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Abstract

The important techniques in processing hyperspectral data acquired by interference imaging spectrometer onboard
Small Satellite Constellation for Environment and Disaster mitigation (HJ-1A) are studied in this article. First, a new
noise estimation method, named residual-scaled local standard deviations, is used to analyze the noise condition of
HJ-1A hyperspectral images. Then, an optimized maximum noise fraction (OMNF) transform is proposed for
dimensionality reduction of HJ-1A images, which adopts an accurately estimated noise covariance matrix for noise
whitening. The proposed OMNF method is less sensitive to noise distribution and interference existence, thus it can
more efficiently compact useful data information in a low-dimensional space. The proposed OMNF is evaluated
through two applications, i.e., spectral unmixing and classification, using the HJ-1A image acquired at the Bohai Sea
area in China. It demonstrates that the proposed OMNF provides better performance in comparison with other
traditional dimensionality reduction methods.

Keywords: Hyperspectral image, Dimensionality reduction, Maximum noise fraction transform, Noise estimation,
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1. Introduction
Hyperspectral images contain abundant spatial, spectral,
and radiometric information of earth surfaces, which
makes earth observation and information acquisition
much more effective and efficient for some applications
[1,2]. Hyperspectral remote sensing images can be ac-
quired through airborne or spaceborne sensors. There
are two remote sensing satellites carrying hyperspectral
imagers in China: the moon exploration satellite CE-1
launched during 2007 and the small satellite constella-
tion for environment and disaster mitigation (HJ-1A)
launched during 2008. The hyperspectral imager carried
on HJ-1A satellite (HJ1A-HSI) is the first spaceborne
hyperspectral imager in China, which is also one of few
international spaceborne imaging spectrometers [3]. In-
stead of adopting the traditional dispersion element to
acquire spectrometry, this spectrometer employs an ad-
vanced interference spectrometry technique. HJ1A-HSI
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first acquires an interference curve for each pixel, and
then uses the Fourier transform to convert interference
curves to spectral curves. The interference spectrometer
is modulated across space using the Sagnac interference
approach. Its successful operation and application open
a new era of Chinese earth observation technology.
Although HJ-1A has been operated for several years, new
developments for HJ-1A data processing are important for
further research and application due to the new interfer-
ence spectrometry technique used in the sensor.
In general, a hyperspectral image contains hundreds of

bands with high spectral resolution, which brings about
difficulty in data processing due to data redundancy and
complexity. Furthermore, the special characteristic of
HJ-1A data (i.e., the distribution of noise and interfer-
ence present in spectral and spatial domain) makes its
application more difficult. Therefore, efficient dimen-
sionality reduction remains as one of the key issues for
HJ-1A data processing. Principal component analysis
(PCA), which is widely used for dimensionality reduc-
tion in hyperspectral image processing [4,5], transforms
raw hyperspectral data into a new feature space with
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mutually orthogonal coordinates. It preserves most informa-
tion of original data in a low-dimensional space. However,
the performance of PCA strongly depends on noise charac-
teristics. When noise variance is larger than signal variance
in one band or when the noise is not uniformly distributed
between each band, PCA cannot guarantee that image qual-
ity decreases for principal components with lower ranking
[6]. This drawback limits its application for hyperspectral
images, which generally have very different types of noise.
For example, in hyperspectral unmixing, noisy pixels might
be extracted as endmembers which normally correspond to
known and macroscopically pure materials.
Recently, some new approaches have been proposed to

deal with noise. One of the most popular ones is the max-
imum noise fraction (MNF) transform [6,7]. Similar to
PCA, MNF also transforms the original data to a feature
space; however, features are arranged in terms of image
quality, which is measured with signal-to-noise ratio
(SNR). In MNF, noise covariance matrix (NCM) needs to
be estimated [8-10], which is a key step. In the original
MNF, only spatial information is used for NCM estima-
tion, which may not effectively handle special noise with
regular pattern, such as interference in HJ-1A data.
There are many methods developed for noise estimation

in image analysis [2]. Some traditional approaches use
homogeneous area (HA) selection and spatial character
analysis, such as HA method [11], Geo-statistical method
[11], and local mean and local standard deviation method
[12]. However, these methods are easily affected by land
cover types in the image. To solve this problem, Roger and
Arnold [13] proposed Spectral and Spatial De-Correlation
(SSDC) method. Compared with traditional methods,
SSDC is more stable, and is widely used. However, SSDC
also has some limitations. For example, the noise estimation
may be inaccurate when hyperspectral image mainly con-
tains one earth object with absorption feature in some
bands, or when the image has a specific complex texture
[14]. Residual-scaled Local Standard Deviations method
(RLSD) [15] estimates signals according to high spectral
correlation and eliminates the influence of complex texture
and absorption feature by statistical analysis of sub-blocks.
Thus, it is more stable than the SSDC and Homogeneous
Regions Division and Spectral De-Correlation method [14],
especially for hyperspectral images mainly covered by
water. In this article, based on the characteristics of HJ-1A
data, we use RLSD for SNR estimation and noise distribu-
tion analysis. Then, we propose an optimized MNF
(OMNF) transform for dimensionality reduction, which
contains two steps: the NCM is calculated via the SSDC,
followed by the OMNF transform. Moreover, we propose
an assessment framework to evaluate the performance of
OMNF via spectral unmixing and classification.
The remainder of this article is organized as follows.

Section 2 introduces OMNF method. Section 3 describes
experimental image database, performance assessment
framework, and comparative analysis methods. In Section
4, noise characteristics of HJ-1A image are analyzed, and
evaluation of OMNF using spectral unmixing and classifi-
cation is presented. Section 5 draws conclusions.

2. OMNF transform
Let X be a hyperspectral image data, S and N are signal
component and noise component contained in image
data, respectively. Assume S and N are uncorrelated,
then X follows a linear model:

X ¼ SþN ð1Þ

Then, data covariance matrix can be represented asX
¼

X
S
þ
X

N
ð2Þ

where
P

S and
P

N are the covariance matrix of S and
N, respectively. The MNF transform is expressed as

Y ¼ AX ð3Þ

where Y is the MNF result of X, A is the MNF transform
matrix. SNR of each component in Y can be analyzed as

Var aTi X
� �

Var aTi N
� � ¼ aTi

P
ai

aTi
P

Nai
ð4Þ

where Var{} computes the variance, ai is the ith compo-
nent in A. Then we can obtain

X�1

N

X
A ¼ ΛA ð5Þ

where Λ and A are the eigenvalue matrix and eigenvector

matrix of
P�1

N

P
, respectively. MNF is also called noise-

adjusted principal components analysis which contains
two steps [16,17]. The first step is noise whitening of the
hyperspectral image, then PCA is applied to noise whit-
ened data. The main difference between conventional
PCA and MNF is that MNF has a prior step of noise whit-
ening, which needs to estimate the NCM. The original
MNF method mainly adopts the spatial feature of image
to estimate

P
N, such as minimum/maximum autocorrel-

ation factor (MAF), causal simultaneous autoregressive,
and quadratic surface [18]. However, as shown in some
studies [8-10], space-based noise estimation method is
data-selective and unstable. This is because when hyper-
spectral image has low spatial resolution, the difference
between pixels may mainly contain signal. Sometimes,
noise with regular pattern, e.g., interference in spatial do-
main, may be considered as signal when only spatial fea-
tures are used in noise estimation for MNF.



Table 1 Parameters of the HJ-1A IFIS, HYPERION, and CHRIS

Sensor IFIS/HJ-1A HYPERION CHRIS

Platform attitude (km) 649 705 695

Spectral range (nm)s 450–950 356–2577 400–1019

Average spectral resolution (nm) 5 10 6/33

Time period (days) 4 16 7

Spatial resolution (m) 100 30 17/34

Swath (km) 60 13 7.75

Band number 115 242 18/62
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In hyperspectral images, correlation between bands gen-
erally is very large. Therefore, high correlations between
bands can also be used for noise estimation, such as
SSDC, which is a very useful method for hyperspectral
noise estimation [13]. SSDC makes use of the high correl-
ation of hyperspectral data in spatial and spectral domain
together, where the radiation value of adjacent bands and
pixels is used to estimate the radiation signal value of
current pixel through multiple linear regression. Then the
estimated radiation signal value is deducted from the ac-
tual radiation value of the current pixel, and the remaining
value is considered as noise. However, since hyperspectral
images do not completely meet the hypothesis adopted in
SSDC, we cannot estimate the noise images following
model (1). For example, there still is some correlation be-
tween noise images. Therefore, implementation of SSDC
in Greco et al.’s study [9] is not feasible to estimate NCM
for hyperspectral data.

2.1. NCM estimation
The most difference between MNF and OMNF is that
OMNF adopts more accurate noise covariance estima-
tion. In the proposed OMNF, noise image computed by
SSDC can be used to estimate NCM. In order to control
the influence of spatial feature, the image is divided into
non-overlapping small sub-blocks, where noise image
Figure 1 HJ-1A hyperspectral data at Bohai Sea area used in this artic
estimated by residual of each sub-block can be used to
calculate NCM. SSDC adopted in this article uses mul-
tiple linear regression to estimate noise image:

xi;j;k ¼ aþ bxi;j;k�1 þ cxi;j;kþ1 þ dxp;k ð6Þ

where xi,j,k is the pixel value of band k at (i, j) in a cer-
tain sub-block, xi,j,k-1 and xi,j,k+1 are pixel values in band
k – 1 and k + 1, xp,k is the pixel value spatially near xi,j,k
in band k, a, b, c, and d are parameters which need to
be estimated through multiple linear regression. In (6),
xp,k is defined as

xp;k ¼ xi�1;j;k ; i > 1; j ¼ 1
xi;j�1;k ; j > 1

�
ð7Þ
le.



Figure 2 Schematical description of the approach to assess
performance of OMNF.
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where the pixel located at (1,1) of the sub-block is not
considered. SSDC estimates possible signal value x̂i;j;k at
band k from the obtained parameters. Then, noise of each
pixel can be obtained through ri;j;k ¼ xi;j;k � x̂i;j;k . Finally,
the NCM for OMNF can be calculated as follows:

σ2k ¼
XH
i¼1

XW
j¼1

ri;j;k � �ri;j;k
� �2

;Ckl

¼
XH
i¼1

XW
j¼1

ri;j;k � �ri;j;k
� �

ri;j;l � �ri;j;l
� �

; 1≤k; l≤N

ð8Þ

where (i,j) ≠ (1,1), W, H are the width and height of image,
respectively, and N is the total number of bands.
2.2. OMNF transformation
After noise variance is estimated through (8), noise
correlation is removed through noise whitening with
Figure 3 HJ-1A hyperspectral data at Bohai Sea area. The central wave
to right.
(5). Finally, dimensionality reduction can be performed
through (3).

3. Experiments design and assessment methods
3.1. HJ-1A hyperspectral data
The InterFerometric Imaging Spectrometer (IFIS) installed
on HJ-1A is the first hyperspectral earth observation sensor
in China [3]. Its spectrum ranges from 0.45 to 0.95 μm with
115 spectral bands. The average spectral resolution is about
5 nm. The nominal ground sample distance is 100 m with
an image swath of about 60 km. IFIS is a typical Sagnac im-
aging Fourier transform spectrometer featured by a compact
structure, small volume, and light weight. Table 1 lists the pa-
rameters of the IFIS on HJ-1A comparing to those of HY-
PERION on Earth Observing 1 (EO-1) and Compact High
Resolution Imaging Spectrometer (CHRIS) on PRoject for
On-Board Autonomy (PROBA). This hyperspectral imaging
sensor has excellent specifications for practical applications.
However, the data quality is degraded by severe noise. The
new interferometric spectrometer technique is used in this
sensor, which makes that the noise characteristics of IFIS are
very different from noise contained in normal dispersion
spectrometry used in HYPERION and CHRIS. For instance,
regular striping noise is still present after calibration, and can-
not effectively be removed by Fourier transform and notch fil-
ter method. Therefore, effective noise removal is crucial.
In this article, HJ-1A images at Bohai Sea area are chosen

for experiments (Figure 1). The HJ-1A hyperspectral
images used here contain 115 bands, and 400 × 400 pixels.

3.2. Noise characteristics analysis
Image noise may be periodic noise or random noise.
Periodic noise can effectively be eliminated through fre-
quency domain filtering, such as notch or bandpass
filtering. However, it is more complex to effectively re-
move random noise, which is generally assumed to be
additive Gaussian white noise [19,20]. In this article, we
propose to use RLSD [15] for noise estimation. In sum-
mary, RLSD procedure is described as follows:

Step 1: We divide the image into many small rectangular
sub-blocks, and then calculate parameters a, b, and
length, respectively, is 460, 480, 559, 719, 838, and 957 nm from left



Figure 4 SNR estimation results of HJ-1A hyperspectral data at Bohai Sea area.
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Figure 5 Results of dimensionality reduction through PCA (a), MAF (b), traditional MNF (c), and OMNF (d). In each row, the image from
first to sixth components in transformed data is represented from left to right.



Figure 6 Abundance estimation results of extracted endmembers by N-FINDR. Abundance retrieval is processed based on dimensionality
reduced HJ-1A hyperspectral data through PCA (a), MAF (b), traditional MNF (c), and OMNF (d). In each row, vegetation, salt area, muddy water,
water body, and error are represented from left to right.
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c of signal component in each sub-block through
multiple linear regression:

xk ¼ aþ bxk�1 þ cxkþ1 ð9Þ

Here, xk is a vector with N × 1 values, where N =w ×

h with w and h being width and height of a certain
sub-block at band k, respectively. Then, the estimated
signal value x̂k is calculated through the obtained
parameters and pixel value at adjacent bands. Finally,
the residuals are obtained by: r ¼ xk � x̂k . Since the
predictable signal information between bands is
removed, the remained ‘unexplained’ residuals can
approximate noise.
Step 2: The Local Standard Deviation (LSD) is
calculated at each sub-block as follows:

LSD ¼ M � 3ð Þ�1S2
� �1=2 ð10Þ

where M is the number of pixels of this sub-block
and S2 is the variance of residuals of the sub-block.
As there are three parameters used in multiple
linear regression shown in (9), the unbiased
estimation requires the term of M – 3.

Step 3: After LSDs of all sub-blocks are calculated, we
extract maximum and minimum values of the
obtained LSDs. Then, several bins with equal



Figure 7 Training and testing samples used in
classification experiments.

Figure 8 Classification results through MD method for HJ-1A hypersp
dimensionality-reduced data using traditional MNF, and (c) applied on dim
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interval are set between these two values. The
numbers of sub-blocks in each bin can be counted
according to its LSD value. Finally, the mean LSD
value of the bin with the most number of blocks is
calculated, which can be considered as the noise of
the whole image.

3.3. Assessment framework and methods
We consider several dimensionality reduction methods,
i.e., PCA, MAF, MNF, and OMNF, for evaluation. Since
the spatial resolution of HJ-1A hyperspectral data is 100
m, mixed pixels generally exist in the image. Therefore,
we consider spectral unmixing for evaluation from full-
pixel scale to sub-pixel scale. Similarly, image classifica-
tion is also considered for evaluation as it has important
applications. Figure 2 shows the flowchart of the pro-
posed scheme.

3.3.1. Spectral unmixing method
Spectral unmixing mainly obtains endmember extraction
and abundance estimation [21,22]. Endmember extraction
ectral data. (a) Applied on raw data, and (b) applied on
ensionality-reduced data using OMNF.



Figure 9 Classification result through MNF and HOE for HJ-1A hyperspectral data. (a) The result of image segmentation, and (b) the result
of image classification.
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extracts pure pixels. Abundance estimation estimates the
proportion of each endmember in a mixed pixel. In spectral
unmixing, abundance estimation generally adopts a least
squares method (constrained or unconstrained). Many end-
member extraction methods are developed, such as, Pixel
Purity Index (PPI), N-FINDR, Vertex Component Analysis
(VCA), Iterative Error Analysis (IEA), and so on [22].
In the aforementioned methods, N-FINDR is one of the

most widely used algorithms [23]. Its aim is to find a set of
pixels that can construct a simplex with the maximum
volume. These pixels can be considered as endmembers.
Due to the requirement of a square matrix used in volume
calculation in N-FINDR, the original image must be
transformed to a (p – 1)-dimensional subspace by a di-
mensionality reduction method.

3.3.2. Image classification method
Hyperspectral classification can be supervised or unsuper-
vised, parametric or non-parametric, and hard or soft
(fuzzy). Traditional pixel-based classification methods, such
as Maximum Likelihood Classifier (MLC), Spectral Angle
Figure 10 Classification result through OMNF and HOE for HJ-1A hyp
result of image classification.
Mapper (SAM), Minimum Distance Classifier (MDC),
analyze data without incorporating spatial information.
However, spatial information can play an important role in
hyperspectral image classification [24]. Classification ac-
curacy can greatly be improved when spatial and spectral
features are effectively combined [25]. In this study, we
propose to use a Homogenous Objects Extraction (HOE)-
based method to combine spectral and spatial information
for classification. Meanwhile, the HOE method can effi-
ciently deal with the special noise present in HJ-1A data.
In homogenous object-oriented image classification,

such as HOE, the key issue is to extract the objects with
high homogeneity. Non-uniform radiation response in-
creases spectral variation, which is common with the
high degree of spectral heterogeneity in complex land-
scape. Thus, in the HOE-based classification approach
used in this study, all pixels inside a homogeneous ob-
ject can be considered belonging to the same class. Fur-
thermore, since homogeneous regions are extracted
through spectral similarity between pixel and neighbor-
hoods, integration of spectral feature and a series of
erspectral data. (a) The result of image segmentation, and (b) the



Figure 11 Producer’s accuracy comparison of pixel-based classification and HOE-based classification, where classified earth objects are
water (W), sea beach (SB), vegetation (V), salt area (SA), and dike (D).
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spatial features (such as shape, size, texture, and context
relationship) can be applied in classification. This ap-
proach mainly includes three steps: image segmentation,
feature extraction, and classification.

Image segmentation
In this article, fuzzy K-means clustering is used for image
segmentation. Fuzzy K-means is a soft clustering
algorithm which determines the subordination degree of
each pixel in each type according to that of its vector
value between [0, 1]. This algorithm is an iterative
process, where each type of centroids (ci) and pixel
subordination matrix (uij) are adjusted using (11) until

the convergence of objection function J ¼
Xk
i¼1

Xn
j¼1

umij d
2
ij.

ci ¼

Xn
j¼1

umij xj

Xn
j¼1

umij

; where uij

¼
Xc

k¼1

dij
dkj

	 
2= m�1ð Þ" #�1

; ð11Þ

where m∈[1, ∞] is a weighted index, dij is dissimilarity
measurement, such as Euclidean distance.
Feature extraction
After image segmentation, the features of
homogeneous objects can be extracted, which may
include the spatial position, spectra of the homogenous
object, and its class label. Since all the pixels in the
same segment belong to the same class, the class label
of the segment can be obtained by tracking the margin
through a contour-based object tracking method.
Moreover, the mean spectrum of all pixels in each
homogeneous object is used as the spectral feature for
this object.
Classification
In general, traditional pixel-based method performs
classification by comparing the spectral similarity of
each pixel with prior knowledge of the training
samples. In the HOE-based method, pixel-wise training
samples need to be transformed to objects according to
the relationship between a given pixel and its
corresponding homogenous object. Such classification
model parameters can be estimated by training the
objects at different homogeneous regions. As shown in
(12), the Mahalanobis Distance (MD) is considered:

D xi; zlð Þ ¼ xi � zlð ÞT
X�1

l
xi � zlð Þ; ð12Þ

where zl and
P

l are the mean vector and covariance
matrix of training samples, respectively.
4. Experiments and results analysis
4.1. Noise characteristics analysis of HJ-1A hyperspectral data
The diagnostic spectral features of earth materials are re-
quired for image classification and information extraction
of hyperspectral images. However, hyperspectral sensor
acquires data with very small spectral interval. Thus, there
is insufficient optical energy for each band. It is much
more difficult to improve SNR of hyperspectral data than
panchromatic or multispectral images. Absorption feature
of the spectrum can be detected only when spectral ab-
sorption depth is one magnitude greater than the noise
level [26]. During data acquisition, the spectral feature of
earth object, however, is easily distorted by noise.
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In this study, the size of each sub-block is 8 × 8 pixels.
In order to handle the interval bin division (see step 3 in
the RLSD procedure), we estimate the noise based on
the parameters estimated by the technique proposed in
[12], where the bins are set in the range between the
minimum LSD and 1.2 times of LSD mean value, and
150 bins are recommended.
Figure 3 illustrates some bands of the considered HJ-

1A data at Bohai Sea area. It is noticeable that image
quality of these bands is significantly different. This is
reasonable, since, according to the interference device
used in HJ-1A sensor, spectral information is acquired in
a way different from the dispersive spectrometer. It re-
ceives interference data modulated and interfered by tar-
get spectral information. The ordinary data with spectral
radiation information can be obtained through spectral
restoration. For the errors produced by interference de-
vice and spectral restoration, HJ-1A hyperspectral data
are disturbed with periodical strip at spatial domain,
which is difficult to be eliminated by traditional radiance
calibration methods [3]. Therefore, in order to guarantee
the precision and accuracy of image classification and
spectral unmixing, this special noise requires specific
method to remove.
Figure 4 shows the SNR estimates from RLSD. It can

be observed that noise distribution is non-uniform. Fur-
thermore, it is well known that noise condition is more
realistic when the image mainly covers water area [27].
Therefore, dimensionality reduction with effective noise-
elimination is important for real applications.

4.2. Dimensionality reduction results
Figure 5 shows the six components of the considered di-
mensionality reduction methods. It can be seen that the
first two components obtained from PCA (see Figure 5a)
have most information of the data. However, it is pos-
sible that these principle components contain noise
which is non-uniformly distributed in the spectral do-
main. Therefore, PCA is not well suitable for dimension-
ality reduction of HJ-1A data. Furthermore, as shown in
Figure 5b, the first three components of MAF have most
spatial correlations of the image, which means those com-
ponents have most volume of the signal. The fourth and
fifth components are almost noise. However, the sixth
component contains information. This brings difficulty for
determining the number of components. Therefore, MAF
is also not suitable for dimensionality reduction of HJ-1A
hyperspectral images. Moreover, Figure 5c shows the com-
ponents obtained from MNF. It can be seen that the first
two components also have the highest image quality.
However, the fifth component contains more information
than the third and fourth components, which are inter-
fered by periodic strips. Thus, although traditional MNF
takes noise into account and can solve the influence of
non-uniform noise distribution in spectral domain, it is
easily affected by the hybrid distributions of earth objects
and periodic interference; thus, its components may not
be arranged in descending order of image quality. Finally,
Figure 5d shows the components obtained by the pro-
posed OMNF method. It can be observed that OMNF
reduces data dimensionality more effectively where all
components are arranged in descending order of image
quality.

4.3. Comparative performance analysis
In this section, the first three components of PCA, MAF,
and OMNF are used for spectral unmixing and image
classification, and the first, second, and fifth components
of traditional MNF are used for spectral unmixing and
image classification.

4.3.1. Spectral unmixing
Endmember extraction and abundance estimation by N-
FINDR and unconstrained least squares methods are ap-
plied to the dimensionality-reduced data obtained from
PCA, MAF, MNF, and OMNF. Based on the obtained
components, only four endmembers are extracted, and
Figure 6 shows the obtained abundance and error maps.
Several conclusions can be obtained from Figure 6. First
of all, the results obtained from the PCA components
are only the salt area is appropriate and all the other
endmembers are greatly affected by noise. Furthermore,
it can be seen that the results obtained from MAF, MNF,
and OMNF components are better than those of PCA,
where OMNF obtains the best results. This is because
all these methods take noise into account. Moreover, it
can be observed that the abundance estimations of vege-
tation, salt area, muddy water, and water body are more
reasonable in geographical distribution than results from
other dimensionality reduction methods. This is because
OMNF eliminates noise during the dimensionality reduc-
tion procedure. For example, distribution of vegetation in
abundance map of OMNF is better than others. Another
example is distribution of salt area is repeated in the abun-
dance maps of salt area and water body in both MAF and
MNF results.

4.3.2. Image classification
Figure 7 shows the reference data on the false color
composite. In the dataset, 20% of samples are used for
training, and the rest for testing. Training and testing
samples were randomly selected from the reference data.
Figure 8 shows the classification results obtained from the

raw data, the dimensionality-reduced data from the MNF
and OMNF, respectively. It can be seen that the pixel-based
classification using OMNF features obtained the best re-
sult, especially for the water and sea beach classes.
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Figures 9 and 10 illustrate the classification results
obtained from the MNF and OMNF features by the
HOE method, respectively. Figures 9a and 10a present
the segmentation of the hyperspectral image. Two steps
are involved in this process. The first step is the fuzzy
K-means clustering, followed by edge tracking to obtain
the boundaries of the ground objects in the second step.
As can be seen from Figures 9b and 10b, the classifica-
tion results are better than those in Figure 8. Overall,
classification result using OMNF and HOE is the best.
The producer’s accuracy is used for further assessment

[28]. Figure 11 shows the classification accuracies, where
five methods are considered: pixel-based classification
on the raw data, pixel-based classification on reduced
data from MNF, pixel-based classification on reduced data
from OMNF, HOE-based classification on reduced data
from MNF, and HOE-based classification on reduced
data from OMNF. It can be observed that HOE-based
classification is better than the pixel-based method for
water body in most parts of the study area (including
water in sea water and salt area in saltern) and for sea
beach, vegetation, and salt area in saltern. The obtained
Kappa coefficients are 0.4076, 0.6229, 0.6740, 0.7011, and
0.8704 for pixel-based classification on the raw data, pixel-
based classification of the MNF-reduced data, pixel-
based classification of the OMNF-reduced data, HOE-
based classification of the MNF-reduced data, and
HOE-based classification of the OMNF-reduced data, re-
spectively. It can be seen that the proposed HOE with
OMNF method leads to excellent classification perform-
ance, which produced the highest accuracy for the consid-
ered HJ-1A hyperspectral image.
5. Conclusion and discussion
Hyperspectral imager carried on HJ-1A satellite indicates
a new development stage of hyperspectral remote sensing
technology in China. However, due to the new interfer-
ence spectrometry technique implemented in this sensor,
noise characteristics of HJ-1A images are more complex
than images acquired by other hyperspectral sensors, such
as HYPERION and CHRIS. This article presents an OMNF
method for dimensionality reduction for HJ-1A images,
which estimates the NCM using SSDC method. The pro-
posed approach is evaluated by a real HJ-1A hyperspectral
data at Bohai Sea. Both unmixing and classification results
indicate that the proposed method can offer excellent per-
formance for HJ-1A data applications.
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