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Abstract

The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency.
Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features,
variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a
different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of
Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high
computational complexity. Several techniques have been proposed in the literature over the last few years which are
aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or
hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is
taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics
processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the
complete H.264/AVC encoder.

1 Introduction
Nowadays, graphics card production is booming due to
the increase in demand from the video-game and game
console business. The chips on these cards are nor-
mally called Graphics Processing Units (GPUs) and have
emerged as co-processing units to assist Central Pro-
cessing Units (CPUs). CPUs and GPUs have different
instruction set architectures, forming what it is known as a
heterogeneous computing platform. Although GPUs were
initially designed for graphic applications, now they can
be used to accelerate various numerical and signal pro-
cessing applications [1,2], among others. GPUs consist of
hundreds of highly decoupled processing cores that are
able to achieve immense parallel computing performance.
With high memory bus widths, high speed memory chips,
and high processor clock speeds, graphics cards deliver
specifications never seen before. GPUs are made up of
individual stream processors, each running at 1.X GHz.
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The stream processors can be grouped together to per-
form Single Instruction Multiple Data (SIMD) operations
that are suitable for arithmetic intensive applications. In
the particular case of NVIDIA, a powerful GPU archi-
tecture called the Compute Unified Device Architecture
(CUDA) [3] has been developed. Themain feature of these
devices is a large number of processing elements inte-
grated into a single chip at the expense of a significant
reduction in cache memory. Each core executes the same
instruction at the same clock cycle but on different data.
GPUs also have an external DRAMmemory which can be
classified depending on its access mode.
Video coding is today the main technology behind a

wide range of applications such as video conferencing,
video streaming, and High Definition TeleVision (HDTV),
among others [4,5]. By efficiently exploiting temporal and
spatial redundancy in video content, the latest video cod-
ing standards, such as H.264/MPEG-4 Advanced Video
Coding (AVC) [6] and High Efficiency Video Coding
(HEVC) [7], offer high quality and efficient video com-
pression for a wide range of bit-rates and resolutions [8].
It is true that in the future the new standard called HEVC
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[7] will replace its predecessor, namely H.264/AVC; but
at present most architectures and video coding solutions
are implemented using H.264/AVC.Moreover, some years
ago, H.264/AVC established an extension for 2D (sin-
gle view) to 3D (n-views) called H.264/MVC in order
to support the sensation of 3D. Both the H.264/AVC
standard and its extension, MVC, adopt many improved
coding tools such as multiple reference frames, weighted
prediction, a de-blocking filter, variable block-size and
quarter-pixel precision for Motion Compensation (MC).
Until now, the highest complexity procedure has also

been referred to in the literature as inter prediction, and
is based on a variable block-size Motion Estimation (ME)
with block sizes ranging from 16 x 16 to 4 x 4, with many
options available between these. All these improved tools
allow an optimum performance to be achieved, but at the
expense of an increase in the computational complexity
of the encoder. Moreover, this complexity increases as the
number of views increases.
At this point, the approach presented here performs

inter prediction with both full-pixel and sub-pixel accu-
racy for P (forward prediction) and B (bi-directional
prediction) frames on the GPU. In fact, the algorithm
called hierarchical B prediction [9] is implemented on
the GPU for High Definition video sequences. As far as
the authors know, this is the only work in the literature
which deals with B frame inter prediction on a hetero-
geneous computing platform for both cases: single-view
andmulti-views. Furthermore, the complexity can be even
higher when using hierarchical predictions because the
distance between reference frames can be greater inside
the Group of Pictures (GOP) with respect to traditional
GOP patterns [9], such as IBP or IBBP. In inter predic-
tion, the ME process is carried out many times per MB
partition. ME performs the same Sum of Absolute Differ-
ences (SAD) operations over a large amount of data (over
the search area). This procedure fits well in the SIMD
execution processing model. One of the major challenges
for our proposed algorithm is how to remove or mitigate
the dependencies between MBs. The present approach is
shown for both cases: 2D and 3D scenarios and the results
show a noteworthy time reduction (TR) of up to 99% with

only a negligible Rate-Distortion (RD) penalty. Moreover,
the proposed algorithm outperforms one of the fastestME
algorithms included in the H.264/AVC JM [10] reference
software, namely Unsymmetrical Multi-Hexagon Search
(UMHexagonS) [11].
The rest of the article is organized as follows. Section 2

summarizes the technical background in the field of video
coding and GPUs. Section 3 presents related proposals,
and the implementation details of our approach and its
performance evaluation are presented in Sections 4 and
5, respectively. Finally, the conclusions are set out in
Section 6.

2 Background
2.1 H.264/AVC
H.264/AVC [6] emerged with the objective of creating
a standard able to provide good video quality for the
encoded video sequence, as well as offering a significant
reduction in the bit-stream produced by the H.264/AVC
encoder, when compared with previous standards, such as
MPEG-2 [12].
H.264/AVC supports variable block-size for MC. The

available modes are 16 x 16, 16 x 8, 8 x 16, and 8 x 8. If the
8 x 8 mode is selected, it can be further divided into 8 x 8,
8 x 4, 4 x 8, and 4 x 4 blocks. ME estimates each parti-
tion by using a block located in a previous frame (P and B
slices), by using a block located in a future frame (B slices),
or by using a combination (B slices). This latter mecha-
nism, which uses a combination of previous and future
frames, is known as bi-directional prediction.
Bi-directional prediction is carried out by obtaining

the differences between an MB partition and two ref-
erence blocks, one located in a previous frame and the
other one in a future frame. Traditional GOP patterns,
such as IBP or IBBP, use the closest I or P frame in
each direction as reference frames. However, in recent
years new hierarchical GOP patterns have been intro-
duced [8,9]. These new GOP patterns allow the encoding
of B frames by using other B-frames as reference frames.
Figure 1 shows a fully hierarchical GOP pattern using
seven B-frames. The B-frames are divided into three lev-
els and a frame belonging to level n is estimated using the

Figure 1 Configured GOP pattern.
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closest frames in each direction belonging to level n − 1
or below.
On the other hand, encoding one Motion Vector

(MV) for each partition can increase the number of bits
required to encode an image, especially if small partition
sizes are chosen. However, it is known that MVs from
neighbouring partitions are often highly correlated and
eachMV can be predicted using these neighbouring MVs.
The MV Predictor (MVP) forming method depends on
the availability of nearby MVs and on the partition size.
Figure 2 shows an MB and its neighbouring MBs involved
in the MVP calculation. If there is more than one par-
tition in the neighbouring MBs (in Figure 2 the left and
upper MBs are divided into more than one partition)
the nearest partition to the top-left corner of the MB is
selected in selected in order to calculate the MVP (see A
and B partitions in Figure 2). The MVP is calculated as
the median of the three selected partitions (A, B, and C
partitions in Figure 2).

2.2 H.264/MVC
The H.264/MVC [13] coding standard, which was devel-
oped as an extension of H.264/AVC, has recently been
finalized by the Joint Video Team (JVT). MVC mainly
uses H.264/AVC while exploiting temporal and inter-view
dependencies [14] which are based on Hierarchical Bidi-
rectional Pictures prediction to exploit both temporal
and inter-view correlations [15]. Moreover,MVC provides
other techniques such as Disparity Estimation (DE), which
is used in the process of inter-view coding.
Basically, variable block-size matching DE [14] is used

to reduce the inter-view redundancies between frames. In
this coding system, variable block-size DE is carried out
using eight inter prediction modes (SKIP, Inter 16 x 16,
Inter 16 x 8, Inter 8 x 16, Inter 8 x 8, Inter 8 x 4, Inter
4 x 8, and Inter 4 x 4). MVC determines which partitions
deal with cost as best MB partition. This results in high
encoder complexity. Therefore, it is necessary to develop

Figure 2 Current and neighbouring partitions.

a method that can reduce the execution time of MVC
with minimal loss of image quality. The JM 17.2 [10] ref-
erence software includes support for MVC, implementing
the Stereo High Profile.

2.3 Graphics processing units
In the past few years new heterogeneous architectures
have been introduced in high performance computing
[16]. Examples of this type of platforms are GPUs, Cell
Broadband Engines (Cell BEs), and Field-Programmable
Gate Arrays (FPGAs). Modern graphics cards include a
many-core processor chip, which is known as a GPU. This
processor chip is built following the SIMD programming
model, and it is able to perform arbitrary, programmable
operations on data sent to it.
Recently, there has been a marked increase in the

performance and capabilities of GPUs, and they have
attracted a lot of attention. GPUs are able to achieve up
to three TFLOPS working in simple precision mode and
up to 190 GB/s in memory transfer rate. In fact, over the
last 10 years, the performance of GPUs has doubled every
6months, whereas that of the CPU has doubled every
18 months.
CUDA [3] was introduced in 2006 by NVIDIA and con-

sists of a general purpose parallel computing architecture
that makes it possible to solve many complex computa-
tional problems by using the parallel engine on NVIDIA
GPUs. CUDA is a C-based high-level programming lan-
guage that was designed to maintain a low learning curve
for programmers familiar with standard C. Although
CUDA requires programmers to write special code for
parallel processing, it does not require them to explicitly
manage threads in the conventional sense, which greatly
simplifies the programming model. CUDA development
tools work alongside a conventional C/C++ compiler, so
programmers can mix GPU code with general purpose
code for the host CPU.

3 Related work
As far as the authors know, the work presented in this arti-
cle is the first which deals with H.264/AVC bi-directional
prediction using GPUs. In the literature, there are some
articles that deal with inter-prediction in P-frames using
GPUs, but no algorithms for bi-directional prediction
have been presented. However, some proposals have been
presented for hardware accelerators, but they focus on
MC. Moreover, in recent years 3D video coding has
attracted a lot of attention, but in the literature it is not
possible to find many articles that focus on accelerating
the inter prediction carried out in a 3D encoder.
The following paragraphs will provide an overview

of the state of the art, focusing on previous works on
P-frames, on proposals for B-frames using hardware
accelerators, and on proposals aimed at accelerating 3D
video coding.
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Lee et al. [17] presented a multi-pass and frame paral-
lel algorithm to accelerate H.264/AVC ME using a GPU.
By using the multi-pass method they unroll and rear-
range the multiple nested loops. The integer ME can
be implemented with a two-pass process on the GPU.
Moreover, fractional ME needs six passes for frame inter-
polation with a six-tap filter and MV refinement. They
obtain a speed-up of between 6x and 56x, depending on
the encoding conditions. Cheng and Hang [18] decom-
posed the H.264/AVC ME algorithm into five steps so as
to achieve highly parallel computation with a low exter-
nal memory transfer rate. Experimental results show that,
with the assistance of a GPU, the processing time is 12
times shorter than when using only the CPU. However,
the major failing of these two approaches is that they do
not show RD performance; although the speed-up and
TR are acceptable, they are only valid if they keep the
RD as close as possible to the sequential approach. More
recently, Cheung et al. [19] proposed a GPU implementa-
tion of the simplified UMHexagons (smpUMHexagonS)
ME algorithm, which is a fast ME technique implemented
in the H.264/AVC reference software. The authors divide
the current frame into multiple tiles and they obtain a
speed-up of up to 3x when compared with this fast algo-
rithm. Additionally, they report significant bit-rate incre-
ments (12%) with a penalty in quality (0.4 dB) depending
on the sequence and the tile length.
Tseng et al.[20] presented a FPGA prototype which sup-

ports variable block-size ME from multiple reference
frames for both P and B slices, quarter-pixel accuracy,
and weighted bi-directional prediction. More recently,
Zheng et al. [21] presented a VLSI architecture of MC
for multiple standards. The proposed design has a
macroblock-level pipelined structure which consists of an
MV Predictor, cache-based fetch, and a pixel interpolation
unit. The proposed architecture exploits the parallelism in
the MC algorithm to accelerate the processing speed and
uses the dedicated design to optimize memory accesses.
Ding et al. [22] proposed a content-aware prediction

algorithm for inter-view mode decisions. The proposed
algorithm is able to save unnecessary computational load
by exploiting the correlation between the different views
in MVC. The MB coding modes and their corresponding
MVs may be predicted by using the DE and the cod-
ing information of neighbouring views. Therefore, ME
computational complexity can be greatly reduced since
some MBs may be early identified as SKIP, INTRA or
DE modes and it is not necessary to perform the ME.
Experimental results show a TR of nearly 98% for the ME
time, with a quality loss of up to 0.06 dB. Also, Huo et al.
[23] presented a scalable prediction structure for MVC
in which inter-view prediction may be disabled if the
inter-view redundancy can be almost eliminated by tem-
poral and intra prediction. In this way, the time employed

for DE may be saved by reducing encoder complexity.
The authors use a hierarchical GOP pattern and propose
not to carry out the DE in one or more of the highest
temporal layers of the hierarchical GOP pattern, since
they observed that the percentage of temporal predictions
increases with the increment in the temporal layer index.
Experimental results report a TR of 30.60% and a bit rate
increment of 1.55 on average, when not performing the
DE in the highest level in a GOP pattern with five levels
(GOP 16).
Shen et al. [24] proposed a fast DE and ME algorithm

based on the correlation between the prediction/mode
size and on motion homogeneity. MBs with homoge-
neous motion usually select temporal prediction with
large block sizes, and MBs with complex motion usually
select inter-view prediction or temporal prediction with
small block sizes. The proposal uses the spatial properties
of the motion field, which is generated by the correspond-
ing MVs of the 4 x 4 partitions. On average, experimental
results show a TR of 63% and a bit rate increment of up to
2%. In 2010, textDeng et al. [25] proposed a fast ME and
DE algorithm, which uses the correlation between tempo-
ral and inter-view reference frames. First, the algorithm
obtains a predictor by taking into account the correlation
of motion (ME) and disparity (DE) vectors of neighbour-
ing MBs. Then, an iterative search algorithm is run to find
the optimal motion and disparity vectors. The iterative
search algorithm is executed using small window sizes of
5 x 5, which is sufficient to maintain coding efficiency.
The algorithm is only implemented for the 16 x 16 block
size, so it does not support variable block-sizeME and DE.
Simulation results show that the overall average encoding
TR is 86%, whit a bit rate increment of up to 6%.
Finally, Lu and Hang [26] presented the first GPU-based

ME/DE algorithm for MVC. The algorithm is imple-
mented using integer precision (no sub-pixel ME or DE
is carried out using the GPU). The algorithm is based on
the PHODS method proposed by Chen et al. [27] and is
a fast ME algorithm designed to reduce the number of
sequence steps and search area points. However, it must
be adapted to have a regular control flow and a fixed num-
ber of instructions for each iterative process. In this way,
each iterative process can be independently executed by
an independent GPU thread. Experimental results show
that the proposed algorithm can obtain a speed-up of 9–
20x for integer ME and DE algorithms when compared
with the reference EPZS search algorithm implemented
in JMVC, while displaying a coding quality loss of up to
0.026 dB.

4 Proposed algorithm
In this section, the proposed GPU-based inter prediction
algorithm for hierarchical B-frames is presented. The pro-
posed algorithm is divided into two main parts: forward
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and backward prediction, and bi-directional prediction.
The algorithm implemented for forward and backward
prediction is based on the one previously developed for
P-frames [28], but there are some differences in the MVP
calculation. The proposed algorithms are integrated in the
well-known H.264/AVC JM reference software encoder,
version 17.2 [10].
In what follows, we describe the main parts of our

proposed inter prediction algorithm for B frames.

4.1 Forward and backward prediction
This part is divided into two main parts: full-pixel predic-
tion and sub-pixel prediction. Reference H.264/AVC JM
full-pixel prediction and sub-pixel prediction are carried
out sequentially for all partitions, for each MB in a frame.
Our main idea is to obtain all the motion information
concurrently at the beginning of coding each frame.
Full-pixel prediction is implemented using two GPU

kernels. The first one obtains the encoding costs for all
4 x 4 partitions, within the search area, for all MBs in
a frame. Then, by reusing the 4 x 4 encoding costs pre-
viously obtained, it calculates the encoding costs for all
other partitions. Figure 3 shows how to calculate them. In
order to obtain the motion information for the eight 4 x 8
and for the eight 8 x 4 sub-partitions, it is only necessary to
add two 4 x 4 SAD costs for each of them, e.g. by adding #0
and #2 SAD costs from the 4 x 4 sub-partition, the #0 SAD
cost for the 8 x 4 sub-partition is obtained (see shaded
boxes), and so on. Finally, this kernel performs a reduc-
tion in the generated encoding costs for all partitions by
a factor of 256, which is the number of positions checked
by any of the GPU multi-processors. Usually, there are
more than 256 candidate positions within the search
area. Therefore, an independent kernel performs the final

reduction of the generated encoding costs in order to
obtain the best MV for all partitions of all MBs in a frame.
Before starting with sub-pixel prediction, the frames

must be up-sampled to half-pixel accuracy by means of a
6-tap filter, and then they are up-sampled to quarter-pixel
accuracy by means of a bilinear filter. The up-sampling is
carried out on the GPU because the frames are transferred
to the GPU memory with full-pixel accuracy. It is faster
to generate the frames with quarter-pixel accuracy than to
transfer them. Three GPU kernels are needed since there
are dependencies in the up-sampling process.
Sub-pixel prediction is carried out in two steps: half-

pixel refinement and quarter-pixel refinement. The MV
obtained by full-pixel prediction becomes the center point
for half-pixel prediction, and the MV obtained by half-
pixel prediction becomes the center point for quarter-
pixel prediction. The algorithm is similar to the one used
for full-pixel prediction. The MBs are divided into sixteen
4 x 4 blocks, the motion information for all partitions is
obtained and finally a reduction is performed in order to
obtain the best MV.

4.2 MVP for forward and backward prediction
In the algorithm implemented for encoding P-frames,
only previous frames are used as reference frames (back-
ward prediction). The MVP is calculated using the MV of
the 16 x 16 partition of the MB located in the same posi-
tion, but in the previously encoded P-frame. Note that,
in a video sequence which only uses I- and P-frames, the
encoding order is the same as the temporal order.
However, when coding a video sequence using

B-frames, the frames are encoded out of order, since
future frames are required to encode a B-frame. There-
fore, the MVs of reference frames (in future and/or

Figure 3 Building SAD costs.
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previous frames) are available and can be used in order to
calculate the MVPs.
The MVP for backward prediction is calculated using

the MV of the 16 x 16 partition of the MB located in the
same position, but in the temporally previous frame. The
MVP for forward prediction is calculated using the MV of
the 16 x 16 partition of the MB located in the same posi-
tion, but in the temporally future frame. Remember that
the temporal order is different from the encoding order.

4.3 MVP for inter-view prediction
When coding a 3D video sequence, some frames are tem-
porally predicted (ME) and some frames are inter-view
predicted (DE). The algorithm for both mechanisms is
quite similar but there is a difference. The reference frame
is located in either the same view or in a different view.
The inter-view prediction tries to remove the redun-

dancies between two or more cameras which are record-
ing the same scene, while the temporal prediction tries
to remove the redundancies inherent in a video stream.
Therefore, it is not a good idea to calculate the MVP of an
inter-view predicted frame using the motion information
of a temporally predicted frame and vice versa.
The MVP for inter-view prediction is calculated using

the MV of the 16 x 16 partition of the MB located in the

same position, but in the temporally previous inter-view
coded frame. Otherwise, an inaccurate MVP would be
calculated, thus affecting coding efficiency, since an inac-
curate MVP means that the optimal (or nearly optimal)
matching block cannot be found.

4.4 MVP for bi-directional prediction
Bi-directional prediction is carried out in two steps. In the
first step, a block is estimated in the previous frame using
MVP1 (in what follows we will refer to this block as the
opposite block), a search area region is estimated in the
future frame using MVP2 and the bi-directional predic-
tion is performed by searching (ME) in the future frame
(see Algorithm 1, line 3). In the second step, a search area
region is estimated in the previous frame using MVP1,
the opposite block is estimated in the future frame using
MVP2 and the bi-directional prediction is performed by
iterating in the previous frame (see Algorithm 1, line 4).
The opposite block dimensions depend on the MB parti-
tion size used. Figure 4 shows a graphical description of
the first step for a given partition. In the description of the
algorithm we focus on the first step, locating the search
area in the future frame. The algorithm for the second step
is identical, but interchanging the locations of the opposite
block and search area.

Algorithm 1 Proposed bi-prediction algorithm
1 Backward prediction (MVP1 calculation)
2 Forward prediction (MVP2 calculation)
3 Bi-prediction (Step 1)

3.1 For each thread block configured - Kernel 1

3.1.1 Transfer current block from GPU texture memory to shared memory
3.1.2 Transfer opposite block from GPU texture memory to shared memory (MVP1)
3.1.3 Transfer search area from GPU texture memory to shared memory (MVP2)
3.1.4 For each thread within the thread block

3.1.4.1 Calculate motion information (SAD cost)
3.1.4.2 Reduction (1 MV per MB-partition within the thread block)

3.2 Final reduction - Kernel 2 (1 MV per MB-partition)

4 Bi-prediction (Step 2)

4.1 For each thread block configured - Kernel 3

4.1.1 Transfer current block from GPU texture memory to shared memory
4.1.2 Transfer opposite block from GPU texture memory to shared memory (MVP2)
4.1.3 Transfer search area from GPU texture memory to shared memory (MVP1)
4.1.4 For each thread within the thread block

4.1.4.1 Calculate motion information (SAD cost)
4.1.4.2 Reduction (1 MV per MB-partition within the thread block)

4.2 Final reduction - Kernel 4 (1 MV per MB-partition)
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Figure 4 Bi-directional predictions.

The first task in order to carry out the bi-directional
prediction is to calculate the MVPs for both the previ-
ous frame (MVP1) and for the future frame (MVP2) (see
Algorithm1, lines 1 and 2). As MVP1 for a given partition
we propose to use the MV obtained with the backward
prediction for that partition, and as MVP2 for a certain
partition, the MV obtained with the forward prediction
for that partition.
The opposite block is located and estimated using its

MVP (MVP1 if it is located in the previous frame orMVP2
if it is located in the future frame). The search is located
in the same position as the current MB partition, but in
the reference frame, and it is estimated using its MVP.
Note that a common search area is established for all MB
partitions, but all MB partitions have their own MVP.
The H.264/AVC JM reference software uses different

MVPs from the ones used in this proposal. The opposite
block for a specific partition is estimated and located using
the MV obtained with the backward or the forward pre-
diction for that partition, depending on which frame it is
located in (MVP1 if it is located in the previous frame or
MVP2 if it is located in the future frame). The search area
is located and estimated using the motion information
of neighbouring MBs, which are not available in a par-
allel execution. Note that each MB partition has its own
independent search area.
The MVPs are used jointly with the cost metric to cal-

culate the encoding cost of all available MB partitions.
Equation (1) shows how to calculate this [29]:

Cost = SADcost + λ ∗ RMV1 + λ ∗ RMV2 (1)

where SADcost is the metric used to calculate the differ-
ences, λ is an encoder parameter which depends on the
Quantization Parameters (QPs) used, RMV1 is the number
of bits required to encode MV1 minus MVP1, and RMV2 is
the number of bits required to encode MV2 minus MVP2.
However, there is a problem in our proposed MVP cal-

culation, as forward and backward predictions must be
completely performed before starting the bi-directional

prediction, and with the H.264/AVC JM encoding order
this does not occur. The encoding order implemented in
the H.264/AVC JM reference software is: backward pre-
diction, bi-directional prediction (first step), forward pre-
diction and bi-directional prediction (second step). Our
solution is to modify the encoding order implemented in
the H.264/AVC JM reference software: firstly backward
and forward predictions are performed, and then the bi-
directional predictions are performed (see Algorithm 1,
lines 1, 2, 3, and 4).

4.5 Bi-directional prediction
As occurs with forward and backward prediction, the ref-
erence bi-directional prediction is sequentially carried out
for all possible partitions configured in the configuration
file, for each MB in a frame, whereas our proposed algo-
rithm is executed at the beginning of coding each B frame
and obtains all the motion information in parallel.
However, in contrast with the forward and backward

predictions, in the bi-directional predictions it is not
possible to calculate the encoding cost of higher MB
partitions using the ones obtained for the smallest MB
partitions (Figure 3). Different MVPs are used to locate
the opposite blocks, so the opposite blocks of each MB
partition can be located in different positions.
Bi-directional full-pixel prediction is performed using

two GPU kernels (see Algorithm 1, lines 3.1 and 3.2, or
lines 4.1 and 4.2). The first GPU kernel uses 256 threads
per thread block in order to calculate the motion infor-
mation for 256 contiguous positions for all MB partitions
configured (see Algorithm 1, lines 3.1.4 or 4.1.4). This first
kernel is carried out in asmany iterations as needed. Thus,
two 16 x 16 memory matrices are defined in multipro-
cessor shared memory. One of them is filled in with the
current MB to be coded (in what follows we will refer to
this block as the current block) (see Algorithm 1, lines
3.1.1 or 4.1.1). The other one is either filled in with the
16 x 16 opposite block, or with the two 16 x 8 opposite
blocks, or with the two 8 x 16 opposite blocks, and so on
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(see Algorithm 1, lines 3.1.2 or 4.1.2). The algorithm is
executed using the complete 16 x 16 blocks. Therefore, if
the three highest partitions are configured in the config-
uration file, three iterations are needed. Both the current
block and the opposite block are originally located in GPU
texture and all available threads cooperate to fill in the
allocated multiprocessor shared memory.
The search area is also transferred to multiprocessor

shared memory, but it is not necessary to copy the com-
plete search area (see Algorithm 1, lines 3.1.3 or 4.1.3).
Only the search area required for 256 contiguous posi-
tions is copied. The required search area for 256 positions
depends on the search range, e.g. if a search range of 32 is
used a search area of 79 x 19 positions must be allocated
and copied. Figure 5 shows this search area allocation. The
15 extra positions allocated on the right and at the bottom
of the allocated memory are necessary to move the 16 x 16
blocks over all possible positions. In the figure the current
block (shadow block) is located in the bottom-right posi-
tion of the allocated search area. The search area for the
current block is originally located in GPU texture memory
and all available threads cooperate to fill in the allocated
multiprocessor shared memory.
On each kernel iteration, each GPU thread obtains the

SAD costs for the sixteen 4 x 4 blocks into which both the
current block and the opposite block can be divided for a
specific position. If the opposite block was filled in with
a 16 x 16 partition the sixteen SAD costs are added in
order to obtain the motion information of the 16 x 16 par-
tition; if the opposite block was filled in with two 16 x 8
partitions, eight SAD costs are added in order to obtain
the motion information of the upper 16 x 8 partition, and
eight SAD costs are added in order to obtain the motion
information of the lower 16 x 8 partition; and so on (see
Algorithm 1, lines 3.1.4.1 or 4.1.4.1). The SAD costs for
the 4 x 4 blocks are calculated using Equation (2) [29].

SAD =
3∑

i=0

3∑

j=0
|Cij − ((Oij + Rij + 1) >> 1)|, (2)

where C is a subset of the current block, O is a subset of
the opposite block and R is a portion of the search area.

At this point, each thread block has the encoding cost
of 256 positions for all available partitions, and apply-
ing a binary reduction per MB partition obtains the best
MV of the 256 positions for each MB partition (see Algo-
rithm 1, lines 3.1.4.2 or 4.1.4.2). The binary reduction is
the same as previously developed for P frames. Usually,
there are more than 256 candidate positions within the
search area. Therefore, an independent kernel performs
the final reduction of the generated encoding costs (see
Algorithm 1, lines 3.2 or 4.2).
In order to carry out the bi-directional sub-pixel pre-

diction it is not necessary to up-sample the reference
frames, because they have been previously up-sampled
before applying the forward and backward predictions.
The algorithm developed for bi-directional sub-pixel

prediction is quite similar to the one developed for full-
pixel prediction. However, there are some differences: the
algorithm is performed in two GPU kernels, one for half-
pixel refinement and one for quarter-pixel refinement; the
metric used is Hadamard SAD instead of SAD, since it
gives better results but is more complex; the search area
is not located in multiprocessor shared memory, because
it is not common for all MB partitions, the starting point
for half-pixel refinement is the best MV for full-pixel pre-
diction and the starting point for quarter-pixel refinement
is the best MV for half-pixel refinement; the number of
search area positions checked by the kernels is eight, since
there are eight half-pixels surrounding each full-pixel, and
there are eight quarter-pixels surrounding each half-pixel.

5 Experimental results
The proposed algorithm has been implemented in the
H.264/AVC JM version 17.2 reference software encoder
[10]. The H.264/AVC profiles used for testing are the
Main Profile and the Stereo High Profile, and therefore
the parameters used are those included in these profiles.
The proposal presented in this article is independent of
the profile used; different profiles which support B frames
may be used. The Main profile was selected because is
intended for broadcasting applications which is a poten-
tial application of the proposal presented in this article,
and the Stereo High profile was selected because is the

Figure 5 Search area located in multiprocessor shared memory.



Rodríguez-Sánchez et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:67 Page 9 of 13
http://asp.eurasipjournals.com/content/2013/1/67

one which provides support for stereoscopic videos. Only
some parameters are changed in the configuration file:

• The tests are carried out using full HD sequences
(1080p, 1920 x 1080 pixels).

• The sequences are rated at 50 frames per second (50
Hz) when using the Main Profile, and each view is
rated at 25 frames per second (25 Hz) when using the
Stereo High Profile.

• The number of reference frames is set to 4 for
P-frames, and to 2 in both directions (forward and
backward) for B-frames.

• The number of B frames inserted between each I or
P-frame is set to 7 and the intra period is 32.
Therefore, in each GOP there are 28 B-frames, 3
P-frames and 1 I-frame.

• The GOP pattern used is full hierarchy and is depicted
in Figure 1. Note that in the figure only the reference
for the closest reference frames is depicted, but as
mentioned above, multiple reference frames are
used.

• The QP for P and I frames is varied among 28, 32, 36,
and 40, according to [30-32]; the QP for B-frames
depends on the hierarchical level on which the
B-frame is located (see Figure 1) and is incremented
by 1 per hierarchical level in reference with the one
configured for P and I-frames.

• The search range is set to 32, which means 409,6
candidate positions inside the search area.

• RD-optimization is disabled to support
low-delay/complexity.

In order to make a proper comparison, an unmodified
H.264/AVC JM 17.2 reference software encoder imple-
mentation was run on the same machine as the proposed
algorithm, with the same configuration and with no calls
to the GPU.

5.1 System
To evaluate the performance of the proposed algorithm,
the following development environment was used: the
host machine used was an Intel Core i7 running at 2.80
GHz with 6 GB of DDR3 memory. The GPU used was
an NVIDIA GTX480 with an NVIDIA driver and CUDA
support (260.19). The operating system for this scheme
was Linux Ubuntu 10.4 x 64 with GCC 4.4. Table 1 shows
the main GPU features.

5.2 Metrics
The following metrics were used to evaluate the proposal:

5.2.1 RD function
In the definition of the RD function, the PSNR is the dis-
tortion for a given bit rate. The averaged global PSNR is

Table 1 NVIDIA GTX480 features

Characteristic Value

Compute capability 2.0

Global memory 1.5 GB

Number of multiprocessors 15

Number of cores 480

Constant memory 64 KB

Shared memory per block 48 KB

Registers per block 32,768

Max. active threads per multiprocessor 1,536

Clock rate 1.40 GHz

based on Equation (3). The Luminance PSNR is multiplied
by four, since the YUV input files are in the format 4:2:0.

PSNR = 4 ∗ PSNRY + PSNRU + PSNRV
6

(3)

5.2.2 TR and speed-up
This is to evaluate the time saved by the proposed algo-
rithm. TR is based on Equation (4) and Speed-up is based
on Equation (5).

TR(%) = TJM − TFI
TJM

∗ 100 (4)

Speed-up = TJM
TFI

(5)

where TJM denotes the coding time used by the
H.264/AVC JM 17.2 reference software, and T FI is the
time taken by JM using the algorithm proposed in this
article. TFI also includes all the computational costs for
the operations needed in order to prepare the information
required by our proposal, e.g. transferences of data from
host memory to device memory, and vice versa.
Note that no overlapping mechanism in communica-

tions is implemented; first of all because the memory
transfers on average spend less than 2% of the total GPU
execution time; but also because the JM reference encoder
allocates the reference frames in the lists of references
just before executing the ME algorithm and, as a conse-
quence, our proposal is executed just after allocating the
reference frames. Additionally, when using an overlapping
mechanism, the GPUmemory allocations have a large ini-
tialization overhead which must be amortized, but due to
the proximity of the memory transfers and the GPU exe-
cution, the execution time is not reduced. On the other
hand, the memory transfers from GPU memory are used
to synchronize the CPU and GPU executions.

5.2.3 �PSNR and� bit-rate
The detailed procedures for calculating bit-rate and PSNR
differences can be found in the work by Bjøntegaard [30],
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Table 2 Timing results of the proposed encoder for 1080p sequences

ME algorithm Full encoder

Full search UMHexagonS Full search UMHexagonS

Sequence #Frames TR% Speed-up TR% Speed-up TR% Speed-up TR% Speed-up

Crowd 500 98.94 94.62 78.26 4.60 97.94 48.64 65.70 2.92

Ducks 500 99.09 110.31 78.87 4.73 98.22 56.20 66.25 2.96

Intotree 500 98.90 91.29 73.47 3.77 97.90 47.54 60.35 2.52

Oldtown 500 98.53 68.08 69.67 3.30 97.18 35.49 55.76 2.26

ParkJoy 500 99.10 111.11 80.28 5.07 98.22 56.21 68.04 3.13

Average 98.91 92.12 76.11 4.19 97.89 47.46 63.22 2.72

and make use of Bjøntegaard and Sullivana’s [31] com-
mon test conditions. These procedures have been recom-
mended by the JVT Test Model Ad Hoc Group [32].

5.3 2D scenario (main profile)
Table 2 shows the timing results of our proposed
H.264/AVC encoder when coding five full HD video
sequences. The results are divided into two main parts:
the timing results focusing exclusively on the algorithm
presented in this article (ME algorithm column) and
the timing results focusing on the complete H.264/AVC
encoder (Full encoder column). Moreover, the proposed
algorithm is tested against two search algorithms imple-
mented by the JM reference encoder, and therefore the
results are further divided depending on the reference
algorithm used. These reference search algorithms are full
search and UMHexagonS search [11].
The results show that the proposed algorithm outper-

forms both search algorithms. The proposed algorithm
obtains a speed-up of over 92x (TR of 98.91%) on aver-
age, which means a speed-up of over 47x (TR of 97.89%)
for the complete H.264/AVC encoder, when compared
with full search. The proposed algorithm obtains a speed-
up of over 4x (TR of 76.11%) on average, which means
a speed-up of over 2.7x (TR of 63.22%) for the complete
H.264/AVC encoder, when compared with UMHexagonS
search.
Table 3 shows the �bit-rate and �PSNR results of our

proposed H.264/AVC encoder when coding five full HD
video sequences. As in the previous table, the proposed

algorithm is tested against the two above-mentioned
search algorithms implemented by the JM reference
encoder, and therefore the results are divided depending
on the reference algorithm used. The proposed algorithm
obtains an acceptable RD degradation (the RD degrada-
tion is negligible if the computational savings are taken
into account) when compared with full search, and it sur-
passes the encoding efficiency obtained by UMHexagonS
search. The proposed algorithm obtains, on average, a bit-
rate increment of 3.16% and a PSNR loss of 0.074 dB when
compared with full search. On the other hand, the pro-
posed algorithm obtains, on average, a bit-rate decrement
of 6.75% and a PSNR gain of 0.170 dB when compared
with UMHexagonS search.
Figure 6 shows the RD graphic results for the refer-

ence and the proposed approach, for different sequences
in 1080p format, from a value of 28 to 40 for QP, com-
paring them with the ones obtained by the full search
and the UMHexagonS algorithms. Due to space limita-
tions only four sequences are shown. The PSNR vs. bit rate
obtained with the proposed encoder, based on our algo-
rithm, deviates slightly from the results obtained when
applying the sequential reference encoders; the curve
obtained by the proposed encoder is located in the middle
of the curves obtained by the other search algorithms.
The curves of the proposed encoder show that the pro-
posed encoder obtains better PSNR results for a given
bit-rate than the curves obtained by the UMHexagonS
algorithm (it improves upon the results of UMHexagonS).
The curves of the proposed encoder show that the

Table 3 RD results of the proposed encoder 1080p sequences

Full search UMHexagonS

Sequence #Frames � bit-rate (%) � PSNR (dB) � bit-rate (%) � PSNR (dB)

Crowd 500 3.08 −0.090 −6.63 0.203

Ducks 500 0.42 −0.011 −1.80 0.046

Intotree 500 6.01 −0.119 −13.45 0.297

Oldtown 500 3.76 −0.076 −5.73 0.111

ParkJoy 500 2.53 −0.076 −6.12 0.195

Average 3.16 −0.074 −6.75 0.170
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Figure 6 RD graphic results.1080p sequences.

proposed encoder obtains slightly worse PSNR results for
a given bit-rate than the curves obtained by the full search
algorithm.

5.4 3D scenario (stereo high profile)
Table 4 shows the timing results of our proposed
H.264/AVC encoder when coding five 3D full HD video
sequences. As in the evaluation section shown for the
Main Profile, the results are divided into two main
parts: the timing results focusing exclusively on the pro-
posed algorithm (ME algorithm column) and the timing
results focusing on the complete H.264/AVC encoder
(Full encoder column). The proposed algorithm is tested
against two search algorithms, and therefore the results
are further divided depending on the reference algorithm
used.
As expected, the proposed algorithm outperforms both

search algorithms. However, the TRs and speed-ups
obtained are lower than the ones obtained when using
the Main Profile. This behaviour occurs because there
is more redundancy in a 3D video sequence than in a
2D video sequence and the reference encoder consumes
less time. The execution time of the proposed algorithm

is almost constant (it is content independent), while the
reference search algorithms are content dependent. Full
search is implemented using an early-out termination
which is able to skip some search area positions based on
the cost obtained for previously checked positions, and
the UMHexagonS algorithm carries out less algorithm
iterations.
The proposed algorithm obtains a speed-up of over 44x

(TR of 97.74%) on average, which means a speed-up of
over 22x (TR of 95.53%) for the complete H.264/AVC
encoder, when compared with full search. Also, the pro-
posed algorithm obtains a speed-up of over 2.7x (TR of
63.32%) on average, which means a speed-up of nearly
2x (TR of 48.23%) for the complete H.264/AVC encoder,
when compared with UMHexagonS search.
Table 5 shows the �bit-rate and �PSNR results of

our proposed H.264/AVC encoder when coding five 3D
full HD video sequences. As in the previous table, the
proposed algorithm is tested against the two above-
mentioned search algorithms implemented by the JM
reference encoder.
The RD analysis when coding 3D video sequences

is similar to the one obtained when coding 2D video

Table 4 Timing results of the proposed encoder 3D 1080p sequences

ME algorithm Full encoder

Full search UMHexagonS Full search UMHexagonS

Sequence #Frames TR% Speed-up TR% Speed-up TR% Speed-up TR% Speed-up

Beergarden 150 98.37 61.43 66.82 3.01 96.73 30.61 51.42 2.06

Cafe 200 96.97 33.01 60.25 2.52 94.09 16.92 45.33 1.83

CarPark 250 97.98 49.48 61.05 2.57 95.99 24.96 45.99 1.85

Hall 200 97.39 38.27 65.66 2.91 94.89 19.57 50.77 2.03

Street 250 97.97 49.16 62.80 2.69 95.97 24.79 47.61 1.91

Average 97.74 44.15 63.32 2.73 95.53 22.40 48.23 1.93
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Table 5 RD results of the proposed encoder 3D 1080p sequences

Full search UMHexagonS

Sequence #Frames � bit-rate (%) � PSNR (dB) � bit-rate (%) � PSNR (dB)

Beergarden 150 2.21 −0.069 −10.21 0.354

Cafe 200 2.64 −0.058 −9.04 0.224

CarPark 250 −0.07 0.002 −5.63 0.149

Hall 200 6.96 −0.125 −9.71 0.182

Street 250 1.55 −0.033 −7.26 0.178

Average 2.66 −0.057 −8.37 0.217

sequences. The proposed algorithm obtains slightly worse
results when compared with the full search algorithm and
surpasses the results obtained by the UMHexagonS algo-
rithm. The proposed algorithm obtains, on average, a bit-
rate increment of 2.66% and a PSNR loss of 0.057 dB when
compared with full search. On the other hand, the pro-
posed algorithm obtains, on average, a bit-rate decrement
of 8.37% and a PSNR gain of 0.217 dB when compared
with UMHexagonS search.
Figure 7 shows the RD graphic results for the reference

and the proposed approaches, for different 3D sequences
in 1080p format, from a value of 28 to 40 for QP, com-
paring them with the ones obtained by the full search and
the UMHexagonS algorithms. Due to space limitations
only four sequences are shown. As can be seen from the
figure, the PSNR vs. bit rate obtained with the proposed
encoder, based on our algorithm, deviates slightly from
the results obtained when applying the sequential refer-
ence encoders. The conclusions are the same as the ones
obtained in the RD analysis made for 2D video sequences.

6 Conclusion
In this article an algorithm that concurrently performs
the inter prediction carried out over P and B-frames is
presented. The approach implements the hierarchical B

frame prediction implemented in the H.264/AVC JM 17.2
reference software encoder, and it is tested using the Main
and the Stereo High Profile, as well as, two of the most
well-known search algorithms available in this reference
software.
The proposed algorithm is based on an efficient parallel

implementation of the inter prediction procedure for both
P and B-frames involved in the ME and DE processes,
and also includes a mechanism to obtain an accurate esti-
mation of how movement takes place (MVP) depending
on whether the MB is temporary or inter-view predicted.
Exploiting current GPU computational capability gives us
another way to accelerate inter prediction in traditional
video codecs, with the aim of developing real time video
encoders.
When using the Main Profile, the results show a note-

worthy speed-up of over 47x with only a negligible RD
drop compared with the reference encoder when using
the full search algorithm, and a speed-up of 2.7x when
using the UMHexagonSME algorithm. The approach pre-
sented improves upon the coding efficiency obtained by
the UMHexagonS ME algorithm.
When using the Stereo High Profile, the experimen-

tal results show a speed-up for the complete H.264/AVC
encoder of over 22x when compared with the full search

Figure 7 RD graphic results. 3D 1080p sequences.
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algorithm, and a speed-up of nearly 2x when com-
pared with the UMHexagonS algorithm. The proposed
encoder slightly degrades the RD performance obtained
when using the full search algorithm, but improves the
RD performance obtained when using the UMHexagonS
algorithm.
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