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Abstract

Hyperspectral imaging is a growing area in remote sensing in which an imaging spectrometer collects hundreds of
images (at different wavelength channels) for the same area on the surface of the Earth. Hyperspectral images are
extremely high-dimensional, and require on-board processing algorithms able to satisfy near real-time constraints in
applications such as wildland fire monitoring, mapping of oil spills and chemical contamination, etc. One of the most
widely used techniques for analyzing hyperspectral images is spectral unmixing, which allows for sub-pixel data
characterization. This is particularly important since the available spatial resolution in hyperspectral images is typically
of several meters, and therefore it is reasonable to assume that several spectrally pure substances (called endmembers
in hyperspectral imaging terminology) can be found within each imaged pixel. There have been several efforts
towards the efficient implementation of hyperspectral unmixing algorithms on architectures susceptible of being
mounted onboard imaging instruments, including field programmable gate arrays (FPGAs) and graphics processing
units (GPUs). While FPGAs are generally difficult to program, GPUs are difficult to adapt to onboard processing
requirements in spaceborne missions due to its extremely high power consumption. In turn, with the increase in the
number of cores, multi-core platforms have recently emerged as an easier to program platform compared to FPGAs,
and also more tolerable radiation and power consumption requirements. However, a detailed assessment of the
performance versus energy consumption of these architectures has not been conducted as of yet in the field of
hyperspectral imaging, in which it is particularly important to achieve processing results in real-time. In this article, we
provide a thoughtful perspective on this relevant issue and further analyze the performance versus energy
consumption ratio of different processing chains for spectral unmixing when implemented on multi-core platforms.

1 Introduction
Hyperspectral imaging instruments are capable of col-
lecting hundreds of images, corresponding to different
wavelength channels, for the same area on the surface of
the Earth [1]. For instance, NASA is continuously gather-
ing imagery data with instruments such as the Airborne
Visible Infra-Red Imaging Spectrometer (AVIRIS), which
operates in the 0.4–2.5μm spectral range, with 10 nm
spectral resolution and 30m spatial resolution [2]. As a
follow-up to the success of AVIRIS (an airborne instru-
ment), a new generation of satellite instruments for Earth
observation are operating or under development (see
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Table 1). As indicated there, most current hyperspectral
missions are spaceborne in nature [3].
One of the main problems in the analysis of hyper-

spectral data cubes is the presence of mixed pixels [4,5],
which arise when the spatial resolution of the sensor is not
fine enough to separate spectrally distinct materials (see
Figure 1). Spectral unmixing [6-8] is one of the most pop-
ular techniques to analyze hyperspectral data. It involves
the separation of a pixel spectrum into its pure compo-
nent (endmember) spectra [9,10], and the estimation of
the abundance value for each endmember [11,12]. The
linear mixture model assumes single scattering between
the endmember substances resulting from the fact that
they are sitting side-by-side within the field of view of the
imaging instrument (see Figure 2a). On the other hand,
the nonlinear mixture model [13-15] assumes nonlinear
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Table 1 Overview of some present and future remote sensingmissions including hyperspectral sensors

EO-1 Hyperiona Prismab EnMAPc HyspIRId

Country of origin USA Italy Germany USA

Spatial resolution (m) 30 5–30 30 60

Revisit time (days) 16 3/7 4 18

Spectral range (nm) 400–2,500 400–2,500 420–2,450 380–2,500

Spectral resolution (nm) 10 10 6.5–10 10

Swath width (km) 7.7 30 30 120

Earth coverage Partial Full Full Full

Launch 2000 2012 2015 2018

ahttp://eo1.gsfc.nasa.gov.
bhttp://www.asi.it/en/flash en/observing/prisma
chttp://www.enmap.org.
dhttp://hyspiri.jpl.nasa.gov.

interactions and multiple scattering between endmember
substances (see Figure 2b). In practice, the linear model is
more flexible and can be easily adapted to different analy-
sis scenarios [16]. It can be simply defined as follows [17]:

y = Ea + n =
p∑

i=1
eiai + n, (1)

where y is an n-dimensional pixel vector given by a col-
lection of values at different wavelengths, E = {ei}pi=1 is
a matrix containing p endmembers, a =[ a1, a2, . . . , ap]
is a p-dimensional vector containing the abundance frac-
tions for each of the p endmembers in y, and n is a noise
term. Generalizing this expression for all the hyperspec-
tral pixels in the scene (in compact matrix notation) yields
Y = EA + N, where Y is the full hyperspectral image
with m pixels, each with n bands, E is the endmember

matrix with dimensions n × p, A is an p × m matrix con-
taining the endmember abundances for each pixel of the
scene, and N is a n × m noise matrix. With the aforemen-
tioned notation in mind, solving the linear mixture model
involves: (1) estimating the number of endmembers, p,
in the hyperspectral scene; (2) identifying a collection of
E = {ei}pi=1 endmembers; and (3) estimating the fractional
abundances of the p endmembers for each pixel in the
hyperspectral data set.
Several techniques have been proposed to solve this

problem under the linear mixture model assumption in
recent years (see [18-43], among several others), but all
of them are quite expensive in computational terms.
Although these techniques map nicely to high perfor-
mance computing platforms such as commodity clusters
[44], these systems are difficult to adapt to on-board
processing requirements introduced by applications with
real-time constraints such as wild land fire tracking,

Figure 1 Presence of mixed pixels in remotely sensed hyperspectral images.
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Figure 2Mixture models in remotely sensed hyperspectral imaging. (a) Linear and (b) nonlinear.

biological threat detection, monitoring of oil spills and
other types of chemical contamination [45-47]. In those
cases, low-weight integrated components such as field
programmable gate arrays (FPGAs) [48-50] and graph-
ics processing units (GPUs) [51,52] have the potential to
reduce payload in current and future Earth observation
missions, which are mainly spaceborne in nature as indi-
cated by Table 1. Furthermore, GPUs offer fast processing
at low cost (in the literature, so far GPUs have been the
only platform shown to be able to process hyperspectral
images in real-time) and easy programmability which are
very appealing for future remote sensing missions [53-58].
On the negative side, FPGAs are difficult to program and
there is currently a lack of efficient implementations of a
full spectral unmixing chain for hyperspectral image pro-
cessing in these type of architectures. Besides, GPUs are
currently not suitable for spacebornemissions due to their
high power consumption and the lack of radiation toler-
ance. These aspects are critical for the definition of the
mission (payload) and its overall success and lifetime. In
turn, with the increase in the number of cores, multi-core
platforms have recently emerged as an easier to program
platform as compared to FPGAs, and also more flexible to
accomodate to radiation tolerance and power consump-
tion requirements. Nevertheless, a detailed assessment
of the performance versus energy consumption of these
architectures has not been conducted as-of-yet in the field
of hyperspectral imaging, in which it is particularly impor-
tant to achieve processing results in real-time with low
energy cost.
In this article, we provide a thoughtful perspective

on this relevant issue and further analyze the perfor-
mance versus energy consumption ratio of different pro-
cessing chains for spectral unmixing when implemented
on multi-core platforms. This kind of analysis has not
been previously conducted in the literature, and in our
opinion it is very important in order to really cali-
brate the possibility of using multi-core platforms for
efficient hyperspectral image processing in real remote
sensing missions. The remainder of the article is orga-
nized as follows. Section 2 reviews the different modules

that conform the considered unmixing chains discussed
in this work. Section 3 describes the parallel imple-
mentation of these modules on multi-core platforms.
Section 4 presents an experimental evaluation of the pro-
posed implementations in terms of unmixing accuracy,
parallel performance and energy consumption, reporting
several multi-core implementations able to provide real-
time analysis performance and discussing their energy
consumption requirements. Section 5 concludes the arti-
cle with some remarks and hints at plausible future
research lines.

2 Spectral unmixingmodules
In this section, we describe different modules for spectral
unmixing of hyperspectral data. These modules will be
then used to define spectral unmixing chains, which are
composed of three main stages: (1) estimating the num-
ber of endmembers in the original hyperspectral scene; (2)
identifying a collection of endmembers in the scene; and
(3) estimating the fractional abundances of endmembers
in each pixel of the scene. In the following, we describe
different methods in each category, offering a few remarks
that describe computational aspects such as the opera-
tions that are involved and the cost of the algorithm in
terms of floating-point arithmetic operations (flops). In
the following cost expressions, for simplicity, we neglect
lower order terms, taking into account that in practice
p, n � m.

2.1 Methods for estimating the number of endmembers
This section introduces two different methods for esti-
mating the number of endmembers: virtual dimension-
ality (VD) [59] and hyperspectral signal identification by
minimum error (HySime) [60].

2.1.1 Virtual dimensionality (VD)
The VD method first calculates the eigenvalues of the
covariance matrix KL×L = 1/N(Y − Y)T (Y − Y) and
the correlation matrix RL×L = KL×L + YYT , referred to
as covariance-eigenvalues and correlation-eigenvalues, for
each of the spectral bands in the original hyperspectral
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image Y. The VD concept follows the “pigeon-hole prin-
ciple”. If we represent a signal source by a pigeon and a
spectral band by a hole, we can use a spectral band
to accommodate one source. Thus, if a distinct spec-
tral signature makes a contribution to the eigenvalue-
represented signal energy in one spectral band, then its
associated correlation eigenvalue will be greater than its
corresponding covariance eigenvalue in this particular
band. Otherwise, the correlation eigenvalue would be
very close to the covariance eigenvalue, in which case
only noise would be present in this particular band. By
applying this concept, a Neyman–Pearson detector [59]
is introduced to formulate the issue of whether a distinct
signature is present or not in each of the spectral bands of
Y as a binary hypothesis testing problem. Here, the deci-
sion is made based on an input parameter of the algorithm
that is called the false alarm probability or PF , which is
used to establish the sensitivity of the algorithm in terms
of howmuch error can be tolerated in the identification of
the actual number of endmembers in the image data.With
this interpretation in mind, the issue of determining an
estimate p̂ for the number of endmembers is further sim-
plified and reduced to a specific value of PF that is preset
by the Neyman–Pearson detector.
From the computational point of view, the most com-

plex operation in this algorithm is related with the cal-
culation of the covariance and correlation matrices which
need to be compared in order to determine the number of
endmmebers. If we recall that the number of bands of the
hyperspectral image is denoted by n, the total cost of each
calculation is given by n2 flops.

2.2 HySimemethod
The HySime method consists of two parts. Algorithm
1 describes the noise estimation part, which obtains
an N × L matrix ξ̂ containing an estimation of the
noise present in the original hyperspectral image Y [60].
This algorithm follows an approach which addresses
the high correlation exhibited by close spectral bands.
The main advantage of Algorithm 1 is that the com-
putational complexity is substantially lower than that
of other algorithms for noise estimation in hyperspec-
tral data in the literature. Additional details about Algo-
rithm 1 can be found in [60] and we do not repeat
them for space considerations. On the other hand, Algo-
rithm 2 describes the signal subspace identification part
of the algorithm, which first computes the noise cor-
relation matrix R̂n and then computes the signal cor-
relation matrix R̂x. Next, the eigenvectors of the signal
correlation matrix are obtained and sorted in ascend-
ing order. Finally, a minimization function is applied to
obtain an estimate p̂ of the number of endmembers in
the subspace X̂. The main purpose of this algorithm is to
select the subset of eigenvectors that best represents the

signal subspace in the minimum mean squared error
sense. As in the case of the previous algorithm, the
most complex operations are due to the calculation
of the covariance and correlation matrices. Again, the
total cost of each calculation is given by n2 flops,
where n is the number of bands of the hyperspectral
image.

Algorithm 1 Noise estimation
1: INPUT: Y ≡ [y1, y2, . . . , yN ]
2: Z := YT , R̂ := (ZTZ)

3: R′ := R̂−1

4: for i:=1 to L do
5: β̂i := ([R′]αi,αi −[R′]αi,i [R′]i,αi /[R′]i,i )[ R̂]αi,i

{Note that αi = 1, . . . , i − 1, i + 1, . . . , L }
6: ξ̂i := zi − Zαi β̂i
7: end for
8: OUTPUT: ξ̂ {N × Lmatrix with the estimated noise}

Algorithm 2 Signal subspace estimation
1: INPUTS: Y ≡ [y1, y2, . . . , yN ], R̂y ≡, (YYT )/N, ξ̂
2: R̂n := 1/N

∑
i (̂ξîξ

T
i )

3: R̂x := 1/N
∑

i ((yi − ξ̂i)(yi − ξ̂Ti )) {estimate of R̂x}
4: E := [e1, . . . , eL] {ei are eigenvectors of R̂x}
5: δ := [δ1, ..., δL]
6: (̂δ, π̂) := sort(δ) {sort δi in ascending order of the

corresponding eigenvalues and save the permutation
π̂}

7: p̂ := number of terms δ̂i < 0 {This is a simpli-
fied description of the minimization function, which
is fully described in [60] and ommitted here for space
considerations.}

8: OUTPUT: X̂ = 〈[̂
ei1, · · · , êip

]〉 {Estimated subspace}

2.3 Methods for endmember identification
This section introduces two different methods for iden-
tifying the endmember signatures in the hyperspectral
data: orthogonal subspace projection with Gram-Schmidt
orthogonalization (OSP-GS) [18] and N-FINDR [23].

2.3.1 Orthogonal subspace projection with Gram-Schmidt
orthogonalization (OSP-GS)

The OSP algorithm [18] was originally developed to find
spectrally distinct signatures using orthogonal projec-
tions. For this work, we have used an optimization of this
algorithm (see [61,62]) which allows calculating the OSP
without requiring the computation of the inverse of the
matrix that contains the endmembers already identified
in the image. This operation, which is difficult to imple-
ment in parallel, is accomplished using the Gram-Schmidt
method for orthogonalization. This process selects a finite
set of linearly independent vectors A = {a1, . . . , ap} in
the inner product space Rn in which the original hyper-
spectral image is defined, and generates an orthogonal
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set of vectors B = {b1, . . . ,bp} which spans the same p-
dimensional subspace of Rn (p ≤ n) as A. In particular, B
is obtained as follows:

b1 = a1, e1 = b1‖b1‖
b2 = a2 − proj b1(a2), e2 = b2‖b2‖
b3 = a3 − proj b1(a3) − proj b2(a3), e3 = b3‖b3‖
b4 = a4 − proj b1(a4) − proj b2(a4) − proj b3(a4), e4 = b4‖b4‖
...

...
bp = ap − ∑p−1

j=1 proj bj (ap), ep = bp
‖bp‖ ,

(2)

where the projection operator is defined as

projb(a) = < a,b >

< b,b >
b, (3)

and< a,b > denotes the inner product of vectors a and b.
The sequence b1, . . . ,bp in Equation (2) represents the

set of orthogonal vectors generated by the Gram-Schmidt
method, and thus, the normalized vectors e1, . . . , ep in
(2) form an orthonormal set. As far as B spans the same
p-dimensional subspace of Rn as A, an additional vector
bp+1 computed by following the procedure stated at (2)
is also orthogonal to all the vectors included in A and B.
This algebraic assertion constitutes the cornerstone of the
OSP method with Gram-Schmidt orthogonalization.
From the computational point of view, this algorithm

has to be augmented with some sort of column pivot-
ing that, at each step of the orthogonalization, detects the
pixel with maximum projection value among those of the
image (see [63] for details). Unfortunately, this requires
that each projector is applied to all pixels of the scene,
not only to p, yielding a significant increase in the arith-
metic cost of the algorithm. Given the 3n flops required
to apply the projector (3) to one pixel, and the p endmem-
bers that have to be identified, the result is a total cost for
the algorithm of 3mnp flops.

2.3.2 N-FINDR
The N-FINDR algorithm [23] is one of the most widely
used and successfully applied methods for automatically
determining endmembers in hyperspectral image data
without using a priori information. This algorithm looks
for the set of pixels with the largest possible volume by
inflating a simplex inside the data. The procedure begins
with a random initial selection of pixels (see Figure 3a).
Every pixel in the image must be evaluated in order to
refine the estimate of endmembers, looking for the set of
pixels that maximizes the volume of the simplex defined
by the selected endmembers. Themathematical definition
of the volume of a simplex formed by a set of endmem-
ber candidates is proportional to the determinant of the
set augmented by a row of ones. The determinant is only
defined in the case where the number of features is p − 1,

p being the number of desired endmembers [9]. Since in
hyperspectral data typically n � p, a transformation that
reduces the dimensionality of the input data is required.
In this work, we use the principal component transform
(PCT) [64] for this purpose. The corresponding volume
is calculated for every pixel in each endmember position
by replacing that endmember and finding the resulting
volume. If the replacement results in an increase of vol-
ume, the pixel replaces the endmember. This procedure is
repeated in iterative fashion until there are no more end-
member replacements (see Figure 3b). The method can
be summarized by a step-by-step algorithmic description
which is given below for clarity:

1. Feature reduction. Apply a dimensionality reduction
transformation such as PCT to reduce the
dimensionality of the data from n to d = p − 1,
where p is an input parameter to the algorithm
(number of endmembers to be extracted). The basic
idea of PCT is to orthogonally project the data into
a new coordinate system, defined by the variance of
the original data, i.e. the direction that accounts for
the greatest variance of the original data will be the
first coordinate (the principal component) of the
transformed system, the second dimension will be
the direction with the second largest variance, and
so on. PCT requires the computation of the singular
values and right singular vectors of
Ỹ = (Y − Y)T (Y − Y). In particular, consider the
singular value decomposition (SVD) Ỹ = U�VT

[64,65]. Then, the PCT performs the dimension
reduction n → (d = p − 1) by replacing Y with the
first p − 1 columns of ỸV.

2. Initialization. Let {e(0)
1 , e(0)

2 , . . . , e(0)
p } be a set of

endmembers randomly extracted from the input
data.

3. Volume calculation. At iteration k ≥ 0, calculate the
volume defined by the current set of endmembers as
follows:

V
(
e(k)
1 , e(k)

2 , . . . , e(k)
p

)
=

∣∣∣∣det
[

1 1 . . . 1
e(k)
1 e(k)

2 . . . e(k)
p

]∣∣∣∣
(p − 1)!

.

(4)

4. Replacement. For each pixel vector y in the input
hyperspectral data, recalculate the volume by testing
the pixel in all p endmember positions, i.e., first
calculate V

(
y, e(k)

2 , . . . , e(k)
p

)
, then calculate

V
(
e(k)
1 , y, . . . , e(k)

p
)
, and so on until

V
(
e(k)
1 , e(k)

2 , . . . , y
)
. If none of the p recalculated

volumes is greater than V
(
e(k)
1 , e(k)

2 , . . . , e(k)
p

)
, then
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Figure 3 Graphical interpretation of the N-FINDR algorithm in a 3-dimensional space. (a) N-FINDR initialized randomly (p = 4) and (b) final
volume estimation by N-FINDR.

no endmember is replaced. Otherwise, the
combination with maximum volume is retained. Let
us assume that the endmember absent in the
combination resulting in the maximum volume is
denoted by e(k+1)

i . In this case, a new set of
endmembers is produced by letting e(k+1)

i = y and
e(k+1)
l = e(k)

l for l 
= i. The replacement step is
repeated for all the pixel vectors in the input data
until all the pixels have been exhausted.

Computationally, this algorithm requires two major
operations: feature reduction and volume calcula-
tion + replacement. Exploiting that n � m and that only a
few columns of ỸV are required, determines that the PCT
(first operation) can be computed in only 2mn2 flops,
which are basically due to the calculation of the SVD of Ỹ.
The determination of the volumes are much more expen-
sive. In particular, a straight-forward implementation of
the computations of the determinants in steps (3)–(4), via
e.g. the LU factorization (with partial pivoting), renders a
total cost of 2mp4/3 flops, which results from having to
compute mp factorizations of p × p matrices, with a cost
of 2p3/3 flops per LU factorization. In [63], we describe
a refined alternative that, by exploiting simple properties
of the LU factorization, reduces this cost to mp3 + 2p4/3
flops.
As a final comment, it has been observed that different

random initializations ofN-FINDRmay produce different
final solutions. Thus, our N-FINDR algorithm was imple-
mented in iterative fashion, so that each sequential run
was initialized with the previous algorithm solution, until
the algorithm converges to a simplex volume that can-
not be further maximized. Our experiments show that, in
practice, this approach allows the algorithm to converge
in a few iterations only.

2.4 Methods for abundance estimation
This section introduces two differentmethods for estimat-
ing the abundance fractions: unconstrained least squares

(ULS) [65] and non-negative constrained least squares
(NCLS) [11].

2.4.1 Unconstrained least squares
Once a set of E = {ej}pj=1 endmembers has been estimated
using an endmember extraction algorithm, an uncon-
strained p-dimensional estimate of the endmember abun-
dances in a given pixel in y can be simply obtained (in least
squares sense) from the following expression [65]:

âUC = (ETE)−1ETy. (5)

In the computation of (5), we can leverage that the term
M = (ETE)−1ET remains fixed for all the pixels of the
image. Thus, by explicitly obtaining M first, the cost of
computing âUC for all the scene pixels is basically reduced
to 2mnp flops, since n, p � m and, therefore, the number
of arithmetic operations that are necessary to form M is
negligible compared to that.
The main advantages of the unconstrained abundance

estimation approach in Eq. (5) are the simplicity of its
implementation and its fast execution. However, under
this unconstrained model, the derivation of negative
abundances is possible if the model endmembers are not
pure or if they are affected by variability caused by spatial
or temporal variations [9]. To address this issue, two phys-
ical constrains can be introduced into themodel described
in Eq. (1), these are the abundance non-negativity con-
straint (ANC), i.e., aj ≥ 0, and the abundance sum-to-one
constraint (ASC), i.e.,

∑p
j=1 aj = 1 [12]. Imposing the ASC

results in the following optimization problem:

mina∈�

{(
y − a · E)T (

y − a · E)}
,

subject to: � =
⎧⎨
⎩a

∣∣∣∣∣∣
p∑

j=1
aj = 1

⎫⎬
⎭ .

(6)
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Similarly, imposing the ANC results in the optimization
problem:

mina∈�

{(
y − a · E)T (

y − a · E)}
,

subject to: � = {a | aj ≥ 0 for all j}.
(7)

As indicated in [12], a fully constrained (i.e. ASC-
constrained and ANC-constrained) estimate can be
obtained in least-squares sense by solving the optimiza-
tion problems in Eq. (6) and Eq. (7) simultaneously. While
partially constrained solutions imposing only the ANC
have found success in the literature [11], the ASC is how-
ever prone to criticisms because, in a real image, there is
a strong signature variability [66] that, at the very least,
introduces positive scaling factors varying from pixel to
pixel in the signatures present in the mixtures. As a result,
the signatures are defined up to a scale factor, and thus,
the ASC should be replaced with a generalized ASC of the
form

∑p
j=1 ξj · aj = 1, in which the weights ξj denote the

pixel-dependent scale factors [67]. What we conclude is
that the non-negativity of the endmembers automatically
imposes a generalized ASC. For this reason, in the follow-
ing section we describe a solution that does not explicitly
impose the ASC but only the ANC.

2.4.2 Non-negative constrained least squares
A NCLS algorithm can be used to obtain a solution
to the ANC-constrained problem described in Equation
(7) in iterative fashion [11]. A successful approach for
this purpose in different applications has been the image
space reconstruction algorithm (ISRA) [68], a multiplica-
tive algorithm for solving NCLS problems. The algorithm
is based on the following iterative expression:

âk+1 = âk
(

ET · y
ETE · âk

)
, (8)

where the endmember abundances at pixel y are iter-
atively estimated, so that the abundances at the k+1-
th iteration, âk+1, depend on the abundances estimated
at the k-th iteration, âk . The procedure starts with an
unconstrained abundance estimation âUC which is pro-
gressively refined in a given number of iterations. For
illustrative purposes, Algorithm 3 shows the ISRA pseu-
docode for unmixing one hyperspectral pixel vector y
using a set of E endmembers. For simplicity, in the pseu-
docode y is treated as an n-dimensional vector, and E
is treated as a n × p-dimensional matrix. The estimated
abundance vector â is a p-dimensional vector, and vari-
able iters denotes the number of iterations per pixel in
the abundance estimation process (in this work, we set
iters = 200 as we have found good results empirically

using this parameter setting). The pseudocode is subdi-
vided into the numerator and denominator calculations
in Equation (8). When these terms are obtained, they are
divided and multiplied by the previous abundance vec-
tor. It is important to emphasize that the calculations of
the fractional abundances for each pixel are independent,
and therefore they can be calculated simultaneously with-
out data dependencies, thus increasing the possibility of
parallelization.

Algorithm 3 Pseudocode of ISRA algorithm for unmixing
one hyperspectral pixel vector y using a set E of p
endmembers

// For a certain number of iterations
for (k = 0; k < iters; k++) {
// For all endmembers
for (j = 0; j < p; j++) {
// For all bands
for (i = 0; i < n; i++) {
// Calculate the numerator of Equation (8)
numerator = numerator + E[i][j]*y[i];
// Calculate denominator of Equation (8) using â

from previous iteration (in first iteration, â = âUC)
for (s = 0; s < p; s++) {
dot += E[i][s]*â[s];

} end for
denominator += dot * E[i][j];
dot = 0;

} end for
// Calculate the new â
â[j] = â[j]* numerator

denominator );
numerator = 0;
denominator = 0;

} end for
} for

The pseudocode for the ISRA algorithm reveals that this
procedure is composed of very simple arithmetic oper-
ations, but also that the innermost loop, for variable s,
dominates its arithmetic cost. In particular, as two arith-
metic operations are performed at each iteration of this
loop, this yields a total cost for the algorithm of 2np2 · iters
flops.

3 Multi-core implementations
The six numerical methods introduced in the previous
section for the different stages of hyperspectral unmix-
ing can be decomposed into a collection of basic and
advanced dense linear algebra operations. Among the
basic ones, we can find, e.g, vector scalings, inner (dot)
products, matrix-vector products, solution of triangu-
lar systems, matrix–matrix products, etc. The advanced
ones comprise the solution of linear systems of equations,
matrix inversion, eigenvalue problems, and singular
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values problems, among others. Fortunately, these oper-
ations are quite common to many other scientific and
engineering applications, and nowadays there exist lin-
ear algebra libraries offering highly tuned and numerically
reliable implementations of most of these operations for
a variety of computer architectures, including multi-core
processors.
In particular, Basic Linear Algebra Subprograms (BLAS)

[69-71] defines the specification (the interface and func-
tionality) of a collection of routines for basic linear
algebra operations as those listed above. There is a
legacy implementation of BLAS publicly available at
http://www.netlib.org, but the aspect that makes BLAS
really useful is the existence of implementations devel-
oped by most hardware vendors and highly tuned for
their specific products. These developments include Intel
MKL, AMD ACML, and IBM ESSL for their multi-
core designs, but also more generic efforts like Goto-
BLAS2 and ATLAS. This approach has revealed so
successful that NVIDIA, manufacturer of fancier hard-
ware architectures such as GPUs, also offers their cus-
tomers its own specialized implementation, CUBLAS.
For the type of architectures considered in our work,
i.e. multi-core processors, an appealing property of these
libraries is that they can exploit the existence of hard-
ware concurrency, in the form of several cores, by
carefully using optimized multi-threaded codes. For
example, the implementation of the matrix–matrix prod-
uct kernel from MKL (routine gemm), executed on a
single core of an Intel Xeon core, attains more than
90% of the peak performance of the architecture when
operating on matrices of moderate to large size. If
several cores are used, and the problem dimension is
scaled proportionally, the routine still achieves a similar
performance rate.
The contents of BLAS are structured into three sepa-

rate levels—BLAS-1, BLAS-2 and BLAS-3—according to
the number of flops and memory operations (memops)

carried out by the kernels. Thus, routines from BLAS-
1 perform a linear number of flops on a linear num-
ber of data items and, therefore, memops; an example
of a BLAS-1 routine is the inner product of two vec-
tors. For BLAS-2, both flops and memops are quadratic
on the amount of data items; the classical example for
this level is the matrix-vector product. Finally, for BLAS-
3 the flops are cubic while the memops are quadratic;
e.g., the matrix–matrix product. The type of routine
(level) has important implications on performance as
current architectures feature a wide difference between
the floating-point performance (flops/sec.) of the pro-
cessor and the memory bandwidth (memops/sec.), and
this gap continues growing. Concretely, only the routines
from BLAS-3 exhibit enough data reuse so as to exploit
the hierarchical structure of the memory subsystem of
current computers, with several layers of cache, and thus
hide the large latencies that requires the access to data
that lie on the main memory. Developers leverage this
property by designing so-called blocked algorithms for
their implementations of BLAS-3 kernels that retrieve
data from the main memory to the processor by blocks
(square or rectangular submatrices), and operate with
them as much as possible before returning the results
back to memory. This is clearly not possible for BLAS-
1 and BLAS-2 as the routines in these levels exhibit a
flops/memops ratio that is O(1). An additional advantage
of BLAS-3 over the two other levels is that, in general,
the use of multiple cores in a concurrent execution, is
only justified if the arithmetic cost of the operation is
cubic. In consequence, when implementing the spectral
unmixing methods, it will be very important to iden-
tify numerical operations that can be casted in terms
of the most convenient routine from BLAS, preferably
BLAS-3.
Linear Algebra PACKage (LAPACK) [72] provides

advanced methods for dense linear algebra operations as
those mentioned above. There is a legacy implementation

Figure 4 AVIRIS hyperspectral over the Cuprite mining district in Nevada. (a) False color composition and (b) U.S. Geological Survey mineral
spectral signatures used for validation purposes.

http://www.netlib.org
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Table 2 VD estimates of p for various false alarm
probabilities (PF)

PF Number of endmembers p

10−1 37

10−2 28

10−3 25

10−4 20

10−5 19

10−6 19

10−7 17

10−8 16

HySime provided an estimate of p = 19 for the Cuprite scene.

at http://wwww.netlib.org, but some hardware vendors
also include tuned versions of certain routines in their
mathematical libraries (e.g., Intel MKL and AMDACML).
The routines in LAPACK make a heavy use of kernels
from BLAS, thus inheriting the performance (and par-
allelism) intrinsic to the latter. LAPACK provides spe-
cialized implementations that can leverage special matrix
properties like symmetry, band structure, positive defi-
niteness, etc., when solving linear systems or linear least
squares problems as well as calculating the eigenval-
ues/singular values of a matrix. To improve numerical
accuracy and increase performance, it is very important to
select the appropriate routine from LAPACK as, in many
cases, this library offers different solvers to tackle one
particular problem.
Our task of developing high performance, possi-

bly parallel, codes for the spectral unmixing methods
started by (i) carefully selecting the appropriate data
structures to hold the data (image and intermediate
results); and (ii) developing an initial sequential imple-
mentation of the method, while simultaneously identi-
fying basic and advanced linear algebra operations that
could be performed by invoking the appropriate rou-
tines from BLAS and LAPACK. For those parts of the
method that could be performed using kernels from
these libraries, the implementation/optimization task
was over.
However, during the implementation of the methods,

we detected certain parts of the methods that had to be
manually encoded, usually in the form of (nested) loops.
For many of these code fragments, special care was taken
to apply basic optimizations such as avoiding expensive

operations, eliminating common subexpressions, avoid-
ing branches, selecting the appropriate order in nested
loops, using the appropriate compiler optimizations, etc.
After this stage, the execution of the code was profiled
to identify possible performance bottlenecks. For those
fragments of code, in particular loops, that exhibited a sig-
nificant cost (execution time), we analyzed the possibility
of reducing their impact by leveraging loop concurrency
via OpenMP [73]. This is a standard parallelization tool
that is available in most current compilers (e.g., Intel
icc, GNU gcc) and allows an easy and, in most cases,
efficient parallelization of C/Fortran codes on multi-core
processors.
Each one of these implementation and optimization

stages was carefully monitored from the point of view
of correctness, experimental accuracy, and performance.
The result of this process was the spectral unmixing
routines that we evaluate in the next section.

4 Experimental results
This section is organized as follows. Section 4.1 describes
the hyperspectral data set used in experiments. In
Section 4.2 we describe the multi-core processing plat-
forms. Finally, Section 4.3 performs a detailed assessment
of the performance versus energy consumption of the
considered multi-core architectures when executing the
different unmixing chains that can be formed with the
processing modules described in Section 2.

4.1 Hyperspectral data
The hyperspectral data set used in experiments was col-
lected by the AVIRIS sensor over the Cuprite mining
district in Nevada in the summer of 1997 (see Figure 4).
It is available online (in reflectance units) after atmo-
spheric correction [74]. The portion used in experiments
corresponds to a 350 × 350-pixel subset of the sector
labeled as f970619t01p02 r02 sc03.a.rfl in the online data,
which comprise 188 spectral bands in the range from
400 to 2,500 nm and a total size of around 50MB. Water
absorption bands as well as bands with low signal-to-noise
ratio (SNR) were removed prior to the analysis. The site is
well understood mineralogically, and has several exposed
minerals of interest, including alunite, buddingtonite, cal-
cite, kaolinite, andmuscovite. Reference ground signatures
of the above minerals, available in the form of a USGS
library [75] have been used in the literature for evaluation
purposes [16].

Table 3 Spectral angle values (in degrees) between the target pixels extracted by the OSP-GS algorithm and the
reference USGSmineral signatures for the AVIRIS Cuprite scene

Algorithm Alunite (°) Buddingtonite (°) Calcite (°) Kaolinite (°) Muscovite (°) Average (°)

OSP-GS 5.48 4.08 5.87 11.14 5.68 6.45

N-FINDR 4.81 4.29 7.60 9.92 5.05 6.33

http://wwww.netlib.org
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Figure 5 Estimated versus ground-truth endmembers for minerals: (a) alunite, (b) buddingtonite, (c) calcite, (d) kaolinite and (e)
muscovite.
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Figure 6 Experimental setup for power evaluation.

For illustrative purposes, Table 2 provides the values of
p (number of endmembers) estimated by the VD method
for the considered hyperspectral scene, using different val-
ues of the false alarm probability (PF ). The number of
endmembers estimated by HySime was p = 19 for the
Cuprite scene. As shown by Table 2, a consensus between
VD and HySime was observed for PF = 10−5 and PF =
10−6. On the other hand, Table 3 shows the spectral
angles (in degrees) between the most similar endmem-
bers extracted by the OSP-GS and the reference USGS
spectral signatures available for this scene. The range of
values for the spectral angle is [0°, 90°], with values close
to 0° indicating higher spectral similarity. As shown by
Table 3, the endmembers extracted by both the OSP-
GS and N-FINDR algorithms are very similar, spectrally,
to the USGS reference signatures, despite the potential
variations (due to posible interferers still remaining after
the atmospheric correction process) between the ground
signatures and the airbone data. For illustrative pur-
poses, Figure 5 plots the estimated endmembers against
the ground-truth spectra for the considered endmember
extraction algorithms.

4.2 Multi-core platforms
In 2004, the evolution of processor architecture shifted
from a progressive increment of clock frequency to
a growth in the number of cores. Thus, although
current processors still feature a moderate number
of cores (between 4 and 16), the trend indicates
that next generations will include a larger number
of cores. On the other hand, as-of-today it is possi-
ble to build a commodity shared-memory multiproces-
sor with four sockets that can accommodate 16-core
processors each, for a total of 64 cores in a single
desktop platform.
Following this trend towards high levels of hardware

concurrency at the core-level, all the experiments were
conducted on a platform equipped with 4 AMD Opteron
6172 processors, with 12 cores per processor, and a total
of 48 cores in the platform. The software employed in the
experiments included Intel MKL v10.3 implementation of
the BLAS and LAPACK libraries, and Intel icc v12.1.3
compiler. The codes were compiled with the optimization
flag -O3, and single-precision arithmetic was employed in
all experiments. The explosion of hardware concurrency

Table 4 Processing time (seconds), energy consumption (Watts-hour), andmaximum power dissipation (Watts) of
different full spectral unmixing chains applied to the AVIRIS Cuprite scene

Number of Endmember Abundance Time Energy Maximum

endmembers identification estimation power

VD (20) OSP-GS (34) ULS (20) 0.413 0.0468 492

VD (20) OSP-GS (34) ISRA (48) 2.957 0.4297 543

VD (20) N-FINDR (20) ULS (20) 2.332 0.2187 489

VD (20) N-FINDR (20) ISRA (48) 4.899 0.6093 563

HySime (48) OSP-GS (34) ULS (20) 15.508 2.1093 540

HySime (48) OSP-GS (34) ISRA (48) 16.762 2.2812 597

HySime (48) N-FINDR (20) ULS (20) 16.971 2.2343 540

HySime (48) N-FINDR (20) ISRA (48) 18.077 2.4140 571

The values inside the parentheses are the number of cores used in the implementation of each method.
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Table 5 Processing time (seconds) by each different processingmodule for theAVIRIS Cuprite scene in amulti-core system

Number of endmembers Endmember identification Abundance estimation

VD HySime OSP-GS N-FINDR ULS ISRA

0.15 15.2 0.25 2.17 0.02 2.55

in multi-core processors requires the development of effi-
cient parallel software that attains a significant fraction of
the platform peak performance. However, in some cases
the target method does not exhibit enough concurrency to
efficiently exploit all the computational units in the plat-
form. Therefore, when executing this kind of methods, the
use of all the cores results in an increment of the execution
time (due to the overhead introduced by the synchroniza-
tion, communication and management of the cores) and
the corresponding waste of energy. In this context, it is
preferable to limit the number of cores employed, idling
the rest of them so that the OS can move these cores into
an energy-saving state (C-state) that yields a significant
reduction of dynamic power.
In our study of the spectral unmixing methods,

each code was evaluated separately to determine the
optimal number of cores from the point of view
of execution time. Given that the energy consump-
tion equals the product of power dissipation times
execution time, in general, reducing the execution
time is an important step towards increasing energy
efficiency.
In our experiments, the power consumption was mea-

sured using an internal DC powermeter. This device
obtains 25 samples per second and is attached to the 12V
lines connecting the power suply with the motherboard
(chipset plus processors) of the platform (see Figure 6).
With this configuration, the results are not affected by
inefficiencies of the power supply unit, or the “noise” due
to the operation of other hardware components like fans,
disks, etc. Also, samples from the powermeter are col-
lected in a separate system, to prevent the measurements
from impairing the accuracy of the tests. The error of the
device is less than 5%. The powermeter is controlled via
our library pmlib, which requires minimum changes to
the code.

4.3 Assessment of performance versus energy
consumption

In this section, we analyze the processing times, energy
consumption and maximum power obtained by different
combinations of the modules reported in Section 2 for

estimating the number of endmembers (VD and HySime),
identifying the endmember signatures (OSP-GS and N-
FINDR), and estimating the abundances (ULS and ISRA).
In all cases, the number of endmembers to be extracted
was set to p = 19. Table 4 shows the processing times,
energy consuption and maximum power for different full
unmixing chains formed using combinations of the afore-
mentioned modules. In Table 4, we also indicate (in the
parentheses) the number of cores from the AMDOpteron
6172 system that were used in the multi-core implementa-
tion of each method. It is important to emphasize that, in
order to satisfy the real-time processing constraint for the
AVIRIS Cuprite scene, we should be able to process it in
less than 1.98 s which is the time needed by the instrument
to collect the data. As shown in Table 4, only the chain
VD+OSP-GS+LSU achieved real-time performance, with
two other chains (VD+OSP−GS+ ISRA and VD+N-
FINDR+ ISRA) providing near real-time performance in
the target multi-core architecture. It is remarkable that the
inclusion of HySime for the identification of the number
of endmembers significantly increments the processing
times and also increases the energy consumption.
In order to investigate the individual contributions of

themethods in different parts of the unmixing chain to the
total processing time, Table 5 reports the processing times
measured for all the individual methods when processing
the AVIRIS Cuprite scene. It can be observed that, by far,
HySime is the most computationally expensive method
while VD provides an alternative for this part of the chain
which is about 100× faster in comparison. Table 5 also
reveals that the OSP-GS method used for the endmem-
ber identification is about 9× faster than N-FINDR in
the multi-core. Finally, ISRA is more than 100× slower
than ULS as a consequence of the fact that it imposes
the non negativity constraint in the abundance estima-
tion. The results in Table 5 suggest that the combination
VD+OSP-GS+ULS provides a good basis for fast spectral
unmixing in the considered multi-core platform (in fact,
this combination is the only one that results in real-time
performance in our experiments).
For comparative purposes, Table 6 shows the process-

ing times measured for the same methods reported in

Table 6 Processing time (seconds) by each different processingmodule for the AVIRIS Cuprite scene in a GPU system

Number of endmembers Endmember identification Abundance estimation

VD HySime OSP-GS N-FINDR ULS ISRA

0.405 1.655 0.024 0.069 0.038 0.858
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Table 5 implemented in the NVidiaTM GeForce GTX 580
GPU [76], which features 512 processor cores operating
at 1.544GHz, with a total dedicated memory of 1,536MB,
at 2.004MHz (with 384-bit GDDR5 interface) and mem-
ory bandwidth of 192.4GB/s. The GPU is connected to an
Intel core i7 920 CPU at 2.67GHz with eight cores, which
uses a motherboard Asus P6T7 WS SuperComputer. As
shown in Table 6, the processing times in the GPU are
comparatively similar to those reported for the multi-core
for the OSP-GS and ULS algorithms. On the other hand,
the times for HySime, N-FINDR and ISRA are sensibly
lower in the GPU, with only the VD being slightly faster in
the multi-core than in the GPU. However, the energy con-
sumption is much higher in the GPU, which still makes
the multi-core platform a more interesting platform from
an operational point of view.

5 Conclusions
In this article, we have addressed hyperspectral imaging
via spectral unmixing on multi-core processors, expos-
ing a detailed evaluation of the performance and energy
requirements of efficient parallel codes for all the stages
in the spectral unmixing chain on multi-core processors.
Specifically, we have implemented modules for (i) the
estimation of the number of endmembers, (ii) the iden-
tification of a collection of these, and (iii) the estimation
of the fractional abundances, using kernels from highly
tuned linear algebra libraries and OpenMP directives on a
platform equipped with 48 AMD cores.
Our study offers two major conclusions:

• Three of the unmixing chains attain real-time
performance (VD+OSP−GS+ULS) or close to it
(VD+OSP−GS+ ISRA and VD+N-FINDR+ULS)
as the underlying modules VD, OSP-GS, N-FINDR,
LSU and ISRA exhibit a high degree algorithmic
concurrency that can be leveraged to yield efficient
parallel implementations on current multi-core
processors. On the other hand, HySime presents a
performance bottleneck that turns those chains that
utilize this module inappropriate for real-time image
processing.

• With the expected increase in the number of cores in
future architectures, shared-memory platforms
equipped with a few multi-core processors are a
competitive approach to efficiently tackle
computationally expensive hyperspectral imaging
applications on cheap commodity hardware.
Compared with FPGAs, conventional multi-core
processors offer the plain advantage of being much
easier to program, considerably improving the
software development cycle. Furthermore,
general-purpose cores offer an appealing
performance-energy ratio and they clearly

outperform GPUs in their tolerance to incorporate
radiation-avoidance mechanisms.

As future work, we plan to analyze in more detail
the energy consumption of other types of architectures,
including FPGAs or GPUs, which are currently considered
as candidate specialized hardware platforms for onboard
hyperspectral image processing.
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