
Duan et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:92
http://asp.eurasipjournals.com/content/2013/1/92
RESEARCH Open Access
A weighted eigenvector autofocus method for
sparse-aperture ISAR imaging
Jia Duan*, Lei Zhang and Meng-dao Xing
Abstract

With the development of multi-functional radar systems, inverse synthetic aperture radar (ISAR) imaging with
sparse-aperture (SA) data has drawn considerable attention in the recent years. Motion compensation and imaging
are among the most significant challenges that SA-ISAR imaging frequently faces. In this paper, we focus on the
autofocus scheme, in which a modified eigenvector-based autofocus method is proposed. In the method, different
weights are endued to different range cells according to their signal-to-noise ratios (SNRs). Using the weights, the
contribution from the range cells with high SNR is enhanced, yielding accuracy improvement in phase error
estimation. What is more is that to improve the estimation precision, an iterative scheme is introduced.
Experimental results show that the proposal is not only robust to severe noise but also applicable to ISAR imaging
with different SA patterns. Detailed comparisons are given in order to show the superiorities of the proposal in
phase adjustment for ISAR data.

Keywords: Inverse synthetic aperture radar (ISAR), Autofocus, Sparse aperture (SA), Weighted eigenvector phase
adjustment
1. Introduction
Inverse synthetic aperture radar (ISAR) has the capabil-
ity of producing high-resolution images of noncoopera-
tive targets in all weather conditions. However, a
considerably high-resolution ISAR image is only obtain-
able when enough pulses are continuously measured.
Unfortunately, for a modern radar system, this is diffi-
cult: (1) Long coherent processing interval is usually un-
achievable due to the uncooperative property of ISAR
targets. (2) Multi-sourced interferences may contaminate
some portions of the received pulse seriously. These por-
tions must be removed in case of false points and
blurred images, resulting in discontinuous measure-
ments. (3) With the development of modern multi-mode
and multi-functional radar systems, spending long con-
tinuous observation time on a single-target measure-
ment is no longer acceptable. Moreover, when multiple
targets present simultaneously, the radar systems have to
switch among different lines of slight to capture multiple
targets. Therefore, for modern radar systems, received
* Correspondence: bifiduan119@126.com
National Key Lab of Radar Signal Processing, Xidian University, Xi’an 710071,
People's Republic of China

© 2013 Duan et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
pulses for a single target are usually very limited and
even discontinuous.
Due to these constraints on data collection, sparse-

aperture (SA) samples are introduced in modern ISAR
systems. Therefore, in order to increase the flexibility
and robustness of modern radar systems, the study on
sparse-aperture ISAR (SA-ISAR) imaging is urgent. In
general, there are two major problems confronting SA-
ISAR imaging.
The first one lies in the way of obtaining full-aperture

-resolution ISAR images with SA measurements. To
handle this, several methods are proposed, which can be
divided into two major categories. The first category is
the compressive sensing-based high-resolution SA-ISAR
imaging methods [1-6]. These methods are able to
achieve an exact or close recovery of signal by solving a
minimum l1 optimization problem. The other kind of
useful technique for full-aperture signal reconstruction
is spectral analysis algorithm [7,8]. One of the most
well-known techniques is the gapped-data amplitude
and phase estimation method, which estimates the inte-
grated spectrum by designing narrowband filters to
interpolate missing data [8].
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The second problem confronting SA-ISAR imaging is
motion error compensation. Due to the discontinuous
sampling process, motion error compensation becomes
much more complex in SA-ISAR. Motion error compen-
sation can be achieved by range alignment and phase ad-
justment. Range alignment is used to remove the range
migration of different pulses, while phase adjustment is
used to correct their phase errors. It should be empha-
sized that several existing range alignment methods are
already capable to correct range migrations for SA-ISAR
data [9-11]. With respect to phase adjustment, there are
lots of phase compensation methods available for con-
ventional ISAR. The famous phase gradient autofocus
(PGA) method can approximately reach the Cramér-Rao
boundary by five or six iterations [12]. The weighted
least squares method is a robust algorithm without any
requirements on the noise model [13]. However, neither
one is suitable for the SA case. To our knowledge, the
study on the phase compensation methods for SA-ISAR is
quite few. Among the conventional autofocus methods,
the eigenvector method is proven to be applicable for SA-
ISAR phase error estimation [14,15]. In the eigenvector-
based phase correction method, the maximum likelihood
(ML) principle is used, resulting in a solution involving
the eigenvector corresponding to the prominent eigen-
value of the sample covariance matrix. Nevertheless, its
performance is dependent on the noise level and SA pat-
terns of available samples. To improve the eigenvector-
based phase adjustment, a weighted eigenvector-based
phase correction method is addressed in this article. In
this method, weights are designed to encourage the contri-
bution of range cells with high signal-to-noise ratio (SNR)
and suppress that of range cells with low SNR, yielding a
more precise and stable estimation. As an optimal candi-
date for the SA-ISAR phase adjustment, the weighted
eigenvector method performs well in adverse circum-
stances, such as highly noisy and SA cases. After motion
compensation by the proposed autofocus approach, an
SA-ISAR imaging method is applied to coherently focus
SA-ISAR data for full-aperture-resolution image [3]. The
imaging results of simulated and measured data validate
the effectiveness of the proposed method.
The remainder of this paper is organized as follows: In

the ‘Signal model for SA-ISAR’ section, the signal model
Figure 1 Geometry of sparse-aperture ISAR.
for SA-ISAR is introduced. In the ‘Weighted eigenvector
method for phase error correction’ section, both the the-
ory principle and operation flow of the weighted eigen-
vector algorithm are illustrated. Moreover, a simple
description of the SA-ISAR imaging scheme [3] has been
described. In the ‘Performance analysis’ section, auto-
focusing and imaging experiments are carried out with
acquired ISAR data sets. By comparing with other auto-
focus algorithms, the superiority of the improved
method is shown. Finally, some conclusions are drawn
in the last section.

2. Signal model for SA-ISAR
Considering that a monostatic ISAR system observes
multiple targets simultaneously, the radar has to switch
among different targets during the observing time,
resulting in SA for each target.

Let xk mð Þf gM0
m¼1 denote the kth complete aperture

range cell with length M0. It can be regarded as a long
vector with P sub-apertures,

xk¼Δ xk 1ð Þ xk 2ð Þ ⋯ xk M0ð Þ½ �T¼Δ xTk1 xTk2 ⋯ xTkP
� �T

;

ð1Þ

where xTk1; x
T
k2;⋯; xTkP are sub-vectors of xk, whose

lengths are L1, L2,⋯,LP, respectively, with L1 + L2 +⋯ +
LP =M0. Assume that the even sub-apertures of xk are
missing due to the radar working mode, and an SA vec-
tor γk is formed as follows:

γk¼Δ xTk1 xTk3 ⋯ xTkP
� �T

: ð2Þ

Let μk¼Δ xTk2 xTk4 ⋯ xTkP−1
� �T

denote the missing
aperture samples, and P is supposed to be odd for the con-
venience of the following derivation. Let γk and μk have
lengths of M and M0 −M, respectively, where M is the
total number of available samples withM = L1 + L3 +⋯LP.
Figure 1 shows the geometry of the SA-ISAR, in which

the full aperture contains M0 pulses with an index from
0 to M0 − 1. The odd sub-apertures are available, and the
hth sub-aperture consists of Lh pulses, whose index is
from Nh to Nh + Lh − 1.
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3. Weighted eigenvector method for phase error
correction
In conventional ISAR processing, motion compensation
usually begins in the range-compressed phase-history
domain. Thus, range alignment is implemented to the
range-compressed SA data firstly by some novel ap-
proaches [9-11], which are proven to be effective even
for SA data.
By referring to [14], a signal model for phase error es-

timation is introduced, in which each dominant range
cell contains a single dominant scattering center and
other clutters are modeled as uniform-intensity Gaussian
white noise. These dominant range cells are usually uti-
lized to estimate phase errors because of their high SNR
properties. From [11], a range cell whose normalized
amplitude variance is less than 0.12 (0.2) can be referred
to as a dominant range cell.
Hence, the sparsely sampled lth dominant range cell

after range compression is given as

γl¼Δal ej φ1þ2πf l1ð Þ ej φ2þ2πf dl⋅t1ð Þ

⋯ej φmþ2πf dl⋅tmð Þ⋯ej φMþ2πf dl⋅tMð Þ

#
þ nl; ð3Þ

"

where al represents the complex amplitude of the lth
dominant range cell; nl denotes the interference from
noise, which follows a Gaussian distribution with vari-
ance δ2l ; Doppler frequency is denoted by fdl; and phase
error at azimuth position m is φm.
Suppose that L dominant range cells are chosen for

estimation. For the convenience of deduction, we as-
sume that the Doppler shift of each dominant range cell
has been removed temporarily. The Doppler shift re-
moval scheme will be subsequently discussed in the
‘Elimination of Doppler shift’ section. Then, the range-
compressed dominant echoes can be expressed by

X ¼ γ1 ⋅⋅⋅ γ l ⋅⋅⋅ γL½ �M�L
¼ vM�1⋅α1�L þ NM�L; ð4Þ

where the phase error vector is symbolized by v with

vM�1 ¼ ej φ1ð Þ ej φ2ð Þ ⋅⋅⋅ ej φMð Þ� �T
. Note that the phase

error is constant across all dominant range cells. The
complex amplitude vector is denoted by α1�L

¼ a1 ⋯ aL½ � , and N stands for the complex Gauss-
ian white noise matrix. Generally, the noise in each
dominant range cell is an independently and identically
distributed Gaussian random variable. Therefore, we let
δ21 ¼ δ22 ¼ … ¼ δ2L ¼ δ2 . By this, the covariance matrix
of noise can be computed as δ2I [13], symbolizing as
cov(N).
3.1. Weighted eigenvector method
3.1.1. Independent phase error elimination
Based on the assumption in the last sub-section, the lth
dominant range cell for SA-ISAR is expressed as

γ l ¼ al ej φ1ð Þ ej φ2ð Þ ⋅⋅⋅ ej φMð Þ� �T þ nl

¼ alvM�1 þ nl: ð5Þ

Let Ĉ ¼ 1
LXX

H ¼ 1
L

XL
l¼1

γlγ
H
l . It has been proven that

the ML estimation [9] of v is to choose v maximizing (6)
with vHv =M,

Q ¼ vH Ĉv ¼
XM
m¼1

λm zmj j2: ð6Þ

Define z as z ¼ z1 ⋯ zM½ �T ¼ PHv , of which P is

the eigenmatrix of Ĉ [5].
Clearly, (6) is maximized for zmax such that |zm|

2 =M
and |zk|

2 = 0 for k ≠m, where m is the index correspond-

ing to the largest eigenvalue λm of Ĉ . That is, zTmax ¼ M⋅

ejθ 0;⋯; 1
mth

;⋯; 0
h i

, where θ is an arbitrary rotation angle.

Therefore, the ML estimation of v is vmax =M e jθpm, in

which pm is the significant eigenvector of Ĉ . After apply-
ing pm to correct the phase error, phases are compensated
to a constant. Namely, phase adjustment is achieved. In
[15], the eigenvector method is validated to be suitable to
correcting phase errors for SA-ISAR data.
It should be emphasized that each dominant range cell

is fairly treated in the eigenvector-based phase error esti-
mation method. However, for SA-ISAR, there are several
dominant range cells with relatively high SNRs. With
high SNR property, these dominant range cells are cap-
able of providing more precise information for phase
error estimation than others. Based on this, an improved
eigenvector autofocus method is established. The im-
provement involves a weighted optimization function for
estimating the phase error. From (6), in order to obtain
a more precise estimation, one needs to enhance the
contributions of signals and suppress those of noise in the

calculation of Ĉ . This can be accomplished by adding
significant weights to the dominant range cells with high
SNRs, which will be discussed elaborately as follows.

In order to obtain an adjusted Ĉ , we add weights to
each dominant range cell. Let εl (l = 1, 2,⋯,L) represent
the weight for the lth cell, then

X 0 ¼ ε1γ1 ⋅⋅⋅ εLγL

� �
M�L ¼ v ⋅ a0 þ N 0; ð7Þ

where the weighted complex amplitude is symbolized by
α' with α0 ¼ ε1a1 ⋯ εLaL½ � and weighted noise
matrix is denoted by N 0 ¼ ε1n1 ⋯ εLnL½ � . The co-
variance matrix of the weighted noise can be calculated
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with ease, i.e., cov N 0ð Þ ¼ 1
L

XL
l¼1

ε2l δ
2⋅I . Then, the loga-

rithm of conditional probability density function for the
weighted X' given v is provided as

lnpðX 0 vj Þ ¼ −N ln πM C 0j j� �
−
XL
l¼1

ξ2l γ
H
l C

0−1γl; ð8Þ

where C' denotes the covariance matrix of the weighted
data,

C 0 ¼ E X 0X 0H� �
¼ 1

L

XL
l¼1

ξ2l a
2
l

 !
vvH þ 1

L

XL
l¼1

ξ2l δ
2

 !
I: ð9Þ

Utilizing σ2n to represent 1
L

XL
l¼1

ξ2l δ
2

 !
and σ2a to repre-

sent 1
L

XL
l¼1

ξ2l a
2
l

 !
, the inverse matrix of C' is computed

as
C 0ð Þ−1 ¼ −

σ2
a=σ

2
n

σ2n þMσ2
a
vvH þ 1

σ2n
I: ð10Þ

By substituting (10) into (8), the weighted ML optimal
problem has been converted into finding a vector v,
which maintains the following equation most likely:

Q0 ¼
XL
l¼1

ξ2l γ
H
l vv

Hγ l ¼ vH
XL
l¼1

ωlγ lγ
H
l

 !
v; ð11Þ

where ωl ¼ ξ2l . Let Ĉ ¼ 1
L

XL
l¼1

ωlγ lγ
H
l . Similar to the der-

ivation of the eigenvector method, the solution of (11) is
related to the eigenvector corresponding to the promin-

ent eigenvalue of Ĉ 0 , after scaling its squared modulus
to M. Namely, v̂ ¼ Mejθ1pm

0 , where pm' is the largest

eigenvector of Ĉ 0 and θ1 is an arbitrary rotation angle.
Instituting v̂ into (11), Q' obtains its peak value λ'maxM,

where λ'max is the largest eigenvalue of Ĉ 0.

Let
XL
l¼1

ωlγ
H
l γ l ¼

XL
l¼1

γH
l γ l , in that weight does not

change the total energy. Here, weight is chosen directly
proportional to SNR, which is defined as the ratio of the
dominant scatterer energy to the total noise energy in

the cell, namely ωl ¼ κ
a2l
δ2L

[16,17]. A notable point is that

the energy of noise includes both that of weak scatterers
and clutters. In order to hold the total energy still, κ can

be normalized as ∑γH
l γ l=∑

a2l
δ2L
γH
l γ l.

For the sake of comparison, the SNR after weighting
can be calculated as follows:
XL
l¼1

ωla
2
l

XL
l¼1

ωlδ
2
l

¼

XL
l¼1

κ
a2l
δ2l

a2l

XL
l¼1

κ
a2l
δ2l

δ2l

¼

XL
l¼1

a4l
δ2lXL

l¼1

a2l

: ð12Þ

On the assumption that the noise in each range cell is
independently and identically distributed, we have δ21
¼ δ22 ¼ … ¼ δ2L ¼ δ2 . After substituting it into (12), it
can be obtained that

XL
l¼1

ωla
2
l

XL
l¼1

ωlδ
2
l

−

XL
l¼1

a2l

XL
l¼1

δ2l

¼

XL
l¼1

a4l

δ2
XL
l¼1

a2l

−

XL
l¼1

a2l

L⋅δ2

¼
L⋅
XL
l¼1

a4l −
XL
l¼1

a2l
XL
l¼1

a2l

L⋅δ2
XL
l¼1

a2l

: ð13Þ

Because of the lemma that L
XL
l¼1

b2l ≥
XL
l¼1

bl
XL
l¼1

bl , we

have L⋅
XL
l¼1

a4l −
XL
l¼1

a2l
XL
l¼1

a2l ≥0. The detailed derivation of

the lemma is listed as follows:

XL
l¼1

bl
XL
l¼1

bl
l ¼

XL
i¼1

XL
j¼1

bibj≤
XL
i¼1

XL
j¼1

b2i þ b2j
2

¼
XL
i¼1

 
L
2
b2i þ

1
2

� �XL
j¼1

b2j

!

¼ L
2

XL
i¼1

b2i þ
L
2

XL
j¼1

b2j ¼ L
XL
l¼1

b2l : ð14Þ

After substituting L⋅
XL
l¼1

a4l −
XL
l¼1

a2l
XL
l¼1

a2l ≥0 into (13),

we have

XL
l¼1

ωla
2
l

XL
l¼1

ωlδ
2
l

≥

XL
l¼1

a2l

XL
l¼1

δ2l

. Therefore, the SNR of Ĉ 0 has

been improved by the weighting processing compared

with that of Ĉ . In this way, the maximum eigenvalue

λ'max of Ĉ 0 becomes more significant than that of Ĉ ,
yielding an optimized ML estimation. Furthermore, en-
hanced signal components and suppressed noise compo-
nents are achieved using the SNR weights. Compared
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with (6), a more precise phase adjustment is resulted in
than before.

3.1.2. Elimination of Doppler shift
On the assumption that the Doppler shift of each dom-
inant range cell is removed, the weighted eigenvector-
based autofocus method is effective. However, the Doppler
shift is relevant to the cross-range position of each
dominant scattering center, which differs with both
azimuth and range positions. So as to ensure the feasibility
of our method, Doppler shift should be removed before
the coherence matrix calculation.
In traditional ISAR phase error compensation methods,

center shifting is utilized to reduce the influence of
Doppler shifts, which works in two steps. Firstly, by
Fourier transforming (FT), echoes are transformed into
the range-Doppler (RD) image domain. Then, Doppler
shift is removed by circularly removing each dominant
scatterer to the center of the image. However, for SA-
ISAR, especially when it comes to the unevenly under-
sampling cases, the method needs some modification.
Because of the discontinuous phase history, it is impos-
sible for the SA-ISAR signal to be coherently accumulated
by FT. To handle this, zero padding is utilized [13]. In this
way, FT can be useful, namely circularly shifting can be
implemented. In this article, instead of circularly shifting,
we multiply a corresponding linear-phase function with
the zero-padded signal in the time domain. The linear-
phase function is constructed by estimating Doppler shifts
from the positions of strongest response in the RD do-
main. Note that although the sidelobes are highly raised,
Range Compressed
SA-ISAR data

p = 1

Dominant Cell?

Compute Weight
for each Dominant

Range Cell

Weighted Eigenvector
Estimation of Phase

Error

Compensa
Error fo

Dominant R

p=p+

Yes

Figure 2 Flow chart of the weighted eigenvector autofocus algorithm
the mainlobe is still higher so that the positions can be de-
termined. Finally, vacant apertures are removed from the
product.
Nonetheless, due to the presence of phase error, the

Doppler shift removal is not optimal as expected. There-
fore, the phase error correction and Doppler shift esti-
mation are done in a mutually iterative manner, in
which one estimated variable is used to update the esti-
mation of the other. Through this scheme, the Doppler
shift and phase error are estimated and reduced grad-
ually. Finally, with the increase of iteration number, pre-
cise estimations are resulted in. For clarity, the flowchart
of the weighted eigenvector autofocus method is shown
in Figure 2.
Firstly, in order to determine which range cells are

chosen as the samples for coherence matrix computa-
tion, we compute the normalized amplitude variance of
each range cell.
Secondly, the estimation of phase errors is done in

two steps:

� Step 1: Weight is calculated for each dominant
range cell according to SNR. Then, the weighted
covariance matrix is obtained, and the eigenvector
corresponding to the largest eigenvalue is used to
correct the phase errors roughly. Subsequently,
Doppler shift is estimated and compensated.

� Step 2: Re-determine phase errors by the weighted
eigenvector autofocus method. After compensating
the estimated phase error to the dominant range
cells, Doppler shift is re-estimated and compensated.
te Phase
r each
ange Cell

Doppler Shift
Estimation by
Interpolation

Compensate Doppler
Shift for Dominant

Range Cells

P=N?

Compensate Estimated
Phase Error for all

Range Cells

1 No

Yes
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Continue the above sub-steps until the ceasing condi-
tion is satisfied. The halt condition may be the count of
iteration number. Experimental results show that two or
three iterations are enough to ensure the accuracy.
At last, we compensate the whole range cells with the

estimated phase error.

3.2. SA-ISAR imaging
For traditional ISAR after autofocusing, RD imaging is a
simple but effective method to obtain a well-focused
image of targets. However, for SA-ISAR data with the
sparsely sampled Doppler history, RD images of targets
usually smear seriously with high gratinglobes and
sidelobes. To reduce the discontinuous sampling effects
on SA imagery, many novel approaches have been pro-
posed. In [3], a sparsity-driven algorithm to generate
high-resolution SA-ISAR images is given, in which a SA-
ISAR imaging problem is converted into a sparsity-
constrained optimization problem based on the max-
imum a posteriori estimation. The optimization is given
as follows:

Â Xð Þ ¼ arg max
A∈CN�M

−
1
2σ2

X � FAk k22−γ Ak k1
� 	

¼ arg min
A∈CN�M

X � FAk k22þμ Ak k1
� �

;

ð15Þ

where μ = 2σ2γ is the sparsity coefficient and γ is the La-
place distribution parameter. They are directly related to
the unknown statistics of noise and target signal. X stands
for the SA-ISAR echo matrix, as defined before. F is a par-
tial Fourier matrix, which can be easily constructed corre-
sponding to the pattern of SA. A = [anm] is an N ×M
matrix and denotes the two-dimensional (2D) ISAR image,
whose pixel values are corresponding to scattering center
amplitudes.
Based on the assumption that the additive noise is sub-

ject to a zero-mean Gaussian distribution with unknown
variance σ2 and the signal components corresponding to
the dominant scattering centers follow a Laplace distribu-
tion with coefficient γ independently, it utilizes the
constant-false-alarm-ratio detector to discriminate signal
from noise in the sub-aperture images approximately.
Using the pure noise and target components, both σ2 and
γ can be obtained via ML. In this SA-ISAR imaging algo-
rithm, a modified quasi-Newton algorithm is applied in an
iterative manner for image formation [4], and in order to
improve the efficiency of the solver, fast Fourier transform
and conjugate gradient algorithm are applied in its imple-
mentation [3]. Real data experiments manifest the effect-
iveness of the method. Therefore, we use this SA-ISAR
imaging algorithm jointed with phase adjustment pro-
posed to achieve a high-quality SA-ISAR image.
4. Performance analysis
In this section, real ground-based measurements are
conducted to analyze the performance of the weighted
eigenvector phase correction method. By considering
different SA patterns, such as complete aperture pattern,
unevenly SA pattern, and block SA pattern, the univer-
sality of our method is investigated. The following exper-
iments are vital to validate the effectiveness of our
method.

4.1. Dataset and evaluation criterion
To make our experiments convincing, real measured
ISAR data are used to perform different experiments. A
dataset of Yak-42 airplane is used, which is recorded
using a C-band (5.52GHz) ISAR experimental system.
This system transmits a 100-MHz linear modulated
chirp signal with 25.6-μs pulse width. The range reso-
lution is 0.375m. The echo is de-chirped and I/Q sam-
pled for range compression. After range compression,
conventional range alignment and phase adjustment are
applied to the complete aperture data. Then, RD im-
aging method is implemented, producing a well-focused
image, as illustrated in Figure 3. We use it as a standard
image for evaluating the following experimental results.
After applying 2D inverse Fourier transforming to the

well-focused image, random Gaussian phase error and
white noise are added to generate defocused data sets
with different SNRs. The added phases randomly vary
within [−π, π]. Moreover, SA-ISAR data are created by
extracting some pulses from the data sets in both ran-
dom and block manners. Thus, the performance of
phase correction methods under different conditions is
analyzed.
In order to assess the performance quantitatively, cri-

teria should be built. Since the entropy of an image is
usually used as an index that quantitatively represents
the information of the luminosity distribution of the
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image, entropy criterion is used to analyze the perform-
ance for the complete aperture case. However, owing to
the use of parametric superresolution approaches, the
image entropy criterion is not suitable to SA-ISAR im-
ages [4]. Therefore, a criterion built in [13] is brought in
to appraise the weighted eigenvector phase adjustment
method for SA cases quantitatively:

pe ¼
1
M

XM
m¼1

v mð Þ−v̂ mð Þj j2; ð16Þ

where pe is defined as the square error between esti-
mated phase and added phase, and v and v̂ are the ap-
plied and estimated phase errors, respectively.
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Figure 4 Imaging results for complete aperture data under low SNRs
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4.2. Experimental results and analysis
4.2.1. Performance under low SNR with complete aperture
data
To testify the effectiveness of our method under low
SNR, complex-valued Gaussian noise and phase error
are added to generate degraded data set with 0-dB SNR.
After range compression, three autofocus methods (trad-
itional eigenvector method, PGA algorithm, and
weighted eigenvector method) are performed to estimate
the phase errors. Since we use complete aperture here,
traditional RD imaging algorithm is adopted. The RD
images with different phase adjustment methods (PGA,
eigenvector, and weighted eigenvector methods) are
shown in Figure 4a,b,c, respectively. Note that although
the original eigenvector method can get highly focused
results in certain range cells, blurring cases emerge in
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Figure 5 SA-ISAR imaging results. (a) Uneven SA. (b) Block SA. (c) Imaging results without autofocusing method for uneven SA data.
(d) Uneven SA-ISAR imaging with PGA. (e) Uneven SA-ISAR imaging with eigenvector method. (f) Uneven SA-ISAR imaging with weighted
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Table 1 Mean square error between true phase error and
estimated error

PGA Eigenvector Weighted eigenvector

Unevenly SA 0.2431 0.1054 0.0437

Block SA 0.1928 0.0967 0.0587
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other range cells. This is improved by the weighted
eigenvector method, which is better than the result of
PGA as well.
For comparison, the 146th range cell with one domin-

ant scatterer is chosen. The envelope of the 146th range
cell is plotted in Figure 4d. It is obvious that the
mainlobe of the proposed algorithm is the highest and
the sidelobe is the lowest of the three methods. There-
fore, the weighted method outperforms other methods
under 0-dB SNR.
Furthermore, the performance of the three phase ad-

justment methods under different SNRs is analyzed and
compared by Monte Carlo simulation. At each generated
SNR, a hundred independent experiments have been
conducted. Entropy of the focused image is computed.
Its definition is given in [18], which is

u ¼ ∑
m
∑
n

A m; nð Þj j2
S

ln
S

A m; nð Þj j2
S ¼ ∑

m
∑
n
A m; nð Þj j2;

ð17Þ
where u means the entropy value of an ISAR image, A
(m, n) is the amplitude of pixel (m, n), and S is the total
energy of the ISAR image.
The mean value of entropy with SNR is presented in

Figure 4e. From the image, the proposed method is
superior to others, especially under low SNRs. With the
increased SNR, the entropy values decrease sharply and
results of the three methods become similar. As to the
comparison of the steadiness, Figure 4f shows the mean
square error (MSE) of entropy varying with SNR, with
which the results indicate that the proposed method is
robust and stable under low SNR conditions. The defi-
nition of MSE has been given as
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MSE ¼ 1
K

XK
k¼1

u kð Þ−�uj j2; ð18Þ

where K is meant by the total number of Monte Carlo
experiments under each generated SNR, u(k) represents
the entropy value of the SA-ISAR imagery in the kth ex-
periment, and �u is the average entropy value of total in-
dependent experiments under certain SNR.

4.2.2. Performance under SA cases
In this sub-section, random Gaussian phase error is ap-
plied to defocus the dataset, and 128 pulses are extracted
from the degraded dataset as SA samples. The SAs are il-
lustrated in Figure 5a,b, respectively. The under-sampling
processes are done in two ways, unevenly under-sampling
and block under-sampling. Uneven SA is a general SA
case, in which the missing data can occur at an arbitrary
sampling index, and block SA is a familiar SA pattern in
multiple-target observation with a single radar system. In
this SA pattern, discontinuous blocks constitute the SA
data, with each block having no missing samples.
Firstly, the sparsity-driven SA-ISAR imaging method is

implemented to the range-compressed data without any
autofocus methods. The results are presented in Figure 5c,
g, respectively. The images are defocused in both SA cases.
To autofocus the SA data, three methods (PGA, eigen-
vector method, and weighted eigenvector method) are
conducted. The imaging results manifest that the weighted
eigenvector method achieves well-focused results under
both SA patterns, as shown in Figure 5. However, the
eigenvector method is only adaptable for the unevenly SA
case, while the PGA is not suitable for both SA cases.
Therefore, we conclude our method is suitable for auto-
focusing data with different SA patterns, which is an extra-
ordinary superiority to autofocusing methods available.
For quantitative comparison, the square error criterion

given in [13] is adopted. Square error is computed
according to (16) with the solutions listed in Table 1.
Apparently, the weighted eigenvector has the smallest
square errors in both SA patterns, which accords with
the imaging results.

5. Conclusions
Based on the traditional eigenvector method, a weighted
method is proposed. After comparing with traditional
autofocus methods, such as PGA in conventional ISAR,
it has been proven that the proposed method can
achieve a well-focused SA-ISAR image, especially under
low SNR conditions. With respect to the case that center
shifting is not suitable for the SA-ISAR, zeropadding
and iteration are implemented to eliminate discrete
Doppler shift. Finally, the experimental results of real ac-
quired data have testified that the proposed method is
capable to correcting phase error for SA-ISAR data with
any pattern, whether block sparse-sampled or unevenly
sparse-sampled data sets.
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