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Abstract

Spectrum sensing is key to many applications like dynamic spectrum access (DSA) systems or telecom regulators who
need to measure utilization of frequency bands. The International Telecommunication Union (ITU) recommends a 10
dB threshold above the noise to decide whether a channel is occupied or not. However, radio frequency (RF) receiver
front-ends are non-ideal. This means that the obtained data is distorted with noise and imperfections from the analog
front-end. As part of the front-end the automatic gain control (AGC) circuitry mainly affects the sensing performance
as strong adjacent signals lift the noise level. To enhance the performance of spectrum sensing significantly we focus
in this article on techniques to remove the noise caused by the AGC from the sensing data. In order to do this we have

of spectrum usage by 60%.

applied matrix factorization techniques, i.e, SVD (singular value decomposition) and NMF (non-negative matrix
factorization), which enables signal space analysis. In addition, we use live measurement results to verify the
performance and to remove the effects of the AGC from the sensing data using above mentioned techniques, i.e,,
applied on block-wise available spectrum data. In this article it is shown that the occupancy in the industrial, scientific
and medical (ISM) band, obtained by using energy detection (ITU recommended threshold), can be an overestimation

1 Introduction
Nowadays the application of short range wireless tech-
nologies continues to grow, which requires the radio
spectrum, a scarce resource, to be well-managed. Most
of these modern wireless technologies take place in a
frequency range from 200 MHz to 3 GHz where spec-
trum sensing is key to many applications. For instance,
several applications in this frequency range need spec-
trum sensing to identify white spaces (dynamic spectrum
access (DSA) applications) but also telecom operators use
spectrum sensing to measure utilization and interference.
An important part of these short range radio communi-
cation systems is currently active in the license-free 2.4
GHz industrial, scientific and medical (ISM) band, i.e.,
systems like Wi-Fi (IEEE 802.11 b/g/n), Bluetooth, wire-
less sensor networks, wireless A/V links (e.g., wireless
cameras). In this respect spectrum management becomes
more and more of importance in addressing coexistence
issues between such systems in the 2.4 GHz ISM band.

In this article, we have used this band as a test case, how-
ever, the applied techniques can be used for other bands
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as well. To monitor the radio spectrum usage in this band
we issue the RFeye mobile spectrum monitoring equip-
ment of CRFS [1]. The mobile monitoring system can
be built into vehicles to continuously measure spectrum
usage on a country-wide scale while driving [2]. However,
in a number of areas (very close to high power transmit-
ters, e.g., UMTS stations) the detected input signals were
significantly stronger than expected and measurements
were affected as the automatic gain control (AGC) system
responded causing the noise floor in that particular band
to be lifted (see Figure 1). Note that these AGC systems
can be found in virtually all radio receivers, which means
that the lifting effect is not limited to this specific equip-
ment. In several cases the AGC was fully engaged and
the front-end of the receiver saturated thereby corrupting
the data for that particular sweep [3]. The non-stationary
white Gaussian noise caused by the AGC in the measure-
ment data is the focus of this work. In the light of spec-
trum monitoring it is paramount to have the AGC noise
removed from the measurement data to ensure that the
in-band signals, and inherently the spectrum occupancy,
can be assessed more accurately. Several methods are
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



van Bloem et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:72 Page 2 of 19

http://asp.eurasipjournals.com/content/2013/1/72

-80
-90
r 4400
E
@ 300 4110
.ﬂ
£ 4120
g
& r 1130
@
E
E b d4a0
150
160
0 170
2100 2150 2200 2250 2300 2350 2400 2450 2500
- Frequency [MHz] -
UMTS Downlink ISM band (e.g. Wi-Fi)
Figure 1 UMTS base stations account for AGC noise in the ISM band. The AGC lifts the noise floor due to strong signals in the UMTS downlink
band (2110-2170 MHz) and is visible as wide-band artifacts in the spectrogram. The noise floor is lifted for tens of MHz, thereby also causing distortion
in the 2.4 GHz ISM band. Note that the mobile monitoring equipment picks up the high signal power when an UMTS base station is in the vicinity.

AGC. Along this line, the concept of AGC noise and how it
affects sensing performance is illustrated in Figure 2. The
aforementioned matrix factorization techniques, known
from the field of principal component analysis [4,6] and
image processing, lend themselves for reducing spectral
distortion and thus are considered for removal of AGC

described in literature [4,5] to separate the noise and sig-
nal space. In this article, we consider matrix factorization
techniques in order to detect and remove the AGC noise
from a block of data. This relates to the mobile monitoring
equipment where the measurement data is provided in a
spectrogram representation corrupted by noise from the
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Figure 2 Noise distributions. Both the thermal noise power o, the,mal and AGC noise power UKGC contribute to the total noise power Unzoise as
indicated by the dashed curve. Here the thermal noise is accentuated in Figure 1a and the AGC noise in Figure 1b. Additionally, both are modeled
as white Gaussian processes whereas the sum of distributions provides a nearly perfect match with the measured noise from the mobile spectrum
monitoring equipment. The latter is depicted by the bar plot as depicted in Figure 1¢. The objective is to remove the dark-shaded Gaussian
distributed AGC noise contribution which is shown in Figure 1b. This enhances the detection performance as illustrated in Figure 1d.
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noise from the spectrogram. In what follows, the per-
formance of the proposed scheme is provided in terms
of probability of detection, probability of false alarm and
spectrum occupancy.

The rest of the article is organized as follows. We first
provide the background of AGC systems in Section 2.
Next, in Section 3 an overview of related work in lit-
erature on spectrum sensing is presented supplemented
with the research objectives. In Section 4, we introduce
the mobile monitoring network and measurements using
the monitoring equipment to assess the influence of AGC
on spectrum sensing. Then the system model used for
analysis, including the matrix factorization techniques, is
provided in Section 5. The proposed method for removal
of non-stationary AGC noise with the aid of matrix fac-
torization is presented in Section 6. Along this line, in
Section 7 we present the performance evaluation of the
proposed method and a comparison is made with energy
detection based spectrum sensing. In addition, a valida-
tion of the proposed method is provided to verify that the
proposed method eliminates exclusively the AGC noise.
Finally, the conclusions are drawn in Section 8.

2 Background

Nowadays, lots of radio systems and most of the spectrum
analyzers are based on the super-heterodyne principle,
i.e., the received signal is down-converted to a fixed inter-
mediate frequency by the application of frequency mixing
(or heterodyning). The conversion to an intermediate fre-
quency is useful since filters can be set to a fixed frequency
for which very sharp selective filters can be built. Further-
more, this makes them easier to tune and fewer stages
for filtering are required when compared with the low-
cost direct conversion (zero-IF) receivers which operate
directly on the original radio carrier frequency. Due to
the heterodyne principle the super-heterodyne radio com-
prises two stages: radio frequency (RF) and intermediate
frequency (IF). Note that a super-heterodyne receiver can
also be built of several IF stages to improve the radio
reception; two or three IF stages are called double or triple
conversion. However, these types of receivers are more
costly and come at the expense of additional circuitry.

Each stage of the super-heterodyne receiver requires an
AGC control loop in order to maintain the signal levels
within an acceptable range. As a consequence, due to the
AGC operation the weaker signals receive more gain and
the stronger signals receive attenuation, i.e., an AGC sys-
tem uses a high and low gain setting which are defined by
respectively a lower and upper threshold.

An outline of the heterodyne receiver and the AGC
loops is shown in Figure 3 for a system with one IF-
stage. Regarding the RF stage, an AGC loop is necessary
to prevent strong RF signals from overdriving the RF
amplifier and mixer. This is considered paramount while
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overdriving can cause undesirable side-effects such as
inter-modulation products and higher harmonics which
can degrade the sensitivity of the receiver and may mask
the wanted signal. In line with this, AGC control entails
adjustments in RF-gain in order to ensure that the RF-
amplifier operates in its linear region. This to prevent
the RF-amplifier from running into saturation (non-linear
region) which in turn would cause the above-mentioned
inter-modulation problems. On the other hand, as a draw-
back note that a reduction in RF gain will lead to a higher
noise figure (NF) of the system.

In the IF-stage a second AGC system is active to main-
tain a constant signal level at the input of the analogue-
to-digital converter (ADC), this because of the limited
dynamic range of the ADC. This requires the signal
input to be scaled properly for A/D conversion so that—
despite large signal variations—the average ADC out-
put falls within its pre-set range. For this purpose the
upper-threshold can be set to the highest detected signal
strength which also determines the lower-threshold level,
i.e., is defined to be positioned at a fixed distance from
the upper-threshold (see Figure 4). As a consequence, this
means that in response to strong incoming signals the
second AGC will raise the lower-threshold and herewith
up scaling the IF-gain. For all signals below the lower-
threshold the IF-gain applies which in turn causes the
noise floor to be lifted. Moreover, the AGC operation
also improves the quantization of weak signals because
smaller signal variations will toggle now more bits at the
A/D conversion. Paradoxically, note that an increasing IF-
gain (AGC loop 2) can be assigned to scale up the signals
for A/D conversion, whilst the preceding RF-amplifier
adversely applied attenuation (AGC loop 1) to prevent
overdriving [7].

To elaborate on this matter, the AGC loop is described
in more detail below. First, note that for most applica-
tions an AGC system with closed-loop feedback (see in
Figure 3) is used to settle the output signal amplitude
to the desired level; feed-forward loops also exist but
are less common. In general the AGC loop consists of a
VGA (variable gain amplifier), a peak detector, and a com-
parator (using the defined thresholds) where both peak
detector and VGA are non-linear components. Regard-
ing the design of the AGC loop, the important parameters
are the settling time, i.e., the loop response time, and the
loop stability. Note that many AGC systems are required
to have a constant settling time for the full dynamic range
of input signal levels, which can be up to 80 dB. To achieve
this the VGA operates with an exponential gain to ensure
that the AGC loop behaves as a first-order linear system in
decibels (dB). Moreover, to accomplish loop stability the
settling time is much slower than the input signal change,
i.e., the AGC loop bandwidth must be significantly smaller
than the bandwidth of the VGA.
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Figure 3 The super-heterodyne radio receiver. The super-heterodyne radio receiver with RF stage and one IF-stage. The first AGC loop operates

overloading the RF-mixer (down-converter). The second AGC loop

. IF VGA) to scale the signal input for the A/D conversion. Each AGC loop
consists of the following building blocks: VGA, detector and comparator. In case of a super-heterodyne spectrum analyzer the principle is the same

by a ramp generator to sweep through the frequency range.

For many heterodyne radio receivers the settling time
of the AGC loop takes at least 0.5 ms for a fast loop
implementation in mobile applications [8]. For super-
heterodyne spectrum analyzers the architecture is very
similar to the above-described super-heterodyne radio
receivers with a comparable settling time. However, the
settling time is relatively slow and may corrupt the perfor-
mance of the spectrum analyzer which carries out a full
frequency sweep over many GHz typically within 100 ms.
During the settling time period a wide range of frequen-
cies is swept through (usually tens of MHz) wherefore
the AGC gain is fixed. This means that for the duration
of AGC settling time the noise floor may lift up for a
broad frequency range which scales non-linearly with the
detected strongest signals in this range and thus intro-
duces noise uncertainty into the system. This has been
referred to as non-stationary noise and is of particular
concern in receiver design because it decreases the sensi-
tivity of the receiver’s signal detection due to the higher
noise floor.

3 Related study

In literature the AGC is described mainly from a RF point
of view with focus on front-end design among which [9]
is a classical article on AGC design. The two basic topics
of AGC in literature are the loop stability and the set-
tling time and the basic theory can be found in [10,11].
In addition, the classical exponential constraint on the
gain characteristic of the VGA to obtain constant settling
time is discussed in [12-14]. However, achieving an expo-
nential relationship in CMOS and other technologies is
less obvious as pointed out in [15,16]. In recent years,
many articles, among which [7,8], have issued digital AGC
circuits in the design of wireless radio communication
systems primarily intended for mobile applications. Such
AGC circuits are required to be fast in order to com-
pensate for the strong signal variations introduced by
Rayleigh fading. To cope with this type of small scale
fading the design of AGC systems for super-heterodyne
receivers is discussed in [8]. Furthermore, it turns out that
the optimal AGC settling time depends on the mobile
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speed [17] and has the aforementioned typical value of at
least 0.5 ms.

The influence of AGC on monitoring and spec-
trum received less attention in literature. For instance,
the distortion due to imperfections in the RF-frontend
were addressed in [18] and is herein referred to as
‘dirty RF. To improve on this in [19] algorithms were
proposed to compensate for particular RF imperfec-
tions in the digital domain. Similar approaches may be
needed to compensate for the imperfections of AGC,
particularly for the case of spectrum sensing appli-
cations. To elaborate on this matter, spectrum sens-
ing is a signal-processing technique to determine the
activities of users within a particular spectrum band.
Important wireless communication systems, for instance
cognitive radio [5,20], rely on such spectrum sensing
techniques. The main task of spectrum sensing tech-
nology is to detect the available portions of radio spec-
trum for further efficient spectrum resource allocation.
The Federal Communications Commission (FCC) has
already adopted the concept cognitive radio for bet-
ter use of the spectrum [21] and issued the require-
ments of reliable spectrum sensing in [22]. Along
this line, the Electronics Communication Commit-
tee (ECC) provided technical and operational require-
ments for cognitive radio systems in the UHF/VHF
bands [23].

The state-of-the-art spectrum sensing techniques can
meet the above-mentioned regulatory requirements
under special conditions [24,25]. Among these signal
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sensing techniques cyclostationary detection is recog-
nized as one of the most robust techniques which can
provide an excellent sensing performance [5,26,27], how-
ever, with the disadvantage of introducing a long latency
into the system [28].

The match filtering based approach can deliver the opti-
mal detection performance in the sense that it maximizes
the received SNR. On the other hand, match filtering
detection comes at the cost of demanding synchronization
and high computational complexity. Additionally, note
that both cyclostationary detection and matched filter-
ing require prior knowledge of the transmitted signal at
the receiver. Thus, in scenarios with lack of signal infor-
mation both methods are not applicable anymore. In
the case of unknown signal information so-called blind
spectrum sensing techniques are needed to provide a
spectral estimate. However, blind spectrum sensing tech-
niques require proper noise power estimation in order
to determine the spectrum occupancy [29]. Blind sensing
techniques thus operate ideally in scenarios of stationary
noise, whereas in practice [30] most of the noise turns
out to be non-stationary (i.e., noise uncertainty). Further-
more, the non-stationary noise may lead to a SNR wall and
high probability of false alarm at the receiver site [31,32].

In case of blind spectrum sensing and stationary noise
the optimal detection technique is energy detection which
provides low computational complexity and is recognized
for its simple architecture [28,33,34]. However, energy
detection has the shortcoming that it requires perfect
information of the noise variance to perform satisfac-
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Figure 5 Monitoring the 2.4 GHz ISM band: spectrogram. The spectrogram of the raw monitoring data (field strengths in dBm/Hz) w.r.t. the 2.4
GHz ISM band in the frequency range 2400-2483.5 MHz; the time instants are denoted as traces. Here the main Wi-Fi channels are 1,6, and 11 which
correspond to frequency bandwidths of respectively, 2402-2422 MHz, 2427-2447 MHz, and 2452-2472 MHz.
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torily and thus is susceptible to noise uncertainty at the
receiver. Energy detection works as follows: in a certain
frequency band of interest, the received signal power is
compared with a predefined threshold based on which a
decision is made whether the frequency spectrum is occu-
pied or vacant. The placement of the threshold is thus
crucial and is subject to fluctuations in noise power level,
i.e., is limited in case of non-stationary noise. Further-
more, the International Telecommunication Union (ITU)
recommends a threshold to be placed 10 dB above the
ambient noise floor for energy detection as stated in ([35],
p- 168) and [36].

As a solution for this problem alternative blind spec-
trum sensing techniques were proposed to enhance noise
power estimation with the aid of eigenvalues derived from
the sample covariance matrix of the received signal for
instance. Along this line, the provided set of eigenvalues
are used to compute the detection probabilities wherein
the ratio maximum to minimum eigenvalue Amax/Amin
determines the threshold position. In [37] the use of ran-
dom matrix theory (RMT) is suggested to estimate the

eigenvalues, whereas in [38] the multiple signal classifi-
cation (MUSIC) algorithm is used to distinguish between
noise and signal space for adaptive threshold placement.
However, it is very complex to determine the thresh-
old due to the biased lower eigenvalues [39]. In addition,
another blind spectrum sensing technique has been pro-
posed [40] known as “multitaper method (MTM)” to
provide spectral estimation by application of orthogonal
tapers/windows to determine the average power in each
sub-band of the spectrum [41]. To achieve this MTM
operates with a bank of optimal FIR bandpass filters in
order to compute the spectral estimate where the filter
coefficients are based on the discrete set of eigenfunctions
(tapers) or Slepian sequences. Further, the use of MTM
as an efficient method for spectrum sensing in cognitive
radio systems has been suggested in [42]. A drawback of
MTM is that it requires a lot of computation as compared
with energy detection.

In addition, recently a blind sensing spectrum tech-
nique has been introduced based on the wavelet transform
which is able to deliver spectrum estimation over a wide-
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Figure 8 AGC Experiment: spectrogram. To show the influence of the AGC, a power varying test signal is fed to the receiver input; the
spectrogram shows the AGC influence (field strengths in dBm/Hz). The input signal increases in power over time (traces) and is visible by the
stepwise square-shaped signals in the spectrogram. The noise level lifts up which results in wide-band artifacts in the spectrogram. In addition, the

band of frequencies [43,44]. In this method the wavelets
are used for detecting irregularities in the spectrum to
determine the boundaries of important image structures.
In this light the boundaries indicate the transitions from
an occupied band to an empty band and the spectrum
occupancy can be assessed based on the estimated pow-
ers within these bands. However, this method is currently
not feasible for practical use while it requires high costs
in terms of computational complexity and a very high
spectral sampling rate.

All of the above spectrum sensing techniques operate
with the objective of assessing spectrum utilization where
the focus is on estimating the noise variance in order
to determine the optimal detection threshold. However,
these spectrum sensing algorithms do not incorporate
denoising techniques to improve on detection as such

Table 1 AGC levels

Input signal Time traces AGC threshold GaGe
(dBm/Hz) (nr) (dB) (dB)
—156.2 1-42 0 0
—150.7 43-59 0 0
—143.2 60-75 0 0
—134.7 76-94 0 0
—124.2 95-118 0 0
—115.2 119-140 0 0
—105.2 141-166 2 0
—95.2 167-191 12 35
—86.2 192-212 21 10.5
—75.7 213-235 31 19.5
—156.7 236-251 0 0

The AGC recordings that result from experimental spectrum monitoring, tested
by varying the power of the input signal. The maximum value of the input signal,
for a particular interval, is shown in the first column.

and to reduce the impact of non-stationary noise. This is
needed as suggested in [19] to compensate for the effects
of ‘dirty RF. To elaborate on this matter, in [45-47] the
SVD as denoising technique is considered which can oper-
ate in combination with MTM and this has been referred
to as MTM-SVD. It has been demonstrated [45,47] that
MTM-SVD improves the decision process for spectrum
sensing due to its noise reduction scheme, however, the
improvement comes at the cost of unwanted bias prob-
lems where the number of tapers being used is critical in
this respect. Summarizing, in literature the use of spec-
trum sensing in combination with denoising techniques to
compensate for ‘dirty RF’ influences is not well-exposed,
particularly its application to AGC noise reduction for
spectrum monitoring is not addressed in that aspect.

3.1 Research objectives

To resolve the above-described spectrum monitoring in
the context of ‘dirty RF, we are interested in matrix factor-
ization techniques for a different purpose: aim to remove
the dominant noise (the non-stationary AGC noise) in
order to project out the signal space using the multi-
dimensional spectrum measurement data (i.e., the fre-
quency, time/space and field strength). In this way the
spectrum occupancy may be assessed more accurately in
the case of mobile spectrum monitoring. To achieve this
two state-of-the-art matrix factorization techniques are
issued, i.e., singular value decomposition (SVD) [45,48]
and non-negative matrix factorization (NMF) [49-51].
In line with this, recently in [52] the initial results on
spectrum occupancy for different types of areas were pre-
sented with the aid of SVD processing (applied to the
UMTS band). Building upon this idea, we aim to enhance
blind spectrum sensing for mobile spectrum monitoring
by application of matrix factorization techniques for AGC
noise removal. In doing so, the above-mentioned matrix
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factorization techniques are analyzed for blind spectrum
sensing in the 2.4 GHz ISM band and a performance
evaluation is presented together with an experimental
verification. To our knowledge the proposed method to
remove AGC noise for spectrum sensing applications is
novel and not found in literature.

4 Mobile spectrum sensing

4.1 Mobile monitoring system

To analyze the effect of non-stationary AGC noise, we
use the measurement data obtained from mobile moni-
toring vehicles used by the Dutch regulator. These vehi-
cles continuously perform full spectrum sweeps while
driving in a particular area. As a test case we used
the monitoring recordings from the 2.4 GHz ISM band,
one of the most dense frequency bands in the range
2400-2483.5 MHz. These measurements include many
days of spectrum monitoring in the Netherlands, thereby
employing the monitoring system [1]. In our configura-
tion the measurements take place at a 2 s time interval
in which a frequency sweep is carried out (takes in total

100 ms), using a step-size of 156.25 kHz, to sample the
spectrum in the 2.4 GHz ISM band. The monitoring
data, which results as output of the measurement equip-
ment, is referred to as raw/unprocessed data. This means
that for each frequency bin and time instant the received
average power P, is stored per hertz of bandwidth.
The spectrogram of the raw data for a sample area is pro-
vided in Figure 5 and the corresponding statistics and data
distribution are shown in Figures 6 and 7. Here, the Wi-
Fi channels can be identified from the monitoring results
in the spectrogram because it entails most of the traffic in
this band. Note that there are in total 13 overlapping chan-
nels which are actually in use, only in Japan there is a 14th
channel. In practice it turns out that Wi-Fi systems mainly
use the non-overlapping channels 1, 6, and 11 (due to the
manufacturer default settings).

4.2 AGC calibration

The influence of the AGC on the measurement data is
investigated in this section by setting up an experiment.
Note that the monitoring equipment operates with the aid
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Figure 10 NMF versus SVD. A performance comparison: NMF versus SVD. Here the SVD curve displays an instant peak at a received power value of
Px = —168 dBm/Hz which is due to the outliers, i.e., non-negative values. This is not the case for NMF which shows a curve without the instant
outlier peak. Both algorithms ran with the same number of independent principal components: L = 300.
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Figure 11 NMF curves. PDF curves of the monitoring data obtained from several NMF sessions which ran with different values of L, i.e, the number
of independent signal components (field strengths in dBm/Hz).

of a super-heterodyne based spectrum analyzer includ-
ing AGC. To elaborate on this matter, the equipment is
capable to log digitally both the IF-gain and the IF lower-
threshold (scaled w.r.t. the thermal noise floor) while
the second AGC loop operates in the baseband domain
(see Figure 3). In addition, recall that the IF-gain
is set to properly scale the input signals for A/D
conversion. Furthermore, in what follows the IF-gain
and IF lower-threshold will be meant when reference
is made to respectively the AGC gain and AGC
threshold.

To investigate the influence of the AGC on the measure-
ment equipment an experiment is set up in a controlled
environment. Here the same configuration settings are
used in a similar fashion as for the nationwide moni-
toring readings, i.e., using the same frequency sampling
resolution, time observation interval, etc. In doing so,
the transmission power of an unmodulated test signal is
increased in a controllable way, in steps of several dBs, at
the input of the monitoring equipment. Meanwhile spec-
trum monitoring is performed and the AGC threshold

is stored for each time observation. Next, the frequency
sweep results are shown in the spectrogram of Figure 8;
the corresponding AGC threshold, the average AGC gain
(Gagce), signal field strength, and trace interval are listed
in Table 1. Note that here the AGC gain is constant
throughout the ISM band and scales with the highest
detected signal which in turn causes the noise level to
be lifted significantly. This effect is visible in the spec-
trogram of Figure 8, indicated by the horizontal strips
which we refer to as wide-band artifacts. Furthermore,
the probability density function (PDF) of the measure-
ment data is plotted in Figure 9. The PDF shows three
distinguishable peaks (local maxima). The leftmost dis-
tribution is a mixture of on one-hand thermal noise and
on the other hand AGC noise contributions (due to the
lower AGC gain of Gagc = 3.5 dB); here the domi-
nant component is thermal noise (i.e., Gagc = 0 dB)
which accounts for the Gaussian shaped distribution. In
addition, the second and third peak are AGC noise con-
tributions which correspond to the following AGC gain
values: Gagc = 10.5 dB and Gagc = 19.5 dB. Finally,
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Figure 12 NMF curve fitting. The best fit, taking the Gaussian distribution as the reference, turns out to be for L = 100 independent principal
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.

P
Before applying NMF (i.e. the raw data). After NMF application.

Figure 13 Application of NMF. Applying NMF (L = 100) on the monitoring data yields a corrected version of the spectrogram. The spectrogram
before applying NMF is depicted in Figure 13a; the corrected version after applying NMF is depicted in Figure 13b.

the signal contributions are present from —135 dBm/Hz  spectrogram of Figure 5. Here the wide-band artifacts
onwards and are clipped at —110 dBm/Hz for the sake of  stretch several hundreds of MHz primarily due to strong
clarity/visibility. signals in the nearby UMTS downlink band. In the follow-

Relating the test measurement back to the mobile mon-  ing section, we introduce a system model to remove the
itoring readings sheds light on the AGC distortion in the =~ AGC noise components.

i |
2480 2490

2440 2450 2460 2470
Frequency [MHZ2]

Before the final AGC removal step.

. 3 . = - - S S S A = - - B o
2%00 2410 2420 2430 2440 2450 2460 2470 2480 2490
Frequency [MHz]
After the final AGC removal step.

Figure 14 Binary occupancy plots. Occupancy plots after thresholding: black denotes used spectrum and white denotes unused spectrum. Here,
the occupancy before the final AGC removal step is depicted in Figure 14a, whereas the occupancy after the final AGC removal is depicted in
Figure 14b.
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Figure 15 Final AGC removal step. A comparison of the field strength distributions: before and after applying the final AGC removal step
respectively depicted in Figure 15a and Figure 15b.

5 Spectrum sensing: matrix factorization
techniques

5.1 Notation

Let the unprocessed data be represented as X = [X(t, f)]
in which ¢t € {1...N;} denotes the discrete time
instants and where f € { 1.. .Nf} denotes the frequency
bins. Regarding X, the number of rows N; relates to
the time-frame of monitoring, which in turn consists of
a fixed number of ¢ independent time instants (a.k.a.
‘traces’). In addition, each recording at a given time instant
is linked to a specific spatial coordinate. Similarly, Ny

Table 2 Spectrum occupancy: the ISM band

Energy detection AGC removal AGC removal

(ITU-based) (step 1) (step 2)
2400-2483.5MHz  34.92% 32.77% 21.85%
Channel 1 37.36% 35.02% 24.53%
Channel 6 37.45% 35.00% 23.79%
Channel 11 37.13% 35.17% 24.46%

The occupancy results for the 2.4 GHz ISM band. The results show that the
occupancy based on the energy detection (ITU recommended threshold)
method provides an overestimation of the spectrum usage.

defines the total number of frequency bins, also referred
to as frequency observations. Note that each element in
matrix X can either be classified as a signal (denoted by ‘1’)
or as noise (represented as ‘0’), based on a predefined
threshold 7. In line with this the spectrum availability
Sfunction X, = [Xc(ti, ﬁ)] is defined through,

oL XWf) =0
Xc(tuf/) - { 0, X(ti;fj’) <7n } v

which represents the matrix of classifications where the
time traces are associated with the matrix rows and the
frequencies with the matrix columns. Now, a signal is
detected if the measured field strength exceeds the thresh-
old. Otherwise the data is classified as noise. As a result,
the choice of threshold value is critical for correct sig-
nal detection. To analyze the distribution of the data, it is
common use to look at the second order statistics and at
the covariance matrix which is defined by

C=E[(X—~EX]) (X —E[XD"] (2)

where E denotes the expectation operator. Furthermore,
()" denotes the Hermitian transpose and Xxj represents
the kth column of X. However, C is not known beforehand
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and has to be estimated. For this purpose an unbiased
estimate, i.e., sample covariance matrix é, is computed;
the latter is derived based on samples of collected mea-
surement data and is an approximation of the actual
covariance matrix C. Now, based on a given sample set
consisting of Ny frequency domain observations of the N;
dimensional random variable X € RNe*1 (a N; x 1 column
vector ) an estimation of C is defined through,

Ny

> — ) o — ) ®3)

k=1

~ 1

C =

Ny —1
as the sample covariance matrix, also referred to as the
estimated covariance matrix. Notice that C has Ny — 1
in the denominator rather than Ny in contrast to C (see
[39]). For a certain time instant ¢ the mean received field
strength is computed through integration of the corre-
sponding Ny samples in the ISM band as follows:

M1 N,
1 S

= Xk (4)
Nria

N

where the column vector u contains the mean received
field strength for each time instant.

5.2 Singular value decomposition

Based on the covariance matrix, we apply a technique
known as SVD, in order to project out the signal space.
Note that the SVD technique is preferred over an alterna-
tive method, named eigendecomposition. This is because
SVD is numerically stable, yielding always non-negative
eigenvalues, unlike eigendecomposition.

As a first step the unbiased data matrix, denoted by M,
is defined in order to show how to decompose the sample
covariance matrix into its sample eigenvectors and eigen-
values. Here C = MM*” holds, where matrix M is derived
as

M | X—EXD (5)

TN -
Now, the singular value decomposition of matrix M can
take place, which leads to the following factorization:

M=wxU" (6)

where the diagonal entries X;; of ¥ are known as the sin-
gular values of M. It is known, from the field of principal
component analysis (PCA) [4,6,53], that the columns of W
(left singular vectors) are eigenvectors of MM'? and the
columns of U (right singular vectors) are eigenvectors of
M M. Hence, it can be shown that the sample covariance
matrix can be decomposed into its sample eigenvectors
and eigenvalues:
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C = MM" (7)
= (WzU") (Uzw) (8)
=wEzhwH 9)

where UPU = I, due to the orthogonal column struc-
ture of matrix U. Furthermore, W denotes the sample
eigenvector matrix of C. Thus, the sample eigenvalues and
eigenvectors of C are derived by computing SVD(M) =
WU, The sample eigenvalues can be computed, since
the singular values of diagonal matrix ¥ correspond to the
square roots of the sample eigenvalues of matrix C. The
obtained sample eigenvectors, contained in matrix W, can
be used to create a projection X of the measured data X,
containing solely the strongest signal space components:

L
X =Y wwl X—E[X])+E[X]

i=1

(10)

where w; are the column vectors of W, i.e., the columns
w1 ...wy correspond to the first L principal components
of X. As a consequence, the principal subspace, F =
{Wi}{, is spanned by the first L principal components of X.
Since mean subtraction, i.e., mean centering, is necessary
for performing PCA, we get a corrected version of matrix
X, by adding E [X]. As a drawback, the SVD method is not
constrained to output non-negative data, which can result
in a small percentage of outliers—negative valued field
strength data—which causes numerical problems when
translated back to logarithmic values. To overcome this
problem, we manually map the negative data values to a
fixed arbitrary small positive value.

5.3 Non-negative matrix factorization

Since SVD is not constrained to output positive val-
ued data we investigate a second technique known as
NMEF [49] which is referred to as a dimension-reduction
technique. The basic idea is the following: given the

non-negative data matrix X € RTXNf (i.e., the non-
logarithmic representation is used) the NMF algorithm
aims to construct a low-rank approximation of X of rank
L. Doing so, NMF opts to find two nonnegative matrices U
and W such that X &~ UW. Note that the latter expression
holds with equality once the residual matrix R is taken
into account: X = UW + R. As such, the elements of the
residual matrix R can either be negative or positive valued.
Recall that the NMF algorithm provides as factorization
output the two matrices U and W which are nonnega-
tive factors of X and are defined as U = [uy,...,uz] and
W = [wlli, ... ,W?]H; here U is a N; x L matrix contain-
ing the basis vectors as its columns whereas W denotes
a L x Ny matrix containing the coefficients vectors. Now,
by applying NMF a low-rank approximation of the feature
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Figure 16 Spectrum occupancy: a comparison. The occupancy of the 2.4 GHz ISM band for the area of interest (see Figure 5). The blue curve
represents the occupancy according to energy detection using the ITU recommended threshold whereas the green curve denotes the occupancy
as computed by the AGC removal algorithm (AGC removal step 2 in Table 2).

space of X can be achieved, i.e., the data matrix X can
be estimated by using a linear combination of the of basis
vectors with the coefficients vectors through,

L
X=)Y uw’+R (11)
j=1

where rank L are the number of independent princi-
pal components present in the constructed lower-ranked
approximation of X. Thus, L < min (N, Ny) is required
to establish the desired rank-reduction. Next, in order to
carry out the factorization of matrix X a cost function
D(X,UW) needs to be defined to quantify the quality
of the approximation. Such a cost function can be con-
structed using some measure of distance between X and
the product UW. Examples of such measures include
Euclidean distance and Kullback-Leibler (KL) divergence

[50,54-57]. Henceforth the KL measure is used as cost
function since the advantage of KL compared to other
cost functions lies in the guaranteed convergence to a
fixed point. This occurs at the expense of lower process-
ing speed, i.e., many iterations are needed. However, this
is not the case for AGC noise removal due to the off-line
processing possibilities. The optimization problem is now
defined as follows:

min [D(X,UW)] (12)
UerRY L wer.
where the cost function D (X, UW) equals
N, Nr
33 (Xilog Xi Xyt W), (13)
(UW);;

i=1 j=1

SNR (dB)

— P'= 0.3, Energy Detection
P,=0.2, Energy Detection
weseusens P = 0.1, Energy Detection
—&— P;= 0.3, AGC Removal Algorithm
P'= 0.2, AGC Removal Algorithm
wer@-ns Py = 0.1, AGC Removal Algorithm

outperforms energy detection.

Figure 17 Detection performance. The detection performance of the proposed scheme in the low SNR regime compared with the energy
detection method. For different fixed probabilities of false alarm the detection results are provided. In all cases the proposed AGC removal method
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Figure 18 Validation: first AGC removal step. The PDF after AGC removal step 1 versus the PDF of the field-strengths of the raw monitoring data
(with AGC) and the PDF of the actual monitoring data (i.e., without AGC). The focus is on the leftmost distribution peak which is in the field-strength
range of P, = {170, =155} dBm/Hz. For the actual field-strength data this corresponds to thermal noise only whereas for the raw monitoring data
also AGC noise is included. As a consequence the difference in distribution width between these two leftmost peaks equals the AGC noise
contribution. Due to NMF the thermal noise and the lower AGC contribution (Gagc = 3.5 dB) become separated and turn visible as distinguishable

The objective function is convex in U, and in W, but not
convex in both simultaneously. Therefore an algorithm
cannot guarantee to converge to a global optimum. Using
an iterative update algorithm, such as gradient search, will
therefore find a local optimum of the objective function.
In fact, the NMF problem does not have a unique global
minimum. Fortunately, it turns out that the achieved fea-
ture extraction (i.e., rank reduction) with only local min-
ima has been shown to be of significant quality for many
applications [55].

Finally, note that the most important difference between
NMF and other matrix factorization methods, such as
SVD, is that the data is described by using additive com-
ponents only. The reason therefore are the non-negative
constraints on U and W.

6 Methodology: AGC noise removal

This section illustrates the application of the matrix fac-
torization techniques, i.e., SVD and NMF, to remove the
AGC distortion and to assess spectrum occupancy more
accurately for monitoring applications in the 2.4 GHz
ISM band. To start with, a performance evaluation of
both techniques is carried out in order to find out which
technique suits best for further analysis. Basically both
techniques can be employed for the following: a decompo-
sition of the unprocessed monitoring data into indepen-
dent principal components to project out the signal space
from the noise space. Let L = 300 and N; = 2400; for both
NMF and SVD the corrected spectrograms are derived
and the associated PDFs are depicted in Figure 10. As a
result it turns out that the SVD produces negative valued
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Figure 19 Validation: second AGC removal step. The PDF after AGC removal step 2 versus respectively the PDF of the field-strengths of the raw
monitoring data (with AGC) and the PDF of the actual monitoring data (i.e., without AGC). In this step the wide-band artifacts can be removed due
to the pre-work of the NMF operation. After the application of the second AGC removal step the PDF contains primarily thermal noise. Due to NMF
the thermal noise distribution shows lower variance, however the probability mass herein remained the same (see Table 3).
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Table 3 Validation: spectrum occupancy

Spectrum occu- Estimation error

pancy
Energy detection 35.98% 31.62%
AGC removal algorithm 4.70% 0.34%

The validation experiment: the spectrum occupancy and the estimation error
compared with the actual spectrum occupancy, i.e., without AGC noise
(corresponds with an occupancy of 4.36%).

data (outliers) that in turn distorts the spectrogram and
causes problems whilst applying the required logarithmic
conversion. Here, the peak (local maximum) in the PDF
of Figure 10 corresponds with the probability mass of the
negative valued outliers which were mapped numerically
to an arbitrary small positive valued number, as referred
to in Section 5.2. Furthermore, Figure 10 shows that NMF
provides similar results as SVD but without the outliers,
i.e., no instant peak. Thus, in fact NMF outperforms SVD
and in what follows NMF is set as the preferred matrix fac-
torization technique for spectrum occupancy assessment
in the 2.4 GHz ISM band.

For projecting out the signal space, it is essential to
select the proper number of principal components L so
that the non-stationary (AGC) noise components can be
removed from the spectrogram without removing sig-
nal components. This is possible since it is known from
literature that the lower ranked principal components
contribute to the noise space [37]. To achieve this NMF
is applied to the monitoring data for several values of L
in the range of {1, 2400}, the corresponding PDF curves
are depicted in Figure 11. The interpretation of the PDFs
for different values of L is the following: a value of L >
500 for instance contains many noise components, indi-
cated by its non-smooth character; on the other hand,
the PDF curves for L < 50 are smoothed out and no
threshold can be defined based on its shape. To derive
the optimum number of principal components a perfor-
mance metric is required; the performance metric in this
case is the thermal noise which is distributed according
to a Gaussian distribution and is provided by the calibra-
tion test measurements. By fitting the Gaussian curve with
the NMF curves for different L values the corresponding
fitting errors can be derived; the results show that the opti-
mal solution, i.e., minimal fitting error, lies in the range
L € {50,500}. Note that for instance the L = 10 curve
shows no resemblance with the Gaussian metric curve and
thus yields a high fitting error. In addition, it turns out that
the optimal fitting result is obtained for L = 100, which
is depicted in Figure 12. Along this line, the application of
NMF with L = 100 to the spectrogram data in Figure 13a
provides a corrected version of the spectral data with less
noise as depicted in Figure 13b. The latter spectrogram is
smoother since only the main principal components are
left over. Furthermore, by applying NMF the AGC noise is

Page 15 of 19

removed in the range of P, = {—160, —157} dBm/Hz and
this shows the importance of choosing a good threshold
value. Note that this part of the AGC noise, present in the
spectrogram as small random variations, is not covered by
the first L = 100 components that mainly span the signal
space. In line with this, recall that the PDF of the corrected
spectrogram, as depicted in Figure 12, shows more con-
trast and follows a bimodal distribution which arises as
a mixture of two unimodal Gaussian distributions. Here,
the threshold is required to be chosen at the lowest field-
strength in between the two local maxima (see Figure 12).
Moreover, it turns out that the derived threshold is around
the same value for each selected geographical area. This
is the optimal threshold value while according to the con-
ducted calibration test experiment the first distribution
is classified as thermal noise whereas the second dis-
tribution contains both (Wi-Fi) signal and AGC noise
contributions. Note that the latter distribution is caused
by very strong signals in nearby bands (e.g., UMTS signals)
that in turn trigger the AGC to lift up the thermal noise
to values in the range of P,, = {—157,—152} dBm/Hz;
this is indicated by the wide-band artifacts in the binary
frequency occupancy spectrogram of Figure 14a.

To reduce the influence of AGC the wide-band artifacts
are removed from the spectrogram, i.e., the traces with
more then 80 percent in-band frequency occupancy are
selected and deleted. In the sequel, this step is referred to
as the second AGC removal step. Notice that NMF has
paved the way for this second AGC step by smoothing the
wide-band artifacts which enhances their identification
for removal (thus referred to as AGC removal step 1). In
Figure 14b the resulting binary frequency occupancy map
is depicted after the wide-band artifacts removal. In addi-
tion, the corresponding PDFs are derived and depicted in
Figure 15 where the PDF of the spectrogram after appli-
cation of NMF (with L = 100) is shown in Figure 15a; the
PDF of the spectrogram after removal of the wide-band
artifacts is depicted in Figure 15b. A significant decrease
in probability mass is shown with respect to the second
distribution where on the other hand the thermal distri-
bution retains its shape; based on this it turns out that the
second distribution mainly contained AGC noise.

7 Performance evaluation
7.1 Results: live spectrum monitoring
In this section, the performance of the proposed AGC
removal method is evaluated in terms of spectrum occu-
pancy, detection probability and false alarm rate. The
application and the results of the proposed method to
mobile monitoring data are issued first, followed up by a
validation of its performance.

The proposed AGC removal method is applied to the
live mobile spectrum monitoring data which in turn pro-
vides a denoised spectrogram of the monitoring data.
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Based on this the spectrum occupancy in the 2.4 GHz
ISM band is assessed for the associated geographi-
cal area of interest. The performance of the method
is compared with energy detection where a fixed
threshold of » = —158 dBm/Hz is used , i.e., based on
the ITU recommendation [35] wherein the threshold is
placed 10 dB above the noise floor. The obtained occu-
pancy results are listed in Table 2 for the whole Wi-Fi
band, i.e., {2.4—2.4835} GHz, and for the non-overlapping
default channels 1, 6 and 11. These results show that after
each processing step the estimation of spectrum occu-
pancy decreases. Remarkably, it shows that the Wi-Fi band
is around 40% less occupied than one would expect based
on the energy detection (ITU recommended threshold)
method. The other way around, the derived spectrum
occupancy based on the energy detection method overes-
timates the spectrum occupancy by 60%.

In addition, the results in Table 2 show that the occu-
pancy of the default channels is always higher than the
overall Wi-Fi band occupancy, indicating in line with the
expectations that the default channels convey more Wi-
Fi traffic than the other channels. Furthermore, Figure 16
depicts the spectrum occupancy of the ISM band (from
2400 MHz to 2483.5 MHz) to illustrate graphically the
difference in spectrum usage estimation as computed by
respectively the energy detection method and the AGC
removal algorithm.

7.2 Detection performance

For the purpose of spectrum monitoring the proposed
sensing method is required to operate satisfactory in the
lower SNR regime as well. According to literature [24,25]
the receiver should operate with a target probability of
detection of P; = 0.9 and a target probability of false
alarm of Py = 0.1 at a SNR of —18 dB in the UHF/VHF
bands. However, in the case of mobile spectrum moni-
toring the detection performance is expected to be less
due to the introduced AGC noise. In this scenario spec-
trum sensing typically leads to a higher probability of false
alarm (Pr) while AGC noise is likely to be detected as
signal power. The total noise power o2 is thus higher
and includes both the contribution due to thermal noise
Gtzhermal and the AGC noise GiGC:

('72

2 2
noise — Fthermal + OAGC (14)

Here the thermal noise power Gt%’lermal depends on the
temperature T, the Boltzmann’s constant K, the system’s
noise figure NF, and the frequency bandwidth B through
| = K- T - (NF) - B. The thermal noise is assumed
to be Gaussian, i.e., N(0, aﬁoise) with a variance of aﬁoise in
the linear domain. Most of the receivers work under the

Gaussian assumption of noise and attempt to measure the

2
Otherma
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noise variance. This is valid in the case of a large num-
ber of sensing samples as according to the central limit
theory. Additionally, also the AGC noise is approximately
Gaussian as demonstrated in Figure 2.

At the receiver detection is performed with the aid of
test statistic 7'(X) which is based on the received power X
in the frequency band of interest for N; time observations.
Here, the number of frequency band samples equals Ny
which leads to the following statistic for the log-likelihood
ratio test at the detector:

MY
T = Z ;xa,f) (15)
The outcome of the test can be twofold:
Hy: T(X) =0 (16)
Hy: T(X) = 0k + Psig (17)

Here the hypothesis H; means that the frequency band
is occupied; T'(X) converges to afoise + Psig under Hj,
where P denotes the signal power. The other way
around, hypothesis Hy refers to a vacant band where the
received power corresponds with the total noise power
ar%oise. Next, the probabilities of detection P; and false
alarm Ps can be derived at the receiver given a chosen

threshold A:
Py =Pr{T(X) > A|H;}
Py = Pr{T(X) > A|Ho)

(18)
(19)

In doing so the probabilities of detection (P;) and false
alarm (Pr) are derived for the scenario of mobile spec-
trum monitoring with AGC noise by using the measured
sensing data. A vacant frequency channel in the 2.4 GHz
range is selected for monitoring where the time band-
width product is defined by Ny = 70 and N; = 1300. A
controlled signal is added to the spectral data for which
the signal power is exactly known so that as a function
of SNR the detection performance can be determined
for the proposed scheme. A comparison is made with
the energy detection method and the results are pre-
sented in Figure 17 for different fixed probabilities of false
alarm. The results show the benefit of using the pro-
posed method when compared with the energy detection
method. In all three the scenarios the performance gain at
a probability of detection of 90% is at least 3 dB.

The results show that the aforementioned target prob-
abilities as defined for the UHF/VHF bands can not be
achieved, however, in this scenario the noise conditions
are different and the performance gain over classic spec-
trum sensing methods (i.e., without mechanisms to com-
pensate for AGC imperfections) is significantly large in
this case. Nevertheless, note that an increase in sensing
time can compensate for the limited performance in the
lower SNR regime.
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7.3 Validation of the results

In what follows a verification is carried out of the above-
described country-wide monitoring results to verify the
removal of exclusively AGC noise from the raw moni-
toring data. The validation is carried out with the aid of
the monitoring data obtained from the test experiment
(Section 4.2) in which the AGC was turned on. Impor-
tantly, to examine the operation of AGC removal the
spectrum monitoring data is provided for the same exper-
iment but strictly without the presence of any AGC noise.
Furthermore, the verification needs to cover both stages
of the AGC removal algorithm. In doing so the AGC
removal step 1 (i.e., NMF) is applied to the experimen-
tal monitoring data (AGC turned on) to start with. The
corresponding PDF is shown in Figure 18 together with
respectively the PDF of the raw monitoring data (AGC
turned on) and the PDF of the actual field-strengths (i.e.,
AGC turned off).

Figure 18 shows the AGC noise distribution (ie.,
Gagce = 3.5 dB) which becomes visible after application
of NMF and can be clearly distinguished from the thermal
noise distribution. This paves the way for the second AGC
removal step which is now capable to properly remove the
AGC noise by deleting the smoothened wide-band arti-
facts. This is illustrated in Figure 19 where the distribution
of the field-strengths is shown after application of AGC
removal step 2. The latter distribution now resembles
the PDF of the actual monitoring data (i.e., AGC turned
off) and thus represents the thermal noise contributions
only.

Finally, the spectrum sensing performance of the pro-
posed AGC removal method is compared with the appli-
cation of energy detection (ITU-based) and with the
statistics of the actual monitoring data (i.e., without AGC
noise). Table 3 shows that the AGC removal algorithm
outperforms energy detection and that the provided spec-
tral estimate matches with the actual monitoring data
(i.e., without AGC noise). This confirms that the pro-
posed algorithm removes exclusively AGC noise and
thus is able to provide a good estimate of the spectrum
occupancy.

8 Conclusion

In this study, we have presented a novel approach based
on matrix factorization techniques to improve the reli-
ability of spectrum sensing significantly by eliminating
AGC noise. To verify our method we used the measured
spectrum monitoring data in the 2.4 GHz ISM band. As
we know from AGC test experiments, the AGC lifts the
thermal noise by a few dBs. We showed that by apply-
ing matrix factorization techniques, i.e.,, SVD and NMEF,
this part of the AGC noise can be removed; moreover,
it turns out that NMF outperforms SVD. In addition, we
employed a curve fitting approach to find the optimal
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number of components to be included for application of
NME; the resulting PDF follows a bimodal distribution
and shows more contrast compared to PDF of the raw
monitoring data. This is due to the fact that a large part
of AGC noise is centered around the threshold. Further-
more, NMF sets the stage for the final AGC removal step
in order to delete the remaining AGC noise contribu-
tions (visible as wide-band artifacts in the spectrogram).
Regarding the ISM band, by removing the AGC noise
from the spectrogram we have demonstrated a reduction
in spectrum usage of around 40% as when compared with
energy detection using the ITU recommended threshold.
Additionally, the detection performance of the proposed
method shows a performance gain of at least 3 dB at a
probability of detection of 90% in the lower SNR regime.
Further research could focus on the real-time implemen-
tation of AGC removal techniques and on its application
for different frequency bands.
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