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Abstract

improve building detection performance.

With the urgent demand on urban synthetic aperture radar (SAR) image interpretation, this article deals with
detecting buildings from a single high-resolution SAR image. Based on our previous work in building detection
from SAR images, aiming at extracting buildings with their whole and accurate boundaries from the built-up area, a
general framework using the marker-controlled watershed transform is introduced to combine both building
characteristics and contextual information. First, the characteristics of the buildings and their surroundings are
extracted as markers by the target detection techniques. Second, the edge strength image of the SAR image is
computed using the ratio of exponentially weighted averages detector. The marker-controlled watershed transform
is implemented with the markers and the edge strength image to segment buildings from the background. Finally,
to remove false alarms, building features are considered. Especially, a shape analysis method, called direction
correlation analysis, is designed to keep linear or L-shaped objects. We apply the proposed method to high-
resolution SAR images of different scenes and the results validate that the new method is effective with high
detection rate, low false-alarm rate, and good localization performance. Furthermore, comparison between the new
method and our previous method reveals that introducing contextual information plays an important role in
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1. Introduction
Synthetic Aperture Radar (SAR) is an active microwave
sensor, making it capable of acquiring high-resolution
imagery independent of daytime and weather conditions.
It has played a key role in the field of Earth remote sensing.
Recently, one important issue of SAR image interpretation
is urban environment analysis [1]. The acquisition of more
and more high-resolution SAR data (meter-resolution
spaceborne data like TerraSAR-X and Cosmo-SkyMed im-
ages, and decimeter-resolution airborne SAR images) over
urban areas results in an urgent demand on interpretation
methods for such images.

Buildings are the dominant structures in urban envi-
ronment. Various methods of building extraction from
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SAR images have been presented in literature. Chellappa
[2] used constant false-alarm rate (CFAR) processing
and the Hough transform to detect bright and L-shaped
streaks of potential buildings, and then applied super-
vised maximum likelihood (ML) segmentation to find
shadow regions down-range from the potential buildings.
Tupin et al. [3] proposed a line detector for extracting the
bright linear features from SAR images. The detected bright
lines can further be selected as the features corresponding
to the partial footprint of the building on the ground [4,5].
In radargrammetric frameworks, linear or L-shaped lines
are exploited in stereoscopic structure extraction for build-
ing recognition [6-8]. Xu and Jin [9] used a CFAR edge
detector and a Hough transform technique for parallel line
segment pairs to extract parallelogram-like image of the
building walls in SAR images. Hill et al. [10] developed an
active contour approach to extract building shadows, which
can be used for estimating building dimensions [11]. Bolter
and Leverl [12] used a rotating mask to reconstruct
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building walls from multiple view slant range shadows.
More recently, as SAR resolution improves, great attention
has been posed to extract more detailed and accurate infor-
mation about buildings. Michaelsen et al. [13], Soergel et al.
[14,15] used principles from perceptual grouping to detect
building features such as long thin roof edge lines, groups
of salient point scatterers, and symmetric configurations
from SAR images with resolutions on the order of deci-
metre. Guida et al. [16] proposed to employ a more refined
model accounting for both geometrical and electromag-
netic properties of the building. Based on this model, an
approach to extract parameters describing the shape and
materials of a generic building was proposed in [17]. Ferro
et al. [18] presented a method of detecting building and
reconstructing radar footprints based on extraction of a set
of low-level features from images and on their combination
in more structured primitives. Brunner et al. [19] presented
a building height estimation method by iteratively simulat-
ing a SAR image and matching it with the actual SAR
image to test the building hypothesis. Cellier et al. [20]
presented a building reconstruction technique for InSAR
data based on building hypothesis management. A method
for the 3D reconstruction of buildings using very high res-
olution (VHR) optical data and SAR image was presented
in [21].

Among the aforementioned studies, quite a lot of early
works focus on merging building features from multiple
SAR images or multi-sensor data. Such strategy of in-
formation fusion from multiple images is due to the
relatively coarse image quality, to some extent. It also
implies that the investigated area is observed more than
once with different viewing angles or directions. This
obviously causes limitations in some applications such
as emergency response. With the acquisition of VHR
SAR images, more information can be utilized in a single
SAR image and recent works began to address the prob-
lem of building extraction from single SAR data. How-
ever, due to the high complexity of VHR SAR images
over built-up areas, building extraction from highly
urban areas remains a challenging task.

In this article, which improves the work presented in
[22], a general framework for building detection using
both building characteristics and contextual information
is proposed. This method is applied to single SAR im-
ages and has the following abilities. (1) It is able to de-
tect and segment isolated buildings even though they are
densely distributed. When gray-level values of buildings
fluctuate greatly, different parts of a single building can be
merged. (2) It is suitable for common buildings with dif-
ferent shapes, either linear or L-shaped. Due to imaging
conditions, buildings may differ in shapes in different SAR
images. Most common building shapes are linear or L-
shaped lines, and the lines can be very thin (only several
pixels wide) or with a certain width. Usually, the two
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situations are dealt with separately by adopting different
algorithms. We consider that a method adapted to differ-
ent building shapes is more flexible in practical applica-
tions. (3) It can locate accurate building boundaries. Here
boundary means the boundary of a building appearing
in SAR image, not the boundary or foot-print in the real
world. In some researches, detection is not the final pur-
poses. Detection results provide useful information for
building reconstruction or 3D dimension extraction
[23,24]. The accuracy of detection results, such as building
boundaries, mainly the boundaries of overlay regions for
SAR images, will directly determine the performance of re-
construction [4,9-11,25].

2. Overview of the proposed method

Similar to our previous work in [22], the new general
framework proposed in this article utilizes the marker-
controlled watershed transform [26]. Two reasons are con-
sidered. First, when it comes to separating objects with
closed and accurate boundaries, the watershed transform is
a very efficient and widely used method. Second, markers
help segment objects of interest by introducing their
characteristics. In the previous article, only building char-
acteristics were considered, which sometimes causes fail-
ures in segmenting entire boundaries, especially for
buildings with fluctuating gray-level values. To solve this
problem, contextual information is introduced in the new
framework. As it will be analyzed later that contextual in-
formation can keep the entirety of each building and pre-
vent merging adjacent buildings even when they are close
to each other.

The watershed transform is an important segmenta-
tion approach proposed by Vincent and Soille [27]. It is
an intuitive and fast method, producing closed segmen-
tation boundaries. But it suffers from oversegmentation
due to noise and other local irregularities of the gradient.
Oversegmentation can be serious enough to render the
result of the algorithm virtually useless. Some methods
are proposed to solve the problem of oversegmentation,
such as filling up the basins to a predetermined level to
eliminate the lowest peaks which may be insignificant in
terms of boundary detection [28] or computing dynam-
ics of contours which is a contrast criterion measuring
the grey-level difference between peaks and surrounding
minima [29]. Essentially, these improvements take no con-
sideration of the characteristics of objects. For example,
when a predetermined level is used, only the value of the
gradient module is concerned, thus an improper prede-
termined level will break the boundaries of objects.

Another approach to control oversegmentation is based
on the concept of markers [26], which is considered in
our building detection method. A marker is a connected
component belonging to an image, which can be an in-
ternal one associated with objects of interest or an



Zhao et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:56

http://asp.eurasipjournals.com/content/2013/1/56

external one associated with the background. Markers are
used to help with the modification of the gradient image
in order to suppress insignificant regional minima. So by
using the marker-controlled watersheds transform, we
can decrease the regional minima and bound them within
the region of interest to prevent oversegmentation. The
marker-controlled watershed transform is often used to
segment objects with some similarities (grey, texture, shape,
etc), and thus quite suitable for extracting buildings in SAR
images, which have distinct characteristics and strong
similarities.

Marker-controlled watershed transform relies on two
key steps: extracting markers and modifying the gradient
image. Most buildings have strong radar backscatter en-
ergy. Thus, a characteristic feature of buildings is the pres-
ence of bright-pixel clusters in a SAR image, which can be
used as internal markers. Besides, building shadows and
the surrounding roads form black and netlike structures in
SAR images. They can be used as external markers. Based
on both features, internal markers are extracted by a CFAR
detector and external markers are extracted by a power ra-
tio (PR) detector. An edge strength image is obtained by
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the ratio of exponentially weighted averages (ROEWA)
edge detector, which is especially designed for SAR images.
Then the minima imposition technique is combined with
the markers to modify the edge strength image of the ori-
ginal SAR image and most spurious minima are removed.
The potential building boundaries are obtained by com-
puting the watersheds of the edge strength image.
Finally, the postprocessing stage is used to remove false
alarms. Figure 1 depicts the whole process of our frame-
work. In Sections 3 to 5, we will, respectively, describe
the algorithm details of each module in the framework,
namely, maker extraction, computation, and modification
of the edge strength image, and postprocessing.

3. Extraction of markers

As mentioned in section 2, internal markers are associ-
ated with building characteristics and external markers
with contextual information. Therefore, CFAR detector
is used to extract bright pixels of buildings, as the in-
ternal markers. PR detector is adopted to extract build-
ing shadow and roads, as the external markers.

SAR image

marker extraction

building characteristics contextual information |
. | |
| bright pixel shadow/road | | ROEWA edge
| detection detection § detection
i  — |
|
markers| | edge strength
LY \ 2
minima imposition E
marker-controlled ! +
watershed transform |
' watershed transform :

postprocessing

Figure 1 Block scheme of the proposed method for building detection from single SAR data.

output
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3.1 Bright pixel detection based on OS-CFAR detector
CFAR processing is useful for detecting strong reflectors
in the background clutter and has widely been used in
man-made objects detection from SAR images. In this
pixel-based method, the signal at the pixel under test is
compared with an adaptive threshold, generated from a
sliding window of reference pixels from the background.
The reference pixels are used to estimate the parameters
of the underlying clutter statistical distribution. For high-
resolution SAR images, the square hollow-stencil sliding-
window is usually adopted (see Figure 2). A guard area is
set in the window according to the target size and it can
help prevent the target pixels from influencing the param-
eter estimation.

According to different methods for clutter parameter
estimation, CFAR detectors can be classified as the cell
averaging CFAR (CA-CFAR), order statistic CFAR (OS-
CFAR), greatest of CFAR (GO-CFAR), etc. [30-33]. The-
oretically, they are all capable of detecting the bright
pixels of buildings. However, they are suitable for differ-
ent situations. The CA-CFAR technique works well in
situations where a single target is present in locally
homogeneous clutter. In the presence of heterogeneous
environment (including the clutter edge and multi-target
situations), the performance of the CA-CFAR detector
degrades rapidly. The OS-CFAR algorithm is designed to
overcome the problem of the loss in detection perfor-
mance suffered by the CA-CFAR when interfering

clutter region

v

l—l—l

guard region

test cell

.‘-
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cgntral
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Figure 2 The sliding window for CFAR/PR detection.
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targets are in the background cells and clutter statistics
estimation is corrupted. Therefore, it has significant ad-
vantage when detecting targets in multi-target situations.
The GO-CFAR algorithm provides good detection per-
formance in clutter edge situations.

Since building detection is facing a typical multi-target
situation, the OS-CFAR algorithm is considered for
detecting bright pixels of buildings. In a general form of
OS-CFAR detection, M reference cells are sorted in an
increasing order according to their values. The threshold
is obtained by selecting the kth ranked cell to represent
the noise and clutter level [34]. However, it is difficult
to theoretically derive the optimal decision statistic. To
achieve robust performance, Ritcey [35] proposed an
OS-based two-parameter CFAR, which is used to detect
bright pixels in this article. The reference cells in the
sliding window (as shown in Figure 2) are sorted in an
increasing order, i.e.,

P1Sp2s-Pk<Pn,,

where p; is the ith ranked cell and 7, is the number of
clutter cells. The ordered statistics of the clutter region
are used as estimation of the mean value and the stan-
dard deviation. The detection rules are

> if p’; ’5:1;’;2"5 > Tcrar, the cell under test is a target pixel
(a bright pixel);

> if 15’7‘5%’;‘205 <TCcEaR, the cell under test is a background
pixel,

where p;, is the test cell. ps, is the median value j, of the
ranked cells, which is used as the approximation to the
mean value of the clutter region. p,s and p5 are, re-
spectively, the [0.25 - n ]th and [0.75 - nth values of the
ranked cells. [x] represents the integer nearest to x. p;5 —
P25 is the approximation to the standard deviation &, of

the clutter region. The decision statistic 22 represents

the two-parameter CFAR decision statistic 2. Tcpag is
the CFAR detection threshold with the Gaussian distri-
bution, which is commonly used in two-parameter
CFAR detectors. The CFAR adaptive threshold Tcpaz
and a given false-alarm rate Pgy is related by

Tcrar
1-Pp= /
0

Pe(I)dI (1)

where Pg(I) is the Gaussian distribution of the clutter in-
tensity. Tcrar is obtained by solving Equation (1).

After CFAR detection, a binary image B(x,y), 1 <x <
m, 1 <y<n is obtained, where 1 indicates a bright pixel
and 0 indicates a background pixel. Regions with pixels
more than T4 are removed, where T, is a threshold on
the pixel number of a region. A low T, is preferred for
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the purpose of removing small false alarms and keeping
the building objects as complete as possible. The
remained regions are denoted by {R},i=1,..., N, where
R; stands for the ith region and Ny is the total number
of these regions. A new binary image is then defined as
follows:

/ _ 17 (x7y)€{Ri}ai: 17"'aNR
B(xy) = { 0, otherwise (2)

The binary internal marker image B;,(x,y) is obtained
by implementing region filling on B'(x,y). In B;,(x, ),
pixel value 1 represents the internal markers and O rep-
resents background.

3.2 Shadow/road detection based on PR detector

In the marker-controlled watershed transform, external
markers are used to mark the background. More specif-
ically, external markers can restrict each object in a cer-
tain region according to background information. If there
is no prior information about the background, a conve-
nient way of extracting external markers is to compute
the watershed lines of the internal markers image, which
is adopted in our previous article. However, the precondi-
tion is that internal markers can represent objects cor-
rectly and entirely. If the internal marker corresponding
to a single object falls into several parts, the external
markers will separate them in different regions. Conse-
quently, the object will also be segmented into several
parts. To solve the problem, we introduce the contextual
information to mark the background instead. In other
words, external marker extraction is independent of the
extracted internal markers and this will improve the ro-
bustness of our detection method.

In the built-up areas in SAR images, shadows and roads
form black and netlike structures, which provide the main
contextual information of buildings. Such structures can
be extracted and used as effective external markers. As
mentioned in the introduction, building shadows were
extracted using the ML method [2], the active-contour-
model-based segmentation method [10], the mask-based
method [12], etc. More recently, methods based on mor-
phological profiles are used for feature extraction from
urban remote sensing data [36,37] and find use in street
tracking from SAR images [38]. Most methods aim at ac-
curate shadow contour segmentation for building recon-
struction and they are relatively sophisticated. In our
building detection framework, however, the purpose of
shadow/road detection is different from them. The follow-
ing aspects are considered. First, the connectivity of the
extracted structure should be kept. Second, the accurate
contours of the structure are not required here. Third,
simple extraction algorithm with fewer procedures and
parameters is preferred. Therefore, the PR detector [39], a
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simple and flexible method, is adopted to extract the
whole netlike structure.

Similar to the CFAR detector, the PR detector also
uses a sliding window (see Figure 2). Differently, the
central square region (not only the test cell) in the win-
dow is used to compute the shadow power and the sur-
rounding annular region is used to compute the clutter
power. Dark regions (shadows and roads) in the image
are detected, with the test:

HRror

< Ay presence of a shadow/road pixel, (3)

Hc

where fi,,,-and ji-are respectively the average power
inside of the central window and the clutter power esti-
mated in the annular region, A; is the detection thresh-
old. By using this rule, each pixel in the SAR image is
decided to be a shadow pixel or not. After that, we have
a binary image, where 1 indicates a shadow/road pixel
and O indicates a non-shadow/road pixel. The external
marker image B, (x,y) is obtained by implementing mor-
phological operations such as thinning and skeleton
extracting on the binary image.

3.3 Marker image
With the internal and external images, the final marker
image is defined as follows:

0, Bu(x,y) =1orBe(x,y) =1
otherwise

) = { @

tmaxv

where f,,« is the maximum value of the edge strength
image of the SAR intensity image I(x,y). Since noise in
SAR images are modeled as multiplicative, typical edge
detectors for optical images are not suitable here. We
adopt the ROEWA detector [40] for SAR images to
compute the edge strength image g, which here plays the
same role as the gradient image in a typical watershed
transform-based segmentation for optical images.

4. Modification of the edge strength image

As mentioned before, noise and other local irregularities
of the edge strength image usually cause oversegmen-
tation when the watershed transform is directly used.
Therefore, the edge strength image must be filtered to
remove all the irrelevant minima and obtain meaningful
segmentation result. Under the marker-controlled frame-
work, the minima imposition technique [26] is an appro-
priate choice. The minima imposition technique is a kind
of morphological reconstruction, which concerns the fil-
tering of the image minima. It requires a set of markers
marking relevant objects or background. It is based on
geodesic erosion and reconstruction by erosion, both of
which involve a mask image (the image to be processed)



Zhao et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:56

http://asp.eurasipjournals.com/content/2013/1/56

and a marker image. In this article, the mask image is the
edge strength image g.

The geodesic erosion of size n of the marker image f,,
with respect to the mask image g is an iterative process,
which has the form

e (f) = & [ fo)] (5)
e (fon) =M (f) Ve, (6)
where ¢V is the elementary erosion operator, V is the

point-wise maximum operator, séo)(fm) = f,,. According to
(6), geodesic erosion of size n = 1 equals to that the marker
image is first eroded and second the point-wise maximum
with the mask image is calculated. When the geodesic ero-
sion of f,, with respect to g iterates until the stability is
reached, we get the reconstruction by erosion of g from f,,

RE(fin) = € (fin) (7)

where i is such that sg)( fon) = sg D(f,).

Based on the reconstruction by erosion, the imposition
of the minima of the edge strength image is performed
in two steps:

Step 1. The point-wise minimum between the edge
strength image and the marker image is computed:
(g+ 1) A f. The resulting image (g+ 1) A f,, is lower
or equal to the marker image.

Step 2. The reconstruction by erosion of (g+ 1) A f,,
from the marker image f,, is computed as the modified
edge strength image g’ = R{, )./ (fn)-

Figure 3 illustrates the imposition of minima on a 1D
signal. After filtered with the minima imposition technique,
the minima of the markers are imposed to the edge
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strength image and other insignificant minima of the edge
strength image are suppressed. According to Equation (4),
the minima of markers correspond to building pixels
and shadow/road pixels. The peaks (corresponding to the
building boundary) between the markers are still kept.
Therefore, when the watershed transform is applied to the
filtered edge strength image, the extracted boundaries are
mostly the building boundaries.

Figure 4 gives an example of segmenting a simulated
image by applying the watershed transform to its edge
strength image and modified edge strength image ob-
tained by the minima imposition techniques. Figure 4a is
a simulated image (297 x 245 pixels) with multiplicative
noise following the Gamma distribution. There are four
bright objects in this image with different shapes and
orientations. Specially, object B has a dark part in it,
imitating strong fluctuation of gray-levels. Figure 4b
shows the external (red) markers marking the back-
ground and the internal (green) markers marking the
objects. All these markers are manually extracted. Two
internal marker regions are used for object B, since it
tends to be detected as two parts by a CFAR detector.
Figure 4c is the binary image where only the marker
pixels are bright. Figure 4d shows the edge strength
image of Figure 4a obtained by the ROEWA detector.
Very strong responses occur at the locations of object
boundaries. Strong responses caused by the dark part in
object B are evident. Many local peaks of edge strength
also exist in the background. Figure 4e is the gray-level
profile of Row 78 in the edge strength image in Figure 4d.
This row horizontally passes though objects A and B.
From Figure 4e, we can see peaks corresponding to
boundaries of objects A and B, indicated by ps and pg,
respectively. We can also find two lower peaks caused
by the gray-level fluctuation in object B. At other loca-
tions, the values of edge strength are not identical, with

building

boundary L

marker

(a)

reconstruction by erosion.

Figure 3 Minima imposition technique: (a) input image g and marker image f,,; (b) the modified edge strength image g’ obtained from the

building
boundary

(b)
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|

@) ’ (h) (i

Figure 4 Segmentation results of a simulated image using the watershed transform over the initial edge strength image and modified
edge strength image; (a) simulated image with four objects in it; (b) manually extracted external and internal markers; (c) binary image of
markers; (d) edge strength image by the ROEWA detector; (e) gray-level profile through Row 78 in (d); (f) result of applying the watershed
segmentation algorithm to (d); (g) modified edge strength image by the minima imposition technique; (h) gray-level profile through Row 78 in
(9); (i) result of applying the watershed segmentation algorithm to (g). In (e) and (h), pa and pg represent the edge strength peaks corresponding
to boundaries of objects A and B. fpg represents the false peaks caused by gray-level fluctuation in object B. e, and i, represent external markers

and internal markers, respectively.

many local peaks and minima. Due to the existence of
so many peaks and minima, no matter high or low,
oversegmentation (see Figure 4f) happens when applying
the watershed algorithm to Figure 4d. Figure 4g shows
the modified edge strength image using the minima im-
position technique and Figure 4h is the gray-level profile
of Row 78 in Figure 4g. According to Figure 4h, edge
strength values become zero at marker pixels. Real bound-
ary peaks between markers, like p5 and pg, are kept. Since
the two false peaks in object B fall between two internal
markers, they are flattened and merged into one. Other

minima between markers are suppressed. In other words,
meaningful peaks are kept. Figure 4i shows the result of ap-
plying the watershed segmentation algorithm to the modi-
fied edge strength image. We can see that the boundaries
of the four objects are correctly extracted. Moreover, al-
though a watershed line exists within object B, it is easy to
merge the two parts. The segmentation result of object B
demonstrates that even a building in a SAR image is
detected as several parts, it can be merge by our method as
long as they are surrounded by correct external markers
(the shadow/road structure in this article).
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5. Postprocessing

After the modified edge strength image is obtained, the
watershed algorithm is applied to it. The segmented ob-
jects include:

1) real buildings;

2) non-building objects with strong backscattering;

3) artificial objects caused by the watershed algorithm
when a region partitioned by the external markers has
no internal markers in it.

2) and 3) are the false alarms to be removed. For 2),
we can distinguish them from real buildings based on
geometric features such as shape and area. For 3), appar-
ently, they have no corresponding internal markers. Ac-
cordingly, we have the following rules for deciding
whether a segmented object is a building.

Rule 1: a building should have corresponding internal
markers.

Rule 2: the area of a building is higher than an area
threshold;

Rule 3: buildings are linear or L-shaped.

Rules 1 and 2 are easy to decide. However, rule 3 needs
further analysis. Instead of accurate shape fitting, we focus
on designing an approach to quickly choose regions,
which are approximately linear or L-shaped structures.
Since most of these regions have certain width, the com-
monly used methods for fitting single-pixel-width lines,
such as the Hough transform, are not directly used here.
We designed a shape analysis method, called as direction
correlation analysis (DCA), which is based on the corre-
lation of pixels in a region [22].

The DCA method is designed to test whether a region
in a binary image is linear or L-shaped. In [22], the DCA
method was used in the stage of internal marker extrac-
tion to determine whether a region detected by the
CFAR detector corresponds to a building or not. With
further experiments we find that if a building is detected
as several parts, the DCA method will remove them and
the building will be missed. Therefore, it is more reason-
able to use DCA to determine whether a segmented ob-
ject is a building or not in the postprocessing stage. The
main idea of the DCA method is as follows. Suppose we
have a region corresponding to a candidate object in a
binary image. For an arbitrary pixel (x, ) in this region,
we can draw a line passing through (x, y) with angle 6 in
the image and the line intersects the image boundaries.
The number of pixels both in the region and along the
line is defined as the length of the line. With different 6,
we can draw a number of lines and find the longest one.
We denote the angle of the longest line going through
(%, y) by 6, ,. If a region is approximately a linear
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structure, it has one major direction and then pixels in it
will have similar 6, ,). If a region is approximately an L-
structure, it will have two major directions with an angle
difference close to 90°. Based on this, we can define
the measurements of direction correlation of a region R
as follows:

DCy(R) = Var{ (.., |(x1, 7)<R} /NE, (8)

DC(R) = Var{ |6, — 45°

|(xi,9:)€R} /Ny, (9)

where N is the number of pixels of R. According to
Equations (8) and (9), a linear region R has low DC;(R).
An L-shaped region R has low DC,(R). If both DC(R)
and DC,(R) are high, the possibility of R to be a linear
or the L-shaped structure is low. Therefore, given a
threshold Tp¢, if DCi(R) < Tpc or DCy(R) < Tpe, R is
remained; otherwise, R is removed.

When computing DC(R) and DC,(R), it is difficult to
quickly decide 6, ,) for each pixel. To solve this prob-
lem, the Radon transform is applied to a local window
centered at each pixel (see Figure 5). The result of
Radon transform gives the lengths of lines pass through
this pixel along different directions. Since the Radon
transform can efficiently be performed, the computa-
tional time can greatly be reduced.

6. Experiments and analysis

6.1 Dataset description

Different test areas were chosen from the city of Hefei,
China. The X-band airborne SAR data is provided by
East China Research Institute of Electronic Engineering,

L0

region R

Figure 5 DCA for each region: Radon transform is applied to the
local window centered at current pixel(black pixel).
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with a spatial resolution of 1 m both in azimuth and in
range. To evaluate the performance of the proposed
method under a variety of conditions, test SAR data is
chosen based on the following considerations. Firstly,
from the aspect of scene complexity, we consider both
highly urban areas and industrial area. Secondly, individ-
ual buildings with different dimensions, roof structures
and materials are considered. They appear as bright rect-
angles, thin lines or L-shaped structures with different
intensity fluctuations in the test SAR images.
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6.2 Building detection results over highly urban areas

Figure 6a—h depicts the whole experimental process of
the proposed method on the first test site. Figure 6a is
the initial SAR image with the size of 220 x 187 pixels.
The distances between adjacent buildings are small. The
gray values of each building fluctuate greatly. Especially,
building A (marked by a green rectangle) appears as
bright blob-like regions. Figure 6b shows the result of
bright pixel detection, which is used as internal markers.
In the OS-CFAR detection, a 25 x25-pixel sliding
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Figure 6 Detection results on test site I: (a) initial SAR image; (b) internal marker image; (c) external marker image; (d) edge strength map; (e)
edge strength map with markers superimposing on it; (f) result of the watershed algorithm; (g) merged objects after removing small regions; (h)
remained object after DCA; (i) external marker image obtained by our previous method; (j) segmentation result of our previous method; (k)
building boundaries obtained after postprocessing of (j); (I) initial SAR image with reference building boundaries.
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window with 24 x 24-pixel guard area is used. Dimen-
sions of sliding window and guard region are selected
according to building sizes in SAR images. If the guard
area is too small to cover the target, target pixels will
leak to the clutter region and influence parameter esti-
mation. To avoid merging adjacent buildings into one, a
low Pr, = 0.01 is used here. After removing small regions
and implementing region filling, the internal marker
image is obtained. From Figure 6b, we can see that
building A is divided into many parts. Some other build-
ings also have the similar problem. Figure 6¢ shows the
external marker image obtained by the PR detector with
Az =1 and morphological operations. The dimensions of
the sliding window, guard region, and central region are
15 x 15 pixels, 11 x 11 pixels, and 5x 5 pixels, respect-
ively. The netlike external markers effectively partition
the image into regions. Each building, represented by
the internal markers, is located in one of those regions.
Figure 6d is the edge strength image computed by the
ROEWA operator. Strong responses exist at the locations
of building boundaries. In Figure 6e, both the internal and
external markers are superimposed on the edge strength
image. Obviously, the regions where building boundaries
may locate are properly limited by combining the internal
and external markers. Therefore, by applying the minima
imposition technique, peaks (corresponding to the build-
ing boundaries) in the limited regions are kept, while other
insignificant peaks are suppressed. Figure 6f shows the
segmentation results of the watershed transform following
the minima imposition technique. The grey regions repre-
sent the segmented regions and the white contours repre-
sent the regions boundaries. Some regions share parts of
their boundaries (e.g., building A). The reason is when two
or more parts of internal marker are surrounded by a
closed external marker, they will be connected by a com-
mon part of boundaries by the watershed transform.
Thereby, we can easily merge such regions to prevent a
single building being partitioned into several parts. Then,
according to Rules 1 and 2 in Section 5, small segmented
objects or objects with no corresponding internal markers
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are eliminated (see Figure 6g). Finally, the DCA method is
applied to the remained objects. The purpose of DCA is
not accurate direction estimation, so only the projections
on the angle set 0°, 10°, 20°,--+,170° are computed. The re-
sults of direction correlation measurements DC; and DC,
of each region are shown in Figure 7. Since most buildings
are linear, corresponding DC; and DC, are very low. Only
several DC; and DC, are quite high. With the threshold
Tpc=0.15, four false alarms are removed. The value of
Tpc is set according to the experiments on a number of
buildings from images acquired by the same airborne SAR
system. After postprocessing, the final detected building
boundaries are given in Figure 6h.

To further explain how the contextual information
helps improve the detection performance, comparison
between the new method and our previous work is
made. Both detection methods are made of several steps
and differ in concrete algorithms, such as CFAR detec-
tion and postprocessing. However, we think the essential
improvement of the new method is that the external
markers are computed based on the contextual informa-
tion. Therefore, we mainly consider the effects of differ-
ent external markers on detection results, and other
detection steps are the same. Figure 6i gives the external
marker image by computing watershed transform of the
internal marker image, which is used in our previous
method. Take building A for example, its internal markers
are consist of several parts. Consequently, the external
markers separate these parts (see Figure 6i). Building A is
also segmented into small parts (see Figure 6j) and re-
moved in postprocessing (see Figure 6k). Although we can
cluster these parts by setting a distance threshold, it is dif-
ficult to adaptively choose the threshold, especially when
buildings are densely distributed. As for the new method,
this problem is solved by introducing external markers de-
termined by contextual information. Therefore, we think
the new method is more robust and practical. Besides, the
new method also has better performance in boundary
localization. Figure 6l gives the reference building bound-
aries, which are extracted manually.
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Figure 7 Direction correlation of Figure 6g: (a) DC; of each region; (b) DC, of each region.
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Figure 8 gives the experimental results of the second
test site. Figure 8a is the initial SAR image with the size
of 206 x 144 pixels. This area is characterized by some
linear buildings with fluctuating gray-level values. Di-
mensions of sliding windows for CFAR and PR detectors
as well as other thresholds used here are the same with
those in the first experiment. Figure 8b shows the edge
strength image with the internal (white pixels) and exter-
nal markers (black pixels). Figure 8c is the segmented
objects by the watershed transform. After removing
small regions, the DCA method is applied to 15 regions.
Figure 9 shows the results of the DCA method. Regions
with either DC; or DC, lower than Tpc are eliminated.
Figure 8d shows the final results with detected building
boundaries. A false alarm exists in the final detection re-
sult, which is caused by the strong backscattering over
the road boundary. Since this false alarm has shape and
size similar to that of real buildings, it is difficult to re-
move it from the result. Figure 8e—g shows the results
obtained by our previous method. Some buildings are seg-
mented into two parts (see Figure 8f), and after post-
processing small parts are removed. Therefore, in the final
result (Figure 8g), two buildings are missed and some
boundaries do not match the whole objects. Figure 8h
gives the reference building boundaries, which are also
extracted manually.

Figure 10 gives the experimental results of the third
test site. Figure 10a is the initial SAR image with the size
of 312 x 363 pixels. There are three industrial buildings
in this area. Reflections of the flat roofs are hardly vis-
ible. Very bright lines appear along the surface discon-
tinuity formed by the building and the ground due to
the double bounce reflections along the building walls.
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The three buildings are characterized as L-shaped lines
in the SAR images. Since the background is relatively
simple and the buildings appear much brighter in con-
trast with the background, a low py, with value of 0.001
is set to reduce false alarms. Dimensions of sliding win-
dows for CFAR and PR detectors as well as other thresh-
olds used here are the same with those in the first
experiment. Figure 10b shows the edge strength map
with the internal (white pixels) and external markers
(black pixels). Figure 10c is the segmented objects by the
watershed transform. Only five regions are segmented.
The region on the top-left has no corresponding internal
marker. After removing this region, the DCA method is
applied to four regions. Figure 11 shows the results
of the DCA method. The region with high DC; and DC,
is eliminated. Figure 10d shows the final results with
detected building boundaries. Figure 10e-g shows the
results obtained by our previous method. Since the in-
ternal markers perfectly correspond to the buildings, the
external markers correctly surround every internal markers.
The final detection result is also satisfactory. Figure 10h
gives the reference building boundaries, which are also
extracted manually.

The experiments carried out on test sites I, II, and III
have discussed the performance of the proposed method
over three representative cases of building detection
from urban SAR images in detail. The results validate
the effectiveness of the proposed method and its supe-
riority over our previous article. Furthermore, we apply
our method to another SAR image with more complex
scene. Figure 12a is the initial SAR image with the size
of 312 x 363 pixels and Figure 12b shows the manually
extracted reference building boundaries. In this test site,

Figure 8 Detection results on test site II: (a) initial SAR image; (b) edge strength map with markers superimposing on it; (c) results of the
watershed algorithm; (d) building boundaries obtained by the proposed method; (e) edge strength map with markers superimposing on it
where external markers are extracted according to our previous method; (f) watershed segmentation result based on (e); (g) building boundaries
obtained on (f) after postprocessing; (h) initial SAR image with reference building boundaries.
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there are buildings with different size, shape, and orienta-
tion. Sixty-one regular buildings (marked by Al, A2,...,
A61) and other three buildings (marked by B1, B2, and
B3) are considered here. Figure 12c is the edge strength
image with markers superimposing on it. Parameters for
CFAR and PR detectors used here are the same with those
in the first experiment. Figure 12d is the segmented ob-
jects by the watershed transform. After postprocessing,

some false alarms are removed. Figure 12e gives the final
detection result and Figure 12f shows the extracted build-
ing boundaries. Most buildings are correctly detected, al-
though some buildings are merged into one because they
are too close to each other, e.g., Al and A14. The build-
ings at the bottom right of the image (like A55—A61) show
fluctuating gray-level values. A59 is missed since no in-
ternal markers represent it. B2 is missed because of small

s
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(e)
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P

e
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Figure 10 Detection results on test site lll: (a) initial SAR image; (b) edge strength map with markers superimposing on it; (c) results of the
watershed algorithm; (d) building boundaries obtained by the proposed method; (e) edge strength map with markers superimposing on it
where external markers are extracted according to our previous method; (f) watershed segmentation result based on (e); (g) building boundaries
obtained on (f) after postprocessing; (h) initial SAR image with reference building boundaries.
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size. Two false alarms exist near the road/shadow bound-
ary in the final detection result. As we can see that our
method is not sensitive to the orientation. As for the size
and shape of buildings, they do not have prominent influ-
ence on segmentation, as shown in Figure 12d. However,
we want to point out that, in the postprocessing stage of

this experiment, it is a little more difficult to determine
the threshold for DC; and DC, because of the differences
in building shape. Especially, the values of DC; and DC,
of buildings with less rigorous linear or L-shape (like B1
and B3) are a little higher. A suitable threshold should be
chosen to keep these buildings but remove false alarms.

Figure 12 Detection results on test site IV: (a) initial SAR image; (b) initial SAR image with reference building boundaries; (c) edge strength map
with markers superimposing on it; (d) results of the watershed algorithm; (e) result after postprocessing; (f) boundaries of detected buildings.




Zhao et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:56

http://asp.eurasipjournals.com/content/2013/1/56

Table 1 Performance of the proposed method

Test Object space metrics Boundary
sites 7P EP EN DR EAR precision (pixel)
I 12 0 0 100% 0% 05
Il 8 1 0 100% 11.1% 0.7
Il 3 0 0 100% 0% 0.6
% 61 1 3 95.3% 0.2% 0.7
Overall 84 2 3 96.6% 2.3% -

Therefore, we think that more rules should be considered
when facing the problem of detecting buildings with com-
plex shapes.

6.3 Quantitative performance evaluation of the proposed
method
To quantitatively evaluate the performance of the pro-
posed method, metrics for object space and for boundary
precision are, respectively, considered. All comparisons
are made between the detected buildings and the manu-
ally extracted reference buildings.

The metrics for object space are defined as follows [41]:

= TP (True Positive): a detected object that is also in
the reference.

= FP (False Positive): a detected object that is not in the
reference; also termed a false alarm.

= FN (False Negative): an object in the reference that is
not detected.

To evaluate performance, the numbers of TB FP and
EN objects are counted, and then the following metrics
are computed:

) TP
s Detection rate : DR = ———— (10)
TP + FN
FpP
= False Al te: FAR = —— 11
alse Alarm rate TP + EP (11)

To evaluate the precision of the detected building
boundaries, the following steps are performed. A similar
method can be found in [42].

= A binary image is obtained according to the reference
building boundaries. Boundary pixels are assigned value

Table 2 Running time of the proposed method
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of 1 and non-boundary pixels are assigned value of 0. A
distance image fj;. is then extracted from the binary
image.

= The location of the detected boundary pixels are
recorded as {(xZ,yZ)}, i=1,...,N, N, N, is the number
of all the boundary pixels.

= The parameter Do, which measures the distance
between the detected boundary and the reference
boundary, is computed as

Zﬂiist (x;ﬁ y;z)
i=1
TN .

D, offset —

Table 1 gives the performance statistics for all the test
sites. DRs are 100% for test sites I, II, and III, 95.3%
for test site IV, respectively. FARs are O for test sites I
and III, 11.1% for test site II, 0.2% for test site IV, re-
spectively. An overall DR of 96.6% and FAR of 2.3% shows
that the proposed method has a good performance in
detecting buildings and removing false alarms. As for the
results of boundary precision, 0.5 pixel is with test I and
0.6 pixel with test III. Relatively higher results of 0.7 pixel
are computed over test sites II and IV, due to fluctuating
gray-level values and complex scene, respectively. The re-
sults indicate that the extracted building boundaries
very close to the reference boundaries. In other words,
our method also performs well in precise boundary lo-
calization, which is meaningful for building dimension ex-
traction or reconstruction.

Table 2 shows the running time of the proposed
method over different test sites. All the experiments are
accomplished by Matlab codes (Matlab 7.5.0) with a
hardware environment of Pentium (R) D CPU 2.80 GHz
and 1 GB of RAM. According to Table 2, marker extrac-
tion and postprocessing are two time-consuming phases.
Marker extraction adopts a local computation manner
with a sliding window. Since the sizes of test images in
our experiment are small and the window size (depend-
ing on the building size) is not large, the computational
time of marker extraction is acceptable. However, if large
image is processed or large window is used, fast algo-
rithms should be designed for CFAR and PR detectors.
Similar solutions can be found in [43]. The computational
load of postprocessing increases as the number of targets

Test sites Image size Extracting Computing edge Minima imposition & Postprocessing (s) Total time (s)
(pixels) markers(s) strength image (s) watershed transform (s)
I 220% 187 436 0.02 0.06 10.86 15.30
Il 206 x 144 214 0.02 0.05 436 6.57
Il 312 %363 595 0.05 0.16 9.98 16.14
I\ 377 x 372 7.37 0.06 0.29 12.78 205
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increases (see results of test sites I and IV) or the sizes of
targets gets large (see results of test site III).

7. Conclusion

Since the existing methods of building detection from
SAR images are mostly not robust for images with com-
plex scene or different appearances of buildings, a method
of detecting buildings from a single high-resolution SAR
images is proposed in this article, aiming at detecting
buildings with their whole and accurate boundaries from
the built-up area. By introducing a general framework
based on the marker-controlled watershed transform, our
method can make use of not only the characteristics of
the building, which are strong scattering and high gray-
level values, but also the characteristics of the contextual
information, which are the black netlike structures formed
by roads and shadows. As shown in the experimental re-
sults, the combination of the characteristics of buildings
and background can overcome the problems of linking
neighboring buildings in complex scene or dividing a
building into several parts when its gray-level values fluc-
tuate greatly. Besides, the new method can get the closed
boundaries of the buildings. Since the ROEWA edge de-
tector, an edge detector for SAR images with good
localization performance, is used, the detected building
boundaries are also accurately localized. Furthermore,
according to the typical shapes of the building in SAR im-
ages, a shape analysis method called direction-correlation
analysis is used to remove the false alarms. The quantita-
tive performance evaluation validates that the proposed
method is effective with high detection rate, low false-
alarm rate, and good localization performance. The detec-
tion results can be useful for the process of extracting the
buildings’ geometrical information.

In the future, we expect to continue refining and validat-
ing our research on a wider set of SAR imagery. Although
using markers introduces knowledge about the buildings
and their surroundings, how to automatically set the
thresholds for marker extraction is still a problem. The re-
lation between these thresholds and the knowledge of im-
ages (e.g., resolution) as well as the knowledge of the
objects in the real world (e.g., the distribution rules of the
objects) can be considered to improve threshold setting.
For example, if the knowledge of interested buildings such
as sizes and spacing is available, building sizes in the real
world can be transformed to pixels in the image space,
since resolutions of SAR images are usually provided.
Thus, some parameters such as window sizes of detectors,
area threshold to remove false alarms can adaptively be
set. Moreover, this article provides a general framework
for building detection. So far, we mainly apply it in
detecting buildings with simple shapes. More complicated
scenes may require more complex rules. How to extend
the framework to detecting buildings with more complex
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shapes and how to solve building detection problem in en-
vironment with much disturbance, e.g., tree clutters, also
need further research.
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