z(m) = σ 2

1 + cσ 2m
− 1

m
. (8)

In this case, as expected the e.s.d. of the SCM-R, FRN (x),
converges to the M–P distribution [14] as follows,

fMP(x) = d
dx

FMP(x),= max(c, 1) − 1
c

δ(x)

+
√

(x − a−)(a+ − x)
2πσ 2xc

�a−,a+(x),
(9)

where a± = σ 2 (1 ± √
c
)2 and�a,b(x) =

{
1 a ≤ x ≤ b
0 otherwise

.

Now, let us consider an arbitrary window and white
noise A = σ 2IM×M. In this case from (6), (7) and
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dFA(x) = δ(x − σ 2)dx, we obtain m(z) = 1
σ 2 e(z). Thus,

from (6), we obtain

m(z) = 1
σ 2 ∫ w

1+cwσ 2mdFW(w) − z
. (10)

3 Effective length of a window
In this section, we define the effective length of a win-
dow which allows to approximate the distribution of the
eigenvalues of windowed SCM with that of a rectan-
gular window with an equivalent length, assuming that
the covariance matrix of data A satisfies the assumptions
of Theorem 1. In several existing articles some intuitive
equivalent length are defined simply to extend the previ-
ously existing results for the rectangular case in order to
analyze the behavior of the eigenvalues in the weighted
window cases [22,23].
Consider a window wi > 0 of length N and denote

WN = diag(w1, . . . ,wN ) ∈ RN×N with a converging dis-
tribution, i.e., limN→∞ FWN = FW. We assume that the
sample size N is much larger than the array dimensionM,
i.e., c is small. It is known thatm(z) is bounded for z ∈ C+
[15]. Thus for 0 < c � 1 we have 0 < cσ 2|m| sup |w| <

β < 1 where β is some constant number. It is easy to
show thata, we have

∣∣∣ σ 2w
1+cwσ 2m − 1

cm
∑I

i=1(−cwσ 2m)i
∣∣∣ ≤

|cm|I |wσ 2|I+1

1−β
. This yields

∫
σ 2wdFW(w)

1 + cwσ 2m
= cIO+ 1

cm

I∑
i=1

(−cσ 2m)iE{wi}, (11)

where E{.} = ∫
(.)dFW(w) and |O| ≤ |m|I |σ 2|I+1

1−β
E{wI+1}.

Since 0 < c � 1, for I = 2 and defining ce = cE{w2}
E2{w} and

we = E{w} as the effective parameters, we can rewrite (11)
as

z ≈ E{w}σ 2

1 + cE{w2}
E{w} σ 2m

− 1
m

= weσ 2

1 + ceweσ 2m
− 1

m
, (12)

where using E{w3} < sup{w2}E{w} and E{w2} <

sup{w}E{w} it is easy to show that the approximation error
is bounded by σ 2E{w} 2β2

1−β
.

Definition 2. The expression (12) represents the M–P
distribution as in (8) for a rectangular window of length

Ne = M
ce

= N
E2{w}
E{w2} , (13)

with all coefficients equal to we. The average weight we is
a scale parameter for the eigenvalues of covariance matrix
of the received data. Although we have derived the effective
length for the noise only data, our results reveal that this
effective window length gives accurate results for the signal
plus noise case.

For the white noise data, the l.s.d. of SCM can be
approximated by the M–P distribution defined in (9) by
substituting c and σ 2, with ce and weσ 2, respectively. Note
that the effective window length is always smaller than the
number of samples N. This approximation can be intu-
itively interpreted as a Wishart approximation where the
effect of “windowing” is approximated with a rectangu-
lar window with an effective number of samples of Ne
and the covariance matrix of the received data is scaled to
Ae = weA”.
Now, we compute the effective length of the triangu-

lar and the exponential windows. A triangular window is
defined by wi = 2(1 − i−1

N−1 ) for i = 1, . . . ,N 
 1 and
has the average weight of 1

N
∑N

i=1 wi = 1. Using (13), the
effective length of the triangular window is

Ne = 3
2
N − 1
2N − 1

N≈3
4
N . (14)

The exponential window is very popular in signal process-
ing applications due to its simple implementation and is
defined by wi = w0pi for i = 1, 2, . . . , where p ∈ (0, 1) and
w0 is a normalization constant.We note that the exponen-
tial window is inherently an infinite length window. Inter-
estingly, in Theorem 1 the window length and the array
dimension jointly tend to infinity where limM,N→∞ M

N =
c > 0. Here for a finite array dimensionM, we first approx-
imate the exponential window with N coefficients, which
is only accurate if N is large enough such that the omitted
coefficients are negligible. Asymptotically as M,N jointly
tend to∞, the results from this truncated window become
accurate for describing the underlying distributions using
the exponential window. In this case, with some calcula-
tions we obtain Ne = 1−p2

(1−p)2
(1−pN−1)2

1−p2N−2 . Thus the effective
length of the exponential window (for N 
 1) becomes

Ne ≈ 1 + p
1 − p

, (15)

which is not a function of N. As expected the effective
length of the window increases as the forgetting factor p
approaches one.

4 Spectral analysis of noise-only data
In this section, for the windowed data case, the l.s.d. of
the SCM is characterized more accurately. In practice, the
array dimension and the effective window length are both
finite. However, we are interested in the impact of the
weights of the window fW(w), on the limiting distribution
of the eigenvalues as M,N → ∞ employing Theorem 1.
We use two approaches to model fW(w), Discrete and
Continuous. The former considers fW(w) as a finite sum
of discrete masses at the coefficients of the window. The
discontinuous distribution function modeling is useful to
analyze the support of eigenvalues and its connectivity.
The latter approach, approximates fW(w) as a continuous
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function allowing to derive some explicit equations for the
Stieltjes transform.
Let SF denote the support of the function f R(x) and ScF

shows its complement. From (5), we see that SF consists of
points on the real axis where the imaginary part ofm(z) is
positive, i.e., the support is the union of some subintervals.
Thus to find the support of the distribution of eigenvalues,
we must determine such intervals. In [15], it is shown that
limy→0+ mF(x + iy) exists for all x �= 0, and therefore we
can define

mF(x) = lim
y→0+ mF(x + iy), x ∈ R \ {0}. (16)

The following lemma is the key to determine these inter-
vals on real axis [15].

Lemma 1 ([32], Lemma 6.1). For any c.d.f. F, let SF
denote its support and ScF be the complement of SF . For
x ∈ ScF , m = mF(x) is the only real solution of x = z(m)

which satisfies

dz(m)

dm
> 0, (17)

where z(m) is the inverse function of m(z). Also conversely,
for any real m in the domain of z(m) if dz(m)

dm > 0 then
x = z(m) is outside the support of F.

This simply means that the support SF , is the union of
intervals on the vertical axis where z(m) is increasing for
real values of m. According to (10), for noise only data
z(m) can be written as follows

z(m) =
∫

σ 2w
1 + cwσ 2m

dFW(w) − 1
m
. (18)

4.1 Discrete distribution function approach
Suppose the window consists of Nd distinct weights
wi, i = 1, . . . ,Nd, each with multiplicity n = N

Nd
. There-

fore as (M,N → ∞ and M
N → c > 0), we can evaluate

(18) in terms of the weights

z(m) = 1
Nd

Nd∑
i=1

σ 2wi
1 + cwiσ 2m

− 1
m
. (19)

Figure 1, represent a typical case of the function on the
right-hand side of (19). Lemma 1 states that the support
of the distribution of eigenvalues is the complement of the
set of all values x ∈ R+ for which x = z(m) is increasing
for real values of m, i.e., (dz(m)

dm > 0). The function z(m)

has poles at m = 0, − 1
cw1σ 2 , . . . ,− 1

cwNdσ 2 . In addition,
z(m) is an analytic function and we have

lim
m→0± z(m) = ∓∞, lim

m→
(

− 1
cwiσ2

)± z(m) = ±∞. (20)

Figure 1 A typical representation of the function z(m) in (19)
versusm ∈ R for c < 1 in the case where the support of
eigenvalues is a connected interval.

For c < 1, i.e., where the length of the window is more
than the array dimension, limm→±∞ z(m) = 0±, thus
as Figure 1 shows, dz(m)

dm = 0 has at least two solu-
tions which we denote them mu ∈

( −1
cσ 2 max(wi)

, 0
)
and

ml ∈ (0,∞). For c > 1, as Figure 2 shows typically,
from limm→±∞ z(m) = 0∓ we conclude that ml must be
in

(
−∞, −1

cσ 2 min(wi)

)
. We must note that, for c > 1, the

SCM has M − N zero eigenvalues expressed with a prob-
ability mass of

(
1 − 1

c
)
in the l.s.d. of SCM, that is not

counted as a cluster in these derivations, i.e. for c >, the
PDF of the distribution includes a term of

(
1 − 1

c
)
δ(x). If

the weights are widely separated, the support of eigenval-
ues may become fragmented into union of a number of
disjoint intervals.
In many signal processing applications the white noise

subspace is separated from the signal subspace based on

Figure 2 A typical representation of the function z(m) in (19)
versusm ∈ R for c > 1 in the case where the support of
eigenvalues is fragmented into two disjoint intervals.
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the eigenvalues of the SCM. Such a fragmentation of the
support of noise eigenvalues misleads the subspace based
algorithms and leads to noise eigenvalues to be mistaken
as signal ones.
In fact, it is desirable that the support of eigenvalues be

as compact as possible. To avoid such an undesirable frag-
mentation, the equation dz(m)

dm = 0 should not have real
solution form ∈

( −1
cσ 2 min(wi)

, −1
cσ 2 max(wi)

)
, i.e.,

1
Nd

Nd∑
i=1

(
1 − 1

1 + cwiσ 2m

)2
> c, (21)

∀m ∈
( −1
cσ 2 min(wi)

,
−1

cσ 2 max(wi)

)
.

Under this connectivity condition, the support of eigen-
values is the interval [ xl = z(ml), xu = z(mu)], which
can be calculated, numerically. Our simulations show that
this condition is satisfied for popular window types espe-
cially forNd 
 1 used in practice. Figure 2 shows a typical
case for c > 1 where dz(m)

dm = 0 has an even number of
real-valued solutions (counting multiplicities) which we
denote them by m−

1 ≤ m+
1 < · · · < m−

q ≤ m+
q (in

addition to ml,mu). Each pair of these solutions deter-
mines a sub-interval for the support of eigenvalues, i.e.,
we have SF =[ xl, xu]−{[ x−

1 , x
+
1 ]∪ · · · ∪[ x−

q , x+
q ] }, where

x−
i = z(m−

i ), x+
i = z(m+

i ). Reducing c or reducing the
gap between weight values {wi} makes the support more
compact at the expense of using more temporal samples.

4.2 Continuous function approach
The goal of this approach is to find closed form expres-
sions of Stieltjes integrals of the l.s.d. This approach could
be used for any window shapes. However, we start with the
triangular window and then consider the exponential win-
dow which are more popular. Here, we model the function
fW(w) with a continuous distribution and evaluate (18) to
found the Stieltjes transform.
For a triangular window wi = 2

(
1 − i−1

N−1

)
, i =

1, . . . ,N , we have FWN (w) = 1
N
∑N

i=1U(w − wi) where
U(w) is the unit step function. In this case it is easy to
show that FWN (w) converges to a uniform distribution as
N increases, i.e.,

lim
N→∞ FWN (w) = FW(w) =

⎧⎨
⎩

1
2
w, 0 < w < 2,

0, otherwise.
(22)

Substituting FW(w) in (18), we get

z(m) = 1
cm

(
1 − 1

2cσ 2m
ln(1 + 2cσ 2m)

)
− 1

m
, (23)

form ∈ (− 1
2cσ 2 ,∞) andm �= 0.

Again, we first use Lemma 1 and determine the support
of eigenvalues (by plotting z(m) for realm and finding the
intervals on the vertical axis where z(m) is not increasing).
Figure 3 plots the lower and upper boundaries of support
of eigenvalues for a triangular window for different values
of c. It can be seen that the discrete distribution FWN (w)

(assuming Nd = 50) and the continuous approach result
in almost the same boundaries.We also observe that these
boundaries are close to those obtained by the Wishart
approximation assuming the effective window length in
(14). In this figure using the rectangular window with
same length as the triangular window, the distribution is
referred to as the M–P distribution. Also we observe that
the eigenvalues tend to more concentrate around their
real value σ 2 = 1 as the window length increases. In
addition from this figure, we conclude that the support
using the triangular window is looser than than that of
the rectangular window for a given value of c, because the
effective length of the triangular window is less than that
of a rectangular window.
For the exponential window, first we introduce the new

parameter γ as the ratio of smallest to largest weights
of the truncated exponential window. The coefficients of
the window can be redefined as as a function of γ as
wi = w0γ

i
N , i = 1, . . . ,N . Therefore from fWN (w) =∑N

i=1
1
N δ(w−wi), from i = N

ln γ
ln

(
wi
w0

)
, it is easy to show

that

FWN (w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 w < γw0,

1 − 1
N

⌊
N
ln γ

ln
(

w
w0

)⌋
γw0 ≤ w ≤ w0γ

1
N ,

1 w0γ
1
N ≤ w,

(24)

where �.� is the floor function. This increasing staircase
function takes values on

{
0, 1

N , 2
N , . . . , 1

}
. To satisfy the

Figure 3 Upper (values on the right) and Lower (values on the
right) boundaries of the support of eigenvalues using the
triangular window versus c.



Yazdian et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:42 Page 7 of 15
http://asp.eurasipjournals.com/content/2013/1/42

constraints of Theorem 1 for the exponential window, we
assume that the ratio of smallest to largest weights of the
window, γ = pN > 0, is an arbitrary small real con-
stant. In other words, the forgetting factor of the window
p = γ

1
N ∈ (0, 1) approaches to 1, as M,N → ∞. The

smaller γ , the better this truncated exponential model fits
the exponential windowwith the forgetting factor p. From,
limN→∞ w0 = ln γ

γ−1 , we conclude that limN→∞ FWN =
FW(w) where

FW(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 w <
γ ln γ

γ − 1
,

1 − 1
ln γ

ln
(
w(γ − 1)

ln γ

)
γ ln γ

γ − 1
< w <

ln γ

γ − 1
,

1 w >
ln γ

γ − 1
.

(25)

is a continuous function, independent of window size N
and satisfies the assumptions of Theorem 1. Thus, this
theorem is applicable to the exponential window trun-
cated at some large integer N.
Substituting FW(w) in (18), in the asymptotic regime of

Theorem 1 as γ → 0, such that M
n0 → c0, z(m) satisfies

z(m) = 1
c0m

ln
(
1 + c0σ 2m

) − 1
m
, (26)

for allm ∈
(
− 1

c0σ 2 ,∞
)

\ {0} where n0 = − 1
ln(p) .

One can use the same method as in the discrete dis-
tribution function approach and identify the support of
the distribution SF . However, the function z(m) in (26)
is simple and the following theorem gives the explicit
distribution.

Theorem 2. For the exponentially weighted window, the
l.s.d. of SCM, f R(x), is given by

f R(x) = ec0−
x

σ2

πc0σ 2 Im
(
e−ω−1

(
− x

σ2
exp

{
c0− x

σ2

}))
�x−,x+(x),

(27)

and upper and lower boundaries of the support are

x− = σ 2 ω0
(−e−c0−1) + 1

exp{ω0(− exp(−c0 − 1)) + c0 + 1} − 1
,

(28a)

x+ = σ 2 ω−1(−e−c0−1) + 1
exp{ω−1(− exp(−c0 − 1)) + c0 + 1} − 1

(28b)

respectively, where ωk(x) is the branch of Lambert W
functionb [33] with k = −1 and k = 0.

Proof 2. According to the Lemma 1, boundaries of the
support of eigenvalues are the real solutions of z′(m) = 0,
i.e., with some simple calculations, are the solutions of

ln
(
1 + c0σ 2m

) = c0 + 1 − 1
1 + c0σ 2m

. (29)

Denoting y = ln
(
1 + c0σ 2m

) − c0 − 1, we obtain

yey = −e−c0−1 ∈[−e−1, 0), ∀c0 > 0. (30)

This equation has two real solutions m− andm+ expressed
using Lambert W function as

m− = 1
c0σ 2

(
exp{ω0

(−e−c0−1) + c0 + 1} − 1
)
, (31)

m+ = 1
c0σ 2

(
exp{ω−1

(−e−c0−1) + c0 + 1} − 1
)
. (32)

Using (26), the boundaries z(m−) and z(m+) are obtained
as in (28a) and (28b) which determine the support of
eigenvalues as the interval [ z(m−), z(m+)]⊂ R.
To obtain the l.s.d. of SCM, we should findm(z)with pos-

itive imaginary part for all z ∈[ z(m−), z(m+)]. In (26), we
denote

v = − ln
(
1 + c0σ 2m

) − z
σ 2 + c0, (33)

and obtain

vev =
(
− z

σ 2 e
c0− z

σ2
)
. (34)

Therefore, the solutions are

vk = ωk
(
− z

σ 2 e
c0− z

σ2
)
, ∀k ∈ Z. (35)

According to (16), (33), for the values of z in the inter-
val of the obtained support on the real axis, due to the
properties of the complex logarithm function, the imagi-
nary part of v is in [−π ,π ], thus only the branches with
k = 0 and k = −1 are acceptable solutions. It is easy
to see that for z ∈[ z(m−), z(m+)], the expression on the
right-hand side of (34) belongs to

[−ec0−1,−e−1]. From
(33) and properties of Lambert W function, we also deduce
that Im{m} and sin(−Im{v}) have the same signs, and for
x ∈ [−ec0−1,−e−1] the function sin(−Im{ωk(x)}) is posi-
tive for k = −1 and is negative for k = 0. Therefore, the
Stieltjes transform of the l.s.d. of SCM is obtained from (35)
and (33) as

m = 1
c0σ 2

⎛
⎝e

c0− z
σ2

−ω−1

(
− z

σ2
e
c0− z

σ2
)

− 1

⎞
⎠ . (36)

Using the inverse formula in (18), the l.s.d of SCM is

f R(x) = 1
π
Im

[
1

c0σ 2

(
ec0 − x

σ 2 − ω−1(
− x

σ 2 exp
{
c0 − x

σ 2

})
− 1

)]
.

(37)
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Dropping the real terms inside the brackets and applying
some simplifications, we obtain (27).

We can define a second effective window length by
employing and comparing the boundaries of the support
of eigenvalues in (28a) and in (9) for a rectangular window
which is only in terms of σ 2 and c. Equating the length of
the supports in (9) (28a), i.e., a+ − a− = x+ − x−, we can
find a rectangular window to match the support as same
as that of the exponential window and define the length
of this rectangular window as another effective length for
the exponential window. In some array signal processing
applications, the effective length of the exponential win-
dow has been considered to be Ne = 1

1−p [22,23]. Figure 4
compares these effective lengthes in terms of the forget-
ting factor p and reveals that the effective window length
defined in (13) gives an accurate approximation for the
exponential window. We also see a large gap between the
traditional approximation for the effective length in [22]
and what is obtained in this article using random matrix
theory.

Remark 1. In the economic literature, other methods
have been proposed to approximate the spectral density
function of exponentially weighted financial covariance
matrices for Portfolio Optimization [34,35]. Thesemethods
that are used in other articles (e.g., in [36,37]) are based on
numerical calculations rather than developing some closed
form expressions. Pafka et al. [34] supposed that the den-
sity of the eigenvalues is aproximated by ρ(u) = Qν

π
where

Q = 1
M(1−p) and ν is the root of

u
σ 2 − uν

tan(uν)
+ ln(νσ 2) − ln(sin(uν)) − 1

Q
(38)

In contrast to these methods for the exponential window,
we derive an accurate explicit closed form expression which
can be easily employed in many applications such as in
signal processing and economy.

Figure 4 Effective length of the exponential window as a
function of forgetting factor p.

5 Spectral analysis of signal plus noise data
In this section, we consider the case of white noise plus
some signal sources, i.e., where the eigenvalues of A are
not equal. In the general case, let λq > · · · > λ1 > 0
denote the set of q distinct eigenvalues of the covariance
matrix and the multiplicity of λ
 is denoted by k
 (we
must have M = ∑q


=1 k
). For example suppose a real
phased array communication system with q − 1 indepen-
dent signals impinging on it simultaneously on the same
frequency band from different directions where q < M.
The smallest eigenvalue λ1 can be interpreted as the noise
eigenvalue and other q − 1 larger eigenvalues are referred
to as signal eigenvalues. In the asymptotic regime, when
N ,M are growing large, we assume that k


M → α
 > 0,
where α
, 
 = 1, . . . , q are multiplicity ratios of eigenval-
ues. In this case the spectral distribution of the matrix
A in Theorem 1 can be expressed as sum of Dirac delta
functions, i.e. dFA(a) = ∑q

i=1 αiδ(a − λi)da.
In what follows, we present an approach to determine

the support of eigenvalues and also the l.s.d. of expo-
nentially weighted SCM of signal plus noise data in the
asymptotic regime. The first in determining the distribu-
tion of the eigenvalues is to determine its support on the
real positive axis.
The definition of the Stieltjes transform in (4) implies

that for any distribution F and real x outside the support of
F,m(x) is well defined and its derivative,m′(x) = ∫ dF(y)

(y−x)2 ,
is obviously real and positive. Thus, m(z) is increasing
on intervals on real line outside the support of its dis-
tribution function F [15]. Therefore, the inverse function
theorem proves that its inverse exists on these intervals
and shall also be increasing. For the one sided correlated
Wishartmatrices, where the inverse ofm(z) has an explicit
expression, Lemma 1 shows that the converse of the above
statements are also true [15], i.e. for any real m in the
domain of z(m), if dz(m)

dm > 0 then x = z(m) is outside
the support of the distribution. Therefore, the support
of eigenvalues is a Borel subset of R+ for which z(m) is
increasing which can be determined by simply plotting
the inverse function z(m) for real m. Paul and Silverstein
([29], page 2) suggested the same method for doubly cor-
related Wishart matrices if there exists an explicit inverse
z = z(m) for the limiting Stieltjes transform m(z). Unfor-
tunately, for non-rectangular windows, the inverse ofm(z)
in general has no explicit expression [29]. Fortunately, by
introducing two auxiliary variables u and h in what fol-
lows for the exponential window, we found z(h) which
implicitly expresses z as a function of m. Then, we prove
that the same method can be extended for the exponen-
tial window case, while the main difference here is that
we are able to use the implicit expressions to determine
this Borel set. Although the exponential window case is
studied in this article, the same approach may be used for
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some other window types, to determine the support of
eigenvalues.
From (6) and (7) we obtain

1 + zm =
∫ we

1 + cwe
dFW(w). (39)

Substituting (25) in (39), we get

1 + zm = 1
c0

ln
(

1 − γ + c0e
1 − γ + γ c0e

)
. (40)

Substituting dFA(a) in (7) changes the integral to a sum-
mation and we obtain e(z) as

e(z) =
q∑

i=1

αiλi
λi

c0e(z) ln
(

1−γ+c0e(z)
1−γ+γ c0e(z)

)
− z

. (41)

According to Theorem 1, for any z ∈ C+, there is a unique
solution e = e(z) for (41) in C+. In this case the Stieltjes
transformm(z) is calculated from (40) as

m(z) = 1
z

(
1
c0

ln
(

1 − γ + c0e(z)
1 − γ + γ c0e(z)

)
− 1

)
(42)

This expression gives the implicit relation betweenm and
z, which cannot be sorted to expressm as an explicit func-
tion of z or conversely, z as a function of m. Defining the
auxiliary variable/function u = c0(1 + zm(z)) which pro-
vides a bijective relation between e andm for all z �= 0, we
have

u = ln
(

1 − γ + c0e(z)
1 − γ + γ c0e(z)

)
. (43)

This equation reveals that the imaginary parts of u and e
have the same signs. In addition since γ < 1, c0 is real and
using the properties of the complex logarithm function in
(43), we deduce that u always lies in a strip of the positive
complex plane where its imaginary part is less than π , i.e.,
the domain of u is defined as Du = {u|0 < Im{u} < π}.
Equation (43) also provides a bijective relation between e
and u, therefore according to Theorem 1 for any z ∈ C+,
there is a unique u ∈ Du, satisfying

u = c0
q∑

i=1

αi
λi
z

u
eu−1

1
1−γ

(1 − γ eu) − 1
+ c0. (44)

Defining the second auxiliary variable/function as

h = u
(1 − eu)z

1 − γ eu

1 − γ
, ∀z �= 0. (45)

and define Dh as its range for all z ∈ C+. Resorting (44),
we have

u = −c0
q∑

i=1

αi
λih + 1

+ c0. (46)

Proposition 1. The auxiliary variable h, as a function
of u and z, has some interesting properties as:

(1) h always lies in the subsetDh ⊂ C+ for all z ∈ C+.
(2) for h ∈ Dh, z can be explicitly expressed as a
function of h

z(h) = c0
h

∑q
i=1

αi
λih+1 − 1

ec0
∑q

i=1
αiλih
λih+1 − 1

1 − γ ec0
∑q

i=1
αiλih
λih+1

1 − γ
.

(47)

(1) For any z ∈ C+, a unique h satisfying (47) exists in{
h ∈ C|Im{h}

q∑
i=1

c0αiλi
|λih + 1|2 ∈ (0,π)

}
. (48)

Proof 3. The first property can is simply implied from
(46) as the imaginary part of h and u have the same sign.
Using (45) and (46), we can easily find (47). The third prop-
erty is proved as follows. The constraint in (48) is obtained
from Im{u} ∈ (0,π) and (46). According to Theorem 1, for
any z ∈ C+, there is a unique u ∈ Du, satisfying (44). The
unique pair (z,u) gives an h in C+ according to (45). In
order to prove the uniqueness of h, suppose that h1 and h2
in C+ satisfy (47) and (48). Thus, (46) yields u1,u2 ∈ Du
satisfying (44). In addition, we must have u1 = u2 since for
any z ∈ C+, there exists a unique u1 ∈ Du. Thus for z and
u1 = u2, (45) yields that h1 = h2.

Although z(h) in (47) is defined only for h ∈ Dh, it is
an analytic function for all h ∈ C \

{
0, −1

λ1
, . . . , −1

λq

}
. In

addition note that z(h) = −1
h at the roots of

∑q
i=1

αi
λih+1 −

1 = 0.
Also using (46) and (47) we expressm as a function of h

as follows

mh(h) = 1 − γ

c0

∑q
i=1

αi
λih+1∑q

i=1
αi

λih+1 − 1

(
1 − e−c0

∑q
i=1

αi
λih+1+c0

)
h

1 − γ e−c0
∑q

i=1
αi

λih+1+c0
,

(49)

for h ∈ Dh. Similar to z(h), the complex functionmh(h) is
an analytic function for all h ∈ C except at the set of real
values

{
0, −1

λ1
, . . . , −1

λq

}
and the points where z(h) = 0.

The inverse Stieltjes transform in (5) reveals that the
l.s.d. depends on the behavior ofm(z) in the vicinity of the
real axis, i.e. for z → x0 ∈ R. Proposition 1 shows that the
z(h) in (47) is injective over h ∈ Dh ⊂ C+ and allows us
to treat h(z) as its inverse for z ∈ C+. To determine the
range of h(z) denoted by Dh we can evaluate z(h) for all h
in (48) and take only those values of h for which z is inC+.
As an example Figure 5 shows this region for c0 = 0.2 and
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Figure 5 The range of the function h(z) for z ∈ C+, for the case
where c0 = 0.2 and the covariance matrix has 2 distinct
eigenvalues 2 and 1with themultiplicity ratios α1= 1

3 and α2= 2
3 .

a covariance matrix with two distinct eigenvalues 2 and 1
with the multiplicity ratios α1 = 1

3 and α2 = 2
3 . The white

regions in Figure 5 shows the values of h for which z(h) has
negative imaginary part, and the blue parts are the values
where Im{z(h)} > 0. We observe that some parts of the
positive complex plane are not in the domain of z(h) as we
restrict the range to z(h) ∈ C+.

5.1 Support of eigenvalues
Theorem 3. For the exponentially weighted window

defined in Theorem 2, under the assumptions of Theorem 1,
the complement of support of eigenvalues, is the set of val-
ues of x = z(h) on the vertical axis where dz(h)

dh > 0 for
some h ∈ R, where z(h) is defined in (47).

Proof 4. Let SF denotes the support of the function f R(x)
and ScF shows its complement. To prove Theorem 3, first
we show that for any x ∈ ScF , there exist a h ∈ R where
dz(h)
dh > 0. Then, we prove the converse, i.e. if dz(h)

dh > 0 for
some h ∈ R, then x = z(h) is a real number outside the
support of eigenvalues.
From (5), we see that SF consists of points on the real axis

where Im{m(x+ iy)} tends to a positive number when y →
0+. Thus to find SF , we must determine such subintervals
on the real axis, or equivalently we can determine ScF by
finding the intervals on the real axis where limy→0+{m(x+
iy)} is real. Consider any x1 and x2 such that (x1, x2) ⊂
ScF ⊂ R+. According to the definition of Stieltjes transform
in (4), m(z) and u(z) = c0(1 + zm(z)) = c0

∫
λdF(λ)
λ−z are

both real and well defined for any z ∈ (x1, x2). In addition
du
dz = c0

∫
λdF(λ)

(λ−z)2 is nonnegative on this interval. Thus u(z)
is a real invertible function on (x1, x2), and its inverse z(u)

is also real and increasing on the interval (u(x1),u(x2)) ∈
R, i.e. dz

du > 0.

Lemma 2. For any given z ∈ R+, the function h(u, z) in
(45) is monotonically increasing versus u ∈ R.

Proof. Defining h(0, z) = γ−1
z = lim

u→0
h(u, z), the func-

tion h(u, z) is continuous for all u ∈ R and all z ∈ R+, and
for all z ∈ R+ we have

∂h
∂u

= (eu(u − 1) + 1) + γ eu(eu − u − 1)
(eu − 1)2z(1 − γ )

> 0. (50)

Since dz
dh = dz

du
du
dh and du

dh = c0
M

∑q
i=1

kiλi
(λih+1)2 are positive

for all h ∈ R, Lemma 2 implies that the signs of dz
du and dz

dh
are identical. Thus if z is an increasing function of u ∈ R,
it is also an increasing function of h ∈ R as well, and vice
versa, i.e., the intervals for which z is increasing versus u
is equal to the intervals for which z is increasing versus h.
This proves the direct part of the theorem.
To prove the converse part, consider that Theorem 3

implies that dz(h0)
dh0 is real and non-negative for some h0 ∈

R. Since z(h) and mh(h) are both real at point h = h0, it is
sufficient to show that the point h0 belongs to the boundary
of Dh. In this case, as the function m(h) is continuous in the
complex plane (excluding few points as stated after (49)),
we conclude that limy→0+ Im{m(h0 + iy)} = Im{m(h0)} =
0. To show that h0 is on the boundary of Dh, we prove that
the points in the vicinity of h0 in the positive complex plane,
belong to Dh. Let {hn} be any complex sequence with pos-
itive imaginary part converging to h0 as n → ∞. Since
z(h) is continuous, the sequence {zn} = {z(hn)} exists and
converges to z(h0).

Lemma 3. Let z(h) be an analytic function of h over an
open set G, and h(t) ∈ G be a differentiable curve at t. Then
if dz(h)

dh is a positive real number, we have arg
{

d
dt z(h)

}
=

arg{h′(t)}.

Proof 5. This lemma is obtained from the Chain rule;
since z(h(t)) is differentiable at t and d

dt z(h(t)) =
h′(t)z′(h). Thus for positive real dz(h)

dh , the argument of
d
dt z(h) and h′(t) are the same.

We use Lemma 3 which implies that if dz(h)
dh is positive

and real at the point h = h0 then arg
{

d
dt z(h)

}
= arg{h′(t)}

for any differentiable curve h(t) at t = t0 where h(t0) = h0,
i.e. the slope of the curve h(t) in the complex plane is the
same as the slope of z(h(t)) at h(t) = h0. Now for suffi-
ciently large n, consider the line Ln = h(t) = (1 − t)h0 +
thn, 0 ≤ t ≤ 1 in C+ which originates from h0 and ends
at hn. The transformation of Ln, z(Ln), is also a line in the
positive imaginary part of complex plane with the same
slope as Ln, as we have supposed that dz(h)

dh ≈ z′(h0) for the
points on Ln. Thus the point zn also lies in the positive com-
plex plane. In the other words, for sufficiently large n, the
sequence {zn} lies in C+; hence the sequence {hn} is in Dh.
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Finally, we conclude that the Stieltjes transform is defined
on any such sequences and the sequence of Stieltjes trans-
form {m(zn)} = {mh(hn)} is also in C+ for those values of
n and converges to mh(h0) which is a real number. Thus
z(h0) is outside the support of eigenvalues.

Remark 2. We must note that we use a different
approach in proving Theorem 3 comparing with proof
exists for the rectangular window case where the Stieltjes
transformm(z) has the explicit inverse [15]. This approach
is very simple and can be used in other cases where the
Stieltjes transform is expressed explicitly or implicitly as a
function of z.

Theorem 3 states that in order to find the support of
eigenvalues, we could first find the intervals on the real
line where z(h) is increasing. In a sufficiently small vicin-
ity of these intervals on the positive imaginary part of the
complex plane, it is discussed in the proof that the imag-
inary part of z(h) is also positive for all h in this vicinity,
therefore this vicinity lies in Dh. Having a closer look at
Figure 5, we find that Dh ⊂ C+ approaches real axis only
for some values of h which can be easily studied that these
are the intervals for which z′(h) > 0. Thus according to
this theorem the support of eigenvalues consists of three
disjoint intervals for the setting of Figure 5.
Employing Theorem 3 and plotting z(h) for h < 0 one

can determine the support of eigenvalues of the SCM in
the asymptotic regime. The function z(h) has asymptotes
at − 1

λ1
, . . . ,− 1

λq
with the following one-sided limits

lim
h↓− 1

λi

z(h) = +∞, lim
h↑− 1

λi

z(h) = −∞, ∀i = 1, . . . , q.

(51)

Figure 6 shows a typical representation of the support
of eigenvalues in the signal plus noise case when c0 = 0.1
and the covariance matrix has four distinct eigenvalues
5, 3, 2, 1 with multiplicities α1 = α2 = α3 = 0.1 and
α4 = 0.7. It can be studied that in general, z(h) → +∞
as h → 0− and z(h) → 0+ as h → −∞ and also anal-
ogous with the rectangular window case [38] the number
of extrema of z(h) (counting the multiplicities) is even and
are the solutions of dz

dh = 0. Generally, in order to deter-
mine the support of eigenvalues, we identify all intervals
on the vertical axis where z(h) is increasing and in gen-
eral case denote them by ScF ,b, b ∈ {1, . . . , s}. Removing
these intervals from R, what is left is SF and according
to the proof of Theorem 3. these intervals will not over-
lap each other. To see this, we note for each x ∈ ScF , there
is a unique h ∈ Dh, such that x = z(h). Assume that
IcH ,b, b ∈ {1, . . . , s} are the subintervals in the h domain
where z(h) is increasing. Therefore, IcH ,b uniquely deter-
mines ScF ,b, which is an interval in ScF . The complement

Figure 6 Support of eigenvalues in the signal plus noise case
using exponential windowwith c0 = 0.1 for four distinct
eigenvalues λ4 = 5, λ3 = 3, λ2 = 2, λ1 = 1with multiplicities
α1= α2= α3 = 0.1 and α4 = 0.7.

of these intervals are the points determine the support of
eigenvalues. It can be seen in Figure 6 that the support of
the distribution is the union of four clusters where each
of them represents the support of the distribution of only
one of the eigenvalues. This is analogous with the results
proven in the literature for rectangular windows [38], i.e.,
in this case all eigenvalues are separable on the vertical
axis.
Figure 7 illustrates the same curves for c0 = 0.4, i.e., the

forgetting factor p is reduced compared with Figure 6. We
observe that the smaller the forgetting factor of the expo-
nential window the larger the width of the subintervals

Figure 7 Support of eigenvalues in the signal plus noise case
using exponential windowwith c0 = 0.4 for four distinct
eigenvalues λ4 = 5, λ3 = 3, λ2 = 2, λ1 = 1with multiplicities
α1= α2 = α3= 0.1 and α4 = 0.7.
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associated to distinct eigenvalues. In some cases, some
of adjacent subintervals may overlap, e.g. in Figure 7, the
support associated to λ4 = 5 and λ3 = 3 have over-
lap whereas the two smaller ones are separable. Figure 8
shows Dh ⊂ C+, domain of h in the complex plane, using
the same setting as in Figure 7. It has been shown that
Dh approaches real axis only for the values of h for which
z′(h) > 0 in Figure 7 which identifies the regions on the
real axis outside of the support of eigenvalues.We observe
that Dh has no intersection with the real axis between
h = −1, −1

2 , −1
3 which reveals that the subintervals of sup-

port associated with three smallest eigenvalues λ = 1, 2, 3,
are not disjoint.
Figure 9, demonstrates the support of l.s.d. of SCM iden-

tified using Theorem 3 for c0 ∈ {0.1, 0.3} and λ2 ∈[ 1, 4]
with multiplicity of α2 = 0.1 and λ1 = 1 with multiplic-
ity of α1 = 0.9. We observe that for large values of λ2,
the support associated with two eigenvalues are disjoint
intervals. However, these two disjoint intervals become
connected as the distance between λ2 and λ1 reduces.
In practice, the value of c0 determines the window shape
and has an important impact on the width of these inter-
vals and on the location of the breakpoint. The location
of breakpoint determines the capability of the window to
identify two distinct eigenvalues. Figure 9 illustrates that
the larger the value of c0, the smaller the breakpoint of the
support, i.e., by increasing p, we may be able to separate
closer eigenvalues.

5.2 Limiting spectral distribution
In the noise only case, we find an explicit equation for the
l.s.d. of the exponentially weighted SCM employing Lam-
bert W function. However in the signal plus noise case,
the l.s.d. can not be obtained explicitly and should be cal-
culated numerically using (5) and (47). It is the same as
the rectangular window case where the l.s.d of noise only
data has M–P distribution, however there is no explicit
equation for the signal plus noise case.
To find the imaginary part of the Stieltjes transform, one

could alternatively find the complex roots with positive

Figure 8 The range of the function h(z) for z ∈ C+, for the case
where c0 = 0.4 for four distinct eigenvalues λ4 = 5, λ3 = 3,
λ2 = 2, λ1 = 1with multiplicities α1= α2 = α3= 0.1 and
α4 = 0.7.

Figure 9 Support of eigenvalues of the exponentially weighted
windowed data for c0 = 0.25, λ1 = 1 and λ2 ∈[ 1, 4].

imaginary part of the inverse function z(m) for all z in the
support of the eigenvalues, i.e., z ∈ SF . Since the imagi-
nary parts ofm(z) and h(z) have the same sign and there is
no explicit expression for z(m), we find the complex roots
of z(h) using (47) and (48) for any real xh = z(h) ∈ SF ,
where Re{h} ∈ (hb−, hb+), b ∈ {1, . . . , s}. This can be done
by finding ν = Im{h} for which Im{z(h)} = 0. By inserting
the calculated h in (49), we obtain the Stieltjes transform
for xh ∈ SF . Finally f R(x) is obtained using (5). According
to Proposition 1, for any z ∈ C+ there exists a unique h
satisfying (47) and (48), thus the above procedure results
in the desired value of h andm.

6 Simulation results
In Figure 10, we plot the density functions and a his-
togram to show the accuracy of the derived l.s.d.’s in this
article for an array with a finite dimension M = 20 and
an exponential window with p = 0.975. In this case we
have c0 = −M ln(p) = 0.5. In addition, in all our simula-
tions, we used γ = 10−8; thus according to the definition

Figure 10 Distribution of eigenvalues using the exponential
window forM = 20 and p = 0.975.
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of γ in the truncated exponential window, we have N =
ln(γ )
ln(p) = − ln(γ )Mc0 = 737 and the truncated exponen-
tial window accurately describes the exponential window.
In this case, the histogram of the eigenvalues is generated
by 2,000 samples of SCMs, each computed from 2,000
independent data sets, where each data set consists of N
independent random vectors of length M. Using the for-
getting factor of the exponential window, p, the SCM is
generated using 1

N
∑N

i=1 piXiXH
i . Then using the eigenval-

ues of all of these SCMs the histogram of the eigenvalues
of SCMs is generated. It can be observed that the his-
togram of the eigenvalues accurately fits the derived l.s.d.
of the exponentially weighted windowed data in (27). This
figure also shows results of themethod in [34].We observe
that these results approximately fits the simulated data.
As mentioned before, this method uses numerical calcu-
lations rather than a closed form expression. The Wishart
approximation (for the effective length of window (15)) is
also plotted in this figure which has a similar shape with
small deviation from the histogram. As mentioned before,
in some array signal processing applications, the effective
length of the exponential window has been considered to
be Ne = 1

1−p [22,23]. To evaluate the accuracy of this
approximation, the M–P density function using this effec-
tive length is also plotted which shows a larger deviation
from the simulated data.
In Figure 11, the l.s.d of exponentially windowed data

is plotted for different values of p ∈ {0.95, 0.97, 0.98,
0.99, 0.995} and M = 20. We observe that as p tends to
one, the eigenvalues become more concentrated around
their true values. This is because the effective length of the
window increases as p approaches 1.
Figure 12 shows the spectral distribution for an expo-

nentially windowed SCM in a case where the eigenvalues
are 12, 7, 3,1 with the same multiplicity ratios α1 = α2 =
α3 = α4 = 1

4 for two values of c0 = 0.1 and c0 = 0.4.

Figure 11 Distribution of eigenvalues using the exponential
window forM = 20 and p ∈ {0.95, 0.97, 0.98, 0.99, 0.995}.

Figure 12 Distribution of eigenvalues of exponentially
windowed data for c0 = 0.1 and c0 = 0.4where the covariance
matrix has 4 distinct eigenvalues 12, 7,3,1with the same
multiplicity ratios α1 = α2= α3= α4= 1

4 .

It can be seen that as c0 decreases (i.e., as the forgetting
factor p increases for a fixed value of array dimension M)
the spectral distribution tends to concentrate around the
true eigenvalues. Figure 12 shows that the supports corre-
sponding to eigenvalues λ4 = 12, λ3 = 7 are not disjoint
for c0 = 0.4 where as they are separate for c0 = 0.1. In this
figure, the empirical distributions are obtained using sim-
ulation data with M = 20, N = − ln(γ )Mc0 ∈ {920, 3684}
and p = e

−c0
M ∈ {0.98, 0.995} and the l.s.d. are numer-

ically calculated as introduced in the previous section.
In this case the multiplicities of all of the eigenvalues
of the covariance matrix is 5. We see that the l.s.d. fit
the empirical results even for moderate and small array
dimensions.

7 Conclusion
In this article the l.s.d. of SCM in the case of weighted
windowed data has been studied. Defining the effective
length of a window, we have approximated the distribu-
tion of the eigenvalues in the weighted window case with
that of a Wishart matrix, when the number of samples
are much more than array dimension. Also the connec-
tivity condition for coefficients of the window has been
developed to avoid fragmentation of the support of eigen-
values in the noise only data. For the exponential window,
we have derived an exact expression for the l.s.d. of SCM
which has excellent agreement with the simulation results.
We have also introduced a way to analyze the support and
distribution of eigenvalues in the signal plus noise data
cases. The results of this work could be used in design
and improvement of detectors and estimators based on
weighted windowed data especially when an exponential
window is employed.
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Endnotes
aFrom wσ 2

1+cwmσ 2 − 1
cm

∑I
i=1(−cwmσ 2)i = 1

cm
(−cwmσ 2)I+1

1+cwmσ 2 , we
get | wσ 2

1+cwmσ 2 − 1
cm

∑I
i=1(−cwmσ 2)i| = 1

|cm|
|cwmσ 2|I+1

|1+cwmσ 2| ≤
|cm|I |wσ 2|I+1

1−β
.

bThe Lambert W function [33], ω(x) is also called the
Omega function and is the solution of ωeω = z for
any complex number z. This equation is not injective,
thus the function ω(z) is multivalued and has a set of
different branches named ωk(z) for any integer k. For
real values of z, there exist two real valued branches of
LambertW function ω0(z) and ω−1(z) which take on real
values for z ∈[− 1

e ,∞)∪[− 1
e , 0) and complex values, oth-

erwise. The function ω0(z) is referred to as the principal
branch of the LambertW function and shown by ω(z) for
simplicity.
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19. J Baik, G Ben Arous, S Péché, Phase transition of the largest eigenvalue for
nonnull complex sample covariance matrices. Ann. Prob. 33(5),
1643–1697 (2005)

20. G Ganesan, Y Li, Cooperative spectrum sensing in cognitive radio,
part I: two user networks. IEEE Trans. Wirel. Commun. 6(6), 2204–2213
(2007)

21. G Ganesan, Y Li, in Global Telecommunications Conference, GLOBECOM’05.
IEEE, vol. 5. Agility improvement through cooperative diversity in
cognitive radio (St. Louis, MO, 2005), p. 5

22. B Champagne, Adaptive eigendecomposition of data covariance
matrices based on first-order perturbations. IEEE Trans. Signal Process.
42(10), 2758–2770 (1994)

23. S Valaee, P Kabal, An information theoretic approach to source
enumeration in array signal processing. IEEE Trans. Signal Process.
52(5), 1171–1178 (2004)

24. S Ouyang, Y Hua, Bi-iterative least-square method for subspace tracking.
IEEE Trans. Signal Process. 53(8), 2984–2996 (2005)

25. X Doukopoulos, G Moustakides, Fast and stable subspace tracking. IEEE
Trans. Signal Process. 56(4), 1452–1465 (2008)

26. Z Burda, J Jurkiewicz, B Wacław, Spectral moments of correlated Wishart
matrices. Phys. Rev. E Stat. Nonlinear Soft Mat. Phys. 71(2 Pt 2),
026111 (2005)

27. P Forrester, Eigenvalue distributions for some correlated complex sample
covariance matrices. J. Phys. A Math. Theor. 40 (2007)

28. L Zhang, Spectral analysis of large dimensional randommatrices, Ph.D.
Thesis (2006)

29. D Paul, J Silverstein, No eigenvalues outside the support of the limiting
empirical spectral distribution of a separable covariance matrix. J.
Multivar. Anal. 100, 37–57 (2009)

30. H Zhang, S Jin, X Zhang, D Yang, On marginal distributions of the ordered
eigenvalues of certain randommatrices. EURASIP J. Adv. Signal Process.
2010, 67 (2010)

31. E Yazdian, MH Bastani, S Gazor, in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Spectral distribution of
the exponentially windowed sample covariance matrix (Kyoto, Japan,
2012), pp. 3529–3532

32. Z Bai, J Silverstein, Spectral Analysis of Large Dimensional RandomMatrices.
(Springer, 2010)

33. R Corless, G Gonnet, D Hare, D Jeffrey, D Knuth, On the LambertW
function. Adv. Comput. Math. 5, 329–359 (1996)

34. S Pafka, M Potters, I Kondor, Exponential weighting and random-matrix-
theory-based filtering of financial covariance matrices for portfolio
optimization (2004). (available at http://arxiv.org/abs/cond-mat/0402573)

35. D DE LACHAPELLE, Modern portfolio theory revisited: from real traders to
new methods (2012). PhD thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE
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