
Wu et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:8
http://asp.eurasipjournals.com/content/2013/1/8
RESEARCH Open Access
New algorithm for mode shape estimation based
on ambient signals considering model order
selection
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Abstract

Using time-synchronized phasor measurements, a new signal processing approach for estimating the
electromechanical mode shape properties from ambient signals is proposed. In this method, Bayesian information
criterion and the ARMA(2n,2n – 1) modeling procedure are first used to automatically select the optimal model
order, and the auto regressive moving averaging models are built based on ambient data, then the low-frequency
oscillation modal frequency and damping ratio are identified. Next, Prony models of ambient signals are presented,
and the mode shape information of multiple dominant interarea oscillation modes are simultaneously estimated.
The advantages of the new ARMA-P method are demonstrated by its applications in both a simulation system and
measured data from China Southern Power Grid.
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Introduction
Modal frequency, modal damping ratio, mode shape
magnitude, and mode shape angle are the key para-
meters describing the electromechanical modal prop-
erties of a power system [1]. Similar to former two,
the mode shape properties that describe the participa-
tion of state variables in a particular mode are of vital
importance for the safety and reliable operation of the
system. Near real-time knowledge of mode shape
characteristics provide critical information for the
optimization of generators and/or load shedding, in
order to improve the damping of the dangerously
low-damped modes of power systems.
In general, the analysis of mode shape properties can

be accomplished using two basic approaches: the eigen-
analysis of a small signal model [1], or as shown in this
article, signal processing of the time-synchronized mea-
surements. One important advantage of the signal-based
method is that the identification is dependent on the
large, complex system model. In this category, the Prony
method [2,3] and the Eigensystem Realization Algorithm
* Correspondence: wuchao@szu.edu.cn
1College of Mechatronics and Control Engineering, Shenzhen University,
Shenzhen 518060, China
Full list of author information is available at the end of the article

© 2013 Wu et al.; licensee Springer. This is an O
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
[4,5] are widely used. However, their applications are
generally limited only for ringdown signals, which are
relatively few in actual power grids. Ambient signals,
caused by low-level stochastic disturbances, are more
frequently and easily collected in real systems. Some
publications have offered algorithms for identifying the
modal frequency and damping ratio from ambient data
[6-9], which fully demonstrate that this kind of signal
includes abundant information about the system. Only
recently the mode shape has been considered [10-14].
Based on the relationship between the cross- and power
spectral densities and mode shapes, an approach for es-
timating the mode shapes using spectral method is pre-
sented in [10]. Liu and Venkarasubramanian [11]
applied the frequency domain decomposition method
to the mode shape identification. Then, the channel
matching method was introduced in [12] and refined in
[13], in which a narrowband bandpass filter must firstly
be used to extract one single mode from multiple
modes. In this case, the changes of operation modes in
actual power system would inevitably cause the ineffect-
iveness of the prefixed filter, and influence the estima-
tion accuracy. In [14], the transfer function method was
proposed which showed that mode shape could be cal-
culated by evaluating a transfer function, constructed
pen Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:wuchao@szu.edu.cn
http://creativecommons.org/licenses/by/2.0


Wu et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:8 Page 2 of 13
http://asp.eurasipjournals.com/content/2013/1/8
between a pair of system outputs, at the mode of inter-
est. However, as the key factors of transfer function, the
selection of model order are not taken into account in
these articles, this will directly affect the accuracy of
the mode shape analysis results.
In this article, in order to identify the low-frequency

oscillation mode shape properties based on ambient sig-
nals, a new multiple modes estimation method called
the auto regressive moving averaging-Prony (ARMA-P)
is proposed. In addition, the problem of optimal model
order selection in ARMA modeling is considered, which
would improve the efficiency and accuracy of the new
ARMA-P method.
The remainder of this article is organized as fol-

lows. Section 2 describes the feasibility and the the-
oretical basis of using the ARMA and Prony models
together to extract the mode shapes from ambient
data. In Section 3, different model order selection
criteria are comparatively discussed, and ARMA
(2n,2n – 1) modeling procedures are adopted to
optimize the order selection path. To estimate the
mode shape characteristics based on ambient signals,
the equations of ARMA-P method are derived in
Section 4. Sections 5 and 6 provide the simulation
and actual system examples, respectively. The results
demonstrate that the new ARMA-P method can ef-
fectively estimate the mode shape properties from
ambient data. Conclusions are provided in Section 7.

Theoretical basis of ARMA-P method
It is well known that under small-signal disturbance
conditions, the power system may be linearized and
represented in state space form [1],

_
�
x tð Þ ¼ A

�
x tð ÞþB

�
q tð Þ ð1Þ

where x is the n × 1 system state vector, including ma-
chine rotor angles and velocities. Input vector q (order
m × 1) is a hypothetical random-noise source vector per-
turbing the system. Under ambient conditions, input q is
typically conceptualized as noises produced by random
loads switching in power systems. A (order n × n) is the
state matrix and B (order n × m) is the input matrix.
Measurement-based electromechanical mode estimation
assumes that the power system is in the steady-state
condition described by (1).
It has been well established that the eigensolution of

the state matrix A in (1) provides all the required infor-
mation to completely describe the modal properties of
power system. The reader can refer to [1] for more de-
tail. A brief review of these properties is described here.
The eigenvalues and eigenvectors associated with A are

λkI � Aj j ¼ 0 ð2aÞ
A
�
u
k
¼ λk

�
u
k

ð2bÞ

�
v
k
A ¼ λk

�
v
k

ð2cÞ

where λk is the kth eigenvalue (k = 1. . .n), uk = [u1,k,
u2,k, . . . un,k]

T is the kth right eigenvector, vk = [vk,1,
vk,2, . . .vk,n] is the kth left eigenvector.
Then the linear transformation defined in (3) is ap-

plied to the system (1), and the system state xi is calcu-
lated, shown in (4).

x1
⋮
xn

2
4

3
5 ¼

u1;1 . . . u1;n
⋮ ⋱ ⋮
un;1 . . . un;n

2
4

3
5 z1

M
zn

2
4

3
5 ð3Þ

xi ¼
Xn
k¼1

ui;ke
λk t zk 0ð Þ þ

Xn
l¼1

Xm
j¼1

νk;lbl;j

Z t

0
e�λkτq τð Þdτ

" #( )

ð4Þ
where bl,j is the lth row jth column element in the input
matrix B, zl(0) is the initial value of zk.
Equation (4) provides information on how the modes

are combined to create the system states. The element
ui,k (the ith element of uk) provides critical information
on how the ith state (generators and other dynamic
devices) participates in the kth oscillation mode. The
magnitude of ui,k determines the intensity level for the
state variable xi to participate the kth oscillation mode,
and the angle of ui,k determines the oscillation phase of
the state variable xi in the kth oscillation mode.
Thus, comparing the elements ui,k and uj,k describes

the mode shape information between states i and j. The
mode shape magnitude is then defined as the ratio of
the magnitudes of ui,k and uj,k

Magnitude ¼ ui;k
�� ��
uj;k
�� �� ð5Þ

and the mode shape angle is the difference between the
angles of ui,k and uj,k

Angle ¼ ∠ui;k � ∠uj;k ð6Þ
Then rewrite (4) as

xi tð Þ ¼
Xn
k¼1

Φi;k tð Þeλk t ð7Þ

where

Φi;k tð Þ ¼ ui;k zk 0ð Þ þ
Xn
l¼1

Xm
j¼1

νk;lbl;j

Z t

0
e�λkτq τð Þdτ

" #

ð8Þ
On the other hand, the signal xi shown in (7) is

sampled with the time interval T. Using the sum of
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weighted exponential components to fit the sampled sig-
nal, Prony model is adopted to describe the approximate
signal as follows

x̂i κð Þ ¼
Xn
k¼1

Ψ i;k κð ÞeλkTκ ¼
Xn
l¼1

Ai;ke
jθi;k e αkþj2πfkð ÞTκ

ð9Þ

where κ = 0,1. . .N – 1, N is the data length, n is the
number of oscillation modes.
Each term in (9) has four elements: the damping factor

αk, the frequency fk, the magnitude Ai,k, and the angle θi,k.
Each exponential component with a different frequency is
viewed as one unique mode of the original signal.
From (7) and (9), it can be deduced that on the sample

point

Xn
k¼1

Φi;k κTð ÞeλkTκ ¼
Xn
k¼1

Ψ i;k κð ÞeλkTκ ð10Þ

Obviously

Ψ i;k κð Þ ¼ Φi;k κTð Þ ð11Þ

Taking (8) into consideration, Ψi,k is time-varying,
defined as

Ψ i;k κð Þ ¼ Ψ i;k0 þ ΔΨ i;k κð Þ ð12Þ

where

Ψ i;k0 ¼ ui;kzk 0ð Þ ð13aÞ

ΔΨ i;k κð Þ ¼ ui;k
Xn
l¼1

Xm
j¼1

νk;lbl;j

Z t

0
e�λkτq τð Þdτ ð13bÞ

It can easily be found that Ψi,k0 is time-invarying, and
it is proportional to the right eigenvectors ui,k with a
constant zk(0), whereas ΔΨi,k(κ) is time-varying due to
the change of the input vector q.
Thus, considering (5), (6), and (13a), the mode shape

information of kth oscillation mode between the signals
i and j can be estimated by

Magnitude ¼ ui;k
uj;k

����
���� ¼ Ψ i;k0

Ψ j;k0

����
���� ð14aÞ

Angle ¼ ∠ui;k � ∠uj;k ¼ ∠Ψ i;k0 � ∠Ψ j;k0 ð14bÞ

Assuming for the moment that all signals are time-
synchronized samples, and a reference state or signal is
chosen as the state having the high observability in the
kth oscillation mode, the theoretical feasibility of
ARMA-P method estimating mode shape properties of
multiple modes based on ambient signals is certified.
Model order selection
In the ARMA modeling of ambient signal, the model order
selection is an important step. The applicability of model
order will influence the accuracy and efficiency of oscilla-
tion modal frequency and damping ratio analysis, and fur-
ther affect the mode shapes identification. In addition, the
mode shape characteristics are relevant to multiple nodes
in power grids, that is to say, we have to build the ARMA
models of multiple signals. Obviously, it is time-consum-
ing. And for the online application of ARMA-P method, it
is best to automatically select the model order. Therefore,
the model order selection is studied in this section. Differ-
ent model order selection criteria are comparatively dis-
cussed, and the modeling procedure is considered to
improve the calculation efficiency.

Model order selection criteria
Model order is a key factor in the ARMA model of am-
bient signal. A model with too high an order will include
too much irrelevant oscillation information, and a model
with too low an order may not include enough essential
information about the system. Only, the ARMA model,
with an optimal model order, can precisely describe the
dynamic characteristics of power grids.
Information criteria (IC), which are generally used to

determine the model order, are referred to as penalized
log-likelihood criteria where the penalized term depends
on the number of free parameters in the model and/or
the number of observations [15]. They can be written in
a generalized form

IC pð Þ ¼ �2
XN
i¼1

logf xi θ̂p

��� �
þ pC Nð Þ

�
ð15Þ

where f(xi|θk), i = 1,. . .,N describes the conditional prob-
ability density of the observations x1,. . .,xN, C(N) is an

increasing function of the observations number N, θ̂p is
the estimator for the unknown model parameter based
on the observations, and the optimal order choice is
such that p̂ = argmin IC(p).
Obviously that the second term grows as the para-

meters becomes complex, while the first term has the
opposite variation, so the minimization of IC realizes a
compromise between the data fitting and the complexity
of the chosen parameter.
For the model order selection, the most known criter-

ion is surely the Akaike’s information criterion (AIC)
[16], written as follows

AIC pð Þ ¼ �2
XN
i¼1

logf xi θ̂p

��� �
þ 2p

�
ð16Þ

Theoretical research in the AIC has helped to specify the
asymptotic behavior of AIC. This criterion is unsatisfactory
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since it asymptotically leads to a strictly positive over
parameterization probability of the model order [17].
In order to overcome the inconsistency of AIC, Schwarz

[18] suggests the widely known Bayesian information cri-
terion (BIC) based on the Bayesian justification

BIC pð Þ ¼ �2
XN
i¼1

logf xi θ̂p

��� �
þ p logN

�
ð17Þ

And a different approach was introduced by Rissanen
[19]. This approach suggested using the minimization of
the length of a code. This code is required to encode
observations. This criterion is referred to as minimum
description length (MDL), defines as

MDL pð Þ ¼ �2
XN
i¼1

logf
�
xi θ̂p

��� �
þ p logN

þ pþ 2ð Þ log pþ 2ð Þ ð18Þ
Theoretical research has found that BIC and MDL cri-

teria are almost surely convergent in that they help in
finding the appropriate model order when the observa-
tions number N → ∞ (strong consistency) and penalized
the term of likelihood more than AIC [15]. Because of
the similarity of the two criteria, we choose to discuss
the performance of BIC in this article.
Another strongly consistent criterion, referred to as ϕβ,

was introduced by El and Hallin [20]. It is a generalization
of Rissanen’s work on stochastic complexity [21], written
as follows

ϕβ pð Þ ¼ �2
XN
i¼1

logf xi θ̂p

��� �
þ pNβ log logN

�
ð19Þ

with the refined conditions shown in (20) [18], which
allows for β to be adjusted according to the number of
observations N.

0 <
log logN
logN

≤β≤1� log logN
logN

< 1 ð20Þ

In this article, we proposed to apply AIC, BIC, and ϕβ,
to the estimation of the order of ARMA models shown
in (21).
ARMA model is a representative with the assumption

that the input is approximately white over the frequency
band of interest [22], and it is applicable to describe the
characteristics of ambient signals in power grids.

xi κð Þ ¼ ς1xi κ � 1ð Þ þ⋯þ ςnxi κ � nð Þ
� φ1a κ � 1ð Þ �⋯� φma κ �mð Þ
þ a κð Þ ð21Þ

where a(κ) is the stochastic disturbance input, ςh (h = 1. . .n)
and φg (g = 1. . .m) are the coefficients of AR and MA
parts, N is the observations number, κ = 1. . .N.
The order p in the criteria above is defined as p = n + m.
Omitting terms that do not depend on the model order p,
it is well known that the first terms in these formulae be-
come Nlog σ̂a

2 , where σ̂ a is the variance estimate of dis-
turbance input a shown in (21). Thus, we obtain

IC pð Þ ¼ N logσ̂a
2 þ pC Nð Þ ð22aÞ

AIC pð Þ ¼ N logσ̂a
2 þ 2p ð22bÞ

BIC pð Þ ¼ N logσ̂a
2 þ 2 logN ð22cÞ

ϕβ pð Þ ¼ N logσ̂a
2 þ kNβ log logN ð22dÞ

The selected model order verifies p̂ = argmin IC(p).

ARMA(2n,2n – 1) modeling procedure
One immediate disadvantage of using the model order
selection criterion is that since it is aimed at finding the
optimal order among optional items. That is to say, a
great many of ARMA models with different orders have
to be built first. Obviously, it is time consuming and not
good for the online application of the new ARMA-P
method. In order to improve the calculation efficiency,
the modeling procedure that specifies the search path of
the optimal model order is considered in this article.
The ARMA(2n,2n – 1) modeling procedure proposed by

Wu and Pandit [23] is employed. In this approach, first the
ARMA(2n,2n – 1) model with the initial value n = 1 is
modeled, then let n = n + 1. Only when the order is ad-
equate as judged by the model order selection criterion,
this step stops. Following that, the order of the AR and
MA parts are reduced, respectively, and the model order
selection criterion is applied until the optimal order is
found. As shown in Figure 1, comparing with the trad-
itional box modeling procedure, the computation efficiency
is highly improved using the ARMA(2n,2n – 1) modeling
procedure. It is better for the online application of the
ARMA-P method in identifying the mode shape properties
in interconnected power grids.

ARMA-P algorithms
Based on the theoretical deduction of the ARMA-P
method in Section 2, the equations of this new approach
for extracting the mode shape information from ambient
signals are derived in this section.

Estimating the oscillation modal frequency and damping
by ARMA model
With the assumption that the input is approximately
white over the frequency band of interest, the ARMA
model is proposed to estimate the oscillation mode char-
acteristics from ambient data. As we know, small fluc-
tuations associated with power system operation are the
results of low-level stochastic disturbances inherent in
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Figure 1 Modeling procedure. (a) ARMA(2n,2n – 1) modeling procedure. (b) Box modeling procedure.
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power grids. This kind of disturbance is assumed to rela-
tively be statistically stationary for a block of data over
the frequencies of interest [22,24].
The ARMA model of ambient signal xi is shown in (21).
First, the optimal model order is selected using IC and

the ARMA(2n,2n – 1) modeling procedure. Then when
k = m + 1, m + 2. . .m + M (M > n), a matrix equation is
formed as follows

Rmþ1

Rmþ2

⋮
RmþM

2
664

3
775 ¼

Rm Rm�1 ⋯ Rm�nþ1

Rmþ1 Rm ⋯ Rm�nþ2

⋮ ⋮ ⋮ ⋮
RmþM�1 RmþM�2 ⋯ RmþM�n

2
664

3
775

ς1
ς2
⋮
ςn

2
664

3
775

ð23Þ
where Rk is the autocorrelation function of signal xi.

Rk ¼ 1
N

XN
l¼kþ1

xi lð Þxi l � kð Þ

Equation (23) is called the Modified Yule-Walker
equation. The solution of (23) is the estimated coeffi-
cient vector of AR part.
A new time series yi(κ) is defined based on the infor-

mation of the observations x1,. . .xN and the AR part co-
efficient estimation ς̂1; . . . ς̂n.

yi κð Þ ¼ xi κð Þ � ς̂1xi κ � 1ð Þ �⋯� ς̂nxi κ � nð Þ ð24Þ
And

yi κð Þ ¼ a κð Þ � φ1a κ � 1ð Þ �⋯� φma κ �mð Þ ð25Þ

And the spectral density function of yi is calculated

Syiyi ωð Þ ¼ σ2a
��φ Bð Þ 2

B¼e�iωT ¼ σ2a
�� ��Ym

j¼1

1� ηi;jB
� �

2
B¼e�iωT

��
ð26Þ

where φ(B) is the polynomial of MA part, B is the back-
ward operator, and T is the sample time.
Obviously when B = 1/ηi,j, (26) equals to zero.
On the other hand, based on the definition of spectral

density, the spectral density function of the signal yi is
obtained

Syiyi ωð Þ ¼
Xm
k¼0

Ryi;kB
k
B¼e�iωTj ð27Þ

where Ryi,k is the autocorrelation function of yi.
Deduced from (26) and (27), we obtained

Xm
k¼0

Ryi;k
1
ηi;j

 !k

¼ 0 ð28Þ

Then ηi,j are calculated from (28), and substituted into
the MA polynomial.

Ym
j¼1

1� ηi;jB
� �

¼ 1�
Xm
j¼1

φjB
j ð29Þ

By comparing the homogenous exponential coeffi-
cients of operator in (29), the coefficients of MA part
are obtained. Thus, the ARMA model of ambient signal
is built up.
The conjugate eigenvalues λk, λk

* can be calculated
by solving the AR polynomial. And the low-frequency
oscillation modal frequency fk and damping ratio ξk
are calculated

fk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnλk lnλ

�
k

p
2πT

:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q
ξk ¼ � ln λkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnλk lnλ
�
k

p
8>><
>>: ð30Þ

where k = 1. . .nd, nd is the number of dominant oscil-
lation modes.
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Estimating the mode shape magnitude and angle by
Prony model
The approach of Prony model to estimate the electromech-
anical properties of power grids can be broken down into
two parts [2,3]: first, calculating the eigenvalues of discrete
model for estimating the modal frequency and damping
ratio; second, computing the weights or coefficients to fur-
ther extract the mode shapes properties.
In this part, the dominant oscillation modes, which play

important roles in describing the dynamic characteristics
of power system, are primarily studied. In general, the en-
ergies of the dominant modes take up large proportions in
ambient signals. So in this case, the rest modes can be
111
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Figure 2 ARMA-P method for estimating the mode shape information
omitted in this article. Moreover, since the eigenvalues cor-
responding to one oscillation mode are conjugate, in the
following part only the complex pair eigenvalues are con-
sidered. Consequently, based on the dominant modal in-
formation shown in (30), the eigenvalues of discrete model
in Prony algorithm are calculated as

γk ; γ
�
k ¼ exp �2πfk

ξkffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2k

q � j2πfk

0
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where k = 1. . .nd, nd is the number of dominant oscillation
modes.
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based on ambient signals.
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And the characteristic polynomial of discrete model is
built

φ zð Þ ¼
Ynd
l¼1

z � γ l
� �

:
Ynd
l¼1

z � γ�l
� � ¼ zp þ a1z

p�1 þ . . .þ ap

ð32Þ

Then the coefficients al (l = 1. . .p, p = 2×nd) are
obtained from (32).
Following that, the approximate signal x̂ is calculated

x̂i κð Þ ¼
xi κð Þ 0≤κ≤pð Þ

�
Xp
l¼1

alx̂i κ � lð Þ p < κ≤N � 1ð Þ

8><
>: ð33Þ

In Prony algorithm, the signal x̂i is used to fit the true
signal xi. Following its principle shown in (9) and (12),
the approximate signal x̂i can be described as

x̂i κð Þ ¼
Xp
l¼1

Ψ i;lγ l
κ ¼

Xp
l¼1

Ψ i;l0γ l
κ þ

Xp
l¼1

ΔΨ i;l κð Þγ lκ

ð34Þ
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Figure 3 36-node benchmark system.
Defining an item εi as follows

εi κð Þ ¼
Xp
l¼1

ΔΨ i;l κð Þγ lκ ð35Þ

Considering (13b), the item εi is a weighted sum of
disturbance inputs. In this article, the inputs are
assumed to relatively be statistically stationary over the
frequencies of interest, so the item εi can also be termed
as relatively statistically stationary.
Then a matrix equation is created.

1 . . . 1
γ11 . . . γ1p
⋮ . . . ⋮

γN�1
1 . . . γN�1

p

2
664

3
775

Ψ i;10

Ψ i;20

⋮
Ψ i;p0

2
664

3
775þ

εi 0ð Þ
εi 1ð Þ
⋮

εi N � 1ð Þ

2
664

3
775 ¼

x̂i 0ð Þ
x̂i 1ð Þ
⋮

x̂i N � 1ð Þ

2
664

3
775

ð36Þ
It is rewritten in short as

γΨi0 þ εi ¼ x̂i

A least square solution of (36) yields the variables vec-
tor as shown in (37).

Ψ̂ i0 ¼ γTγ
� ��1

γT x̂i ð37Þ
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Table 2 Mode shape information of mode I in 36-node
benchmark system

Gen Magnitude (p.u.) Angle (rad)

1 0.683 3.156

2 0.120 3.076

3 0.474 6.096

4 0.425 −0.050
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Thus, the mode shape magnitude and angle informa-
tion of multiple dominant interarea modes in power
grids can be estimated from the variables Ψ̂ i0 according
to (14).
Therefore, based on ambient signals synchronously

collected from power grids, following these steps
shown in Figure 2, the system’s mode shape properties
are identified.
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Simulation examples
A 36-node benchmark system shown in Figure 3 is used
to demonstrate the performance of the ARMA-P
method, using the Power System Analysis Software
Package as the simulation tool. The system contains
eight generators at major generation buses 1 through 8.
The generators are represented using detailed two-axis
transient models. Each load in this system is split into a
portion consisting of constant power and random power.
The random portion of both the real and reactive loads
is obtained by passing independent Gaussian white noise
through low pass filters.
The dominant interarea low-frequency oscillation

modes shown in Table 1 are calculated by conducting an
eigenalaysis of the entire system’s small-signal model
under nominal steady-state operating conditions.
In this article, Mode I (0.778 Hz, 1.123%) is mainly

discussed. The mode shape magnitude and angle infor-
mation of this mode is given in Table 2. Taking Gen8 as
the reference, the eight generators in 36-node bench-
mark systems can be classified into two groups: Group
A (including Gen1, Gen2), Group B (including Gen3,
Gen4, Gen5, Gen6, Gen7, and Gen8). Among them,
Gen1, Gen7, and Gen8 have high degrees of participa-
tion in Mode I.
For the examples that follow, a typical time-

domain simulation is comprised of driving the sys-
tem with random load variations. The system’s
responses consist of small random variations in the
system states. As an example, Figure 4a describes
the resulting random variations of Gen8 frequency
signal for a 10-min simulation. The spectrum of this
signal shown in Figure 4b illustrates that the ambi-
ent signal includes rich information about the dom-
inant oscillation modes in 36-node benchmark
system, especially Mode I.
Table 1 Dominant low-frequency oscillation modes of
36-node benchmark system

Mode Eigenvalue Frequency (Hz) Damping ratio (%)

I −0.0549 + j4.885 0.778 1.123

II −0.270 + j6.152 0.980 4.348
ARMA-P method is applied to estimate the mode
shape properties from the frequency signals of the
eight generators in the simulation system. First, these
ambient signals are preprocessed. Considering the
frequency range of electromechanical mode (generally
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

frequency (Hz)

(b) spectrum of Gen8 frequency signal 

Figure 4 Frequency signal of Gen8 in 36-node benchmark
system. (a) Frequency signal of Gen8. (b) Spectrum of Gen8
frequency signal.



Table 3 Oscillation modes results of three typical model
order selection criteria

Criterion Model
order

Mode I Mode II

Frequency
(Hz)

Damping
ratio (%)

Frequency
(Hz)

Damping
ratio (%)

AIC (16,15) 0.774 1.702 0.959 4.905

BIC (12,11) 0.776 1.270 0.963 4.549

ϕ0.3 (11,9) 0.774 1.553 1.016 5.699

ϕ0.4 (8,7) 0.773 1.541 1.089 8.858

ϕ0.5 (7,5) 0.776 1.819 1.127 10.749
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[0.1 Hz, 2.5 Hz]) in power systems, the signals are
low pass filtered with a cutoff frequency of 3 Hz,
then decimated from 50 samples per second to 5
samples per second, and finally high pass filtered to
remove any low-frequency trends.
Then according to the procedure of ARMA-P method

shown in Figure 2, the model order must be determined
first. In order to fully compare the performances of the
three typical criteria in power grids, AIC, BIC, and ϕβ

are, respectively, applied to select the optimal order of
ARMA model based on the simulative ambient data.
And the ARMA (2n,2n – 1) modeling procedure is
employed to specify the search path.
In this part, the frequency signal of Gen8, which

includes rich information about the dynamic characteris-
tic of system, is chosen to be the analysis object. The
number of observations is N = 3000. According to (20),
the bounds on the value β in ϕβ criterion are calculated,
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Figure 5 Eigenvalues results of different model order selection
criteria. (a) AIC, (b) BIC, (c) ϕβ criterion (β = 0.3), (d) ϕβ criterion
(β = 0.4), (e) ϕβ criterion (β = 0.5).
βmin = 0.2598, βmax = 0.7402. So in this case, the ϕβ cri-
terion has been calculated for values of β equal to 0.3,
0.4, and 0.5.
The research on the model order selection is based on

50 experiments. The eigenvalues results of different
model order selection criteria are plotted in Figure 5,
and the average value of the order for the 50 experi-
ments is given in Table 3. The oscillation mode proper-
ties in each case are also calculated.
We can notice that AIC leads to over-parameterization

while ϕβ (β = 0.4, 0.5) under-parameterize because of the
high penalty. The order results of BIC and ϕβ (β = 0.3) are
similar. Considering the relatively limited system dy-
namic information that include in ambient data, a
small change in model order would lead to a large
variation in estimated modal parameters and influ-
ence the identification accuracy. So, the oscillation
mode characteristic results corresponding to BIC
and ϕβ (β = 0.3) are further compared, in order to
discuss the applicability of these criteria in power
systems. Comparing with the eigenanalysis results
shown in Table 1, the accuracy of the modal infor-
mation corresponding to BIC are much better. Con-
sidering Occam’s Razor [25], BIC is appropriate to
select the optimal order of ARMA model, and its
feasibility is testified.
Table 4 Analysis results of Mode I based on frequency
signals of eight generators

Gen Frequency (Hz) Damping ratio (%)

1 0.778 0.995

2 0.774 2.014

3 0.772 1.331

4 0.771 1.566

5 0.775 1.136

6 0.779 1.400

7 0.775 1.341

8 0.776 1.270



Table 7 Mode shape results of Mode I from ambient
signals with different SNR values

SNR (dB) Gen Magnitude (p.u.) Error (%) Angle (rad) Error (%)

20 1 0.647 5.324 3.229 2.318

2 0.135 12.510 3.369 9.523

3 0.530 11.648 5.428 10.970

4 0.458 7.878 −0.044 10.890

5 0.588 1.422 6.282 2.319

6 0.375 11.942 −0.073 8.444

7 0.974 0.851 0.014 10.798

12 1 0.601 12.019 3.169 0.431

2 0.131 8.971 2.783 9.538

3 0.407 14.211 5.468 10.312

4 0.372 12.426 −0.054 9.959

5 0.517 13.430 6.352 3.458

6 0.387 9.045 −0.060 10.424

7 0.861 12.383 0.014 10.364

Table 5 Results of variables vector Ψ̂ i0 of Mode I

Gen Ψ̂ i0

1 −0.611 + j0.206

2 −0.099 + j0.041

3 0.518 – j0.011

4 0.439 – j0.021

5 0.620 – j0.108

6 0.461 – j0.031

7 0.993 + j0.015

8 1.000 + j0.000
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Then BIC and the ARMA(2n,2n – 1) modeling pro-
cedure is applied to process the frequency signals of the
eight generators in 36-node benchmark system, and the
estimated modal information of Mode I are listed in
Table 4. Obviously, the analysis results are basically close
to the eigenanalysis results.
Based on the dominant oscillation mode information

above, the eigenvalues of discrete model are calculated.
And following the procedure of ARMA-P method shown
in Figure 2, the variables vector Ψ̂ i0 are solved. Using
Gen8 as the reference, the analysis results of Mode I are
shown in Table 5.
And the mode shape magnitude and angle are

extracted by (14), listed in Table 6.
The ARMA-P method results closely approximate the

eigenanalysis results shown in Table 2. The relative errors
are mostly no more than 10%, the accuracy of mode shape
angle is somewhat better than that of magnitude, and the
effectiveness of model order selection is verified again. The
mode shape properties can be estimated accurately using
the ARMA-P method based on ambient data.
In actual operating condition, noise disturbances such

as measurement errors exist continuously in power sys-
tems. Since the fluctuation amplitude of ambient signal
is relatively small, this type of disturbance cannot be
ignored. In order to testify the feasibility of ARMA-P
Table 6 Mode shape results of Mode I in 36-node
benchmark system

Gen Magnitude (p.u.) Error (%) Angle (rad) Error (%)

1 0.645 5.564 2.817 10.741

2 0.108 10.000 2.751 10.566

3 0.518 9.283 6.263 2.740

4 0.439 3.294 −0.048 4.000

5 0.629 5.360 6.111 0.472

6 0.462 8.451 −0.066 1.493

7 0.993 1.017 0.015 6.250
method in this case, colored noises with certain ampli-
tude are added to the original ambient signals. And the
identified mode shape results of Mode I from ambient
data with 20-dB signal-to-noise ratio (SNR) and 12-dB
SNR are indicated in Table 7.
It can be seen from the table that the relative errors of

angle results are all less than 11%, which means that the
mode shape angle can be identified accurately from am-
bient data; the relative errors of magnitude results are a
little bigger, yet still less than 15%, which also meets the
accuracy requirements of engineering.
Moreover, to test the statistical accuracy of the

ARMA-P method, 100 Monte Carlo simulations are run,
the mean and root mean square error (RMSE) are calcu-
lated. Monte Carlo trials work as to take several inde-
pendent measurements on the power system in order to
get a sense of the method’s statistical performance.
Table 8 Mode shape with mean and RMSE value of Mode
I based on ambient signals

Gen Magnitude (p.u.) Angle (rad)

Mean RMSE Mean RMSE

1 0.717 0.056 3.390 0.051

2 0.109 0.009 3.355 0.055

3 0.517 0.032 5.930 0..070

4 0.440 0.024 −0.048 0.032

5 0.566 0.040 6.177 0.062

6 0.457 0.033 −0.069 0.029

7 0.971 0.010 0.0170 0.031



Figure 6 Structure diagram of China Southern Power Grid.
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The results of the Monte Carlo trials are listed in
Table 8. Obviously, there is a good agreement be-
tween the new ARMA-P method and the traditional
eigenanalysis. The feasibility of AMRA-P method is
further verified.

Actual system example
Now consider the ambient data from China Southern
Power Grid as shown in Figure 6. The system contains
several interarea modes including two dominant modes,
one is the Yunnan-Guizhou mode, about 0.6–0.7 Hz,
and another is the Yunnan&Guizhou-Guangdong mode,
about 0.4–0.5 Hz. The angle relationship of generators
in the Yunnan-Guizhou mode is shown in Figure 7,
where the ones on the left are the generators in Yunnan
Province, and the ones on the right are the generators in
Guizhou Province.
For demonstration purposes, five locations spread

across the power grid are selected, including Anshun
substation, Gaopo converting plant, and Xingren
Generators in 
Yunnan Province

Generators in 
Guizhou Province

Figure 7 Angle relationship of generators in
Yunnan-Guizhou mode.
converting plant in Guizhou province, and Luoping
substation in Yunnan Province, Luodong substation
in Guangdong Province.
Ten-minute frequency data were collected from 02:10 to

02:20, on June 14th, 2009. The frequency signal of Luoping
substation is shown in Figure 8. Owing to the limitation of
phasor measurement, the accuracy of frequency signal
shown is limited, and since the power flow was regulated
during the data-collecting process, this signal has apparent
fluctuations. However, they would not influence the identi-
fication of oscillation mode information.
The ARMA-P method is used to identify the mode

shape properties from ambient signals. Luoping sub-
station was selected as the reference. The analysis results
in Table 9 and Figure 9 show the mode shape angle in-
formation in China Southern Power Grid.
From Table 9, it can be seen that the system includes

two dominant interarea oscillation modes, with the
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Figure 8 Measured frequency signal of Luoping substation.



Table 9 Results of mode shape angle in China Southern
Power Grid

Location Mode Frequency (Hz) Angle (rad)

Anshun Mode I 0.677 3.621

Mode II 0.484 0.122

Gaopo Mode I 0.685 3.370

Mode II 0.479 −0.310

Xingren Mode I 0.693 3.102

Mode II 0.478 −0.176

Luodong Mode I \ \

Mode II 0.490 3.555

Luoiping Mode I 0.659 0.000

Mode II 0.471 0.000
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frequency of mode I at about 0.47 Hz, and the fre-
quency of mode II at about 0.68 Hz. Anshun, Gaopo,
Xingren, Luoping all participate in the two modes,
whereas Luodong only participates in mode I. The plots
in Figure 9 indicate that in mode I Anshun, Gaopo, and
Xingren swing together against Luoping, which conforms
to the angle relationship shown in Figure 7, and in
mode II Anshun, Gaopo, Xingren, and Luoping swing
together against Luodong. It can be deduced that mode
I is the Yunnan-Guizhou mode, and mode II is the
Yunnan&Guizhou-Guangdong mode. The analysis results
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Figure 9 Results of mode shape angle in China Southern Power Grid.
conform to the mode shape characteristics information
that analyzed in advance. The ARMA-P method per-
forms well in estimating the mode shape of multiple
modes simultaneously based on actual ambient signals
in China Southern Power Grid.
Conclusion
A methodology considering the model order selection
called ARMA-P, used for estimating the mode shape
properties from time-synchronized phasor measure-
ments, is presented. Based on its theoretical analysis
basis, the approach is applied to a simulation system and
measured data from China Southern Power Grid. The
results demonstrate that the optimal model order can be
selected automatically and efficiently using BIC and the
ARMA(2n,2n – 1) modeling procedure. This method
works well in estimating the mode shape information of
multiple oscillation modes simultaneously based on am-
bient signals with different SNR value. And further
based on Monte Carlo studies, it is shown that the
ARMA-P method can estimate mode shapes with rea-
sonably good accuracy.
The algorithm proposed in this article shows great

promise for estimating the mode shape properties of
power systems. Future work will more rigorously investi-
gate its performance including the data length required
and the calculation speed.
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