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Abstract

In this paper, we propose an efficient operator splitting method for local region Chan-Vese (C-V) model forimage
segmentation. Different from the C-V model, we employ the window function and absorb the local characteristics of
the image for improving the C-V model, which we called the local C-V model. The local C-V model can deal with the
problem of intensity inhomogeneity which widely exists in the real-world images. By employing a Laplacian operator,
we present an operator splitting method to update the level set function. Firstly, we solve the proposed model for
evolving the level set function, which drives the active contour to move toward the object boundaries. Secondly, we
introduce the Laplacian operator to act on the level set function as a diffusion term, which could efficiently ensure the
smoothness and stability and eliminate the complex process of re-initialization. Besides, we increase a new constraint
term which avoids updating the level set function seriously. Furthermore, we present an extension for vector-valued
images. Experiment results show that our method is competitive with application to synthetic and real-world images.

1 Introduction surface evolutions and geometric flows have been exten-

In the field of image processing and computer vision,
image segmentation is an everlasting fundamental prob-
lem. In the past decades, a large number of different
approaches to segmentation have been put forward con-
tinuously [1,2]. the active contour model that was firstly
presented by Kass et al. [3] is one of the most famous
and successful models for extracting objects in image seg-
mentation. The main idea of this model is evolving a
parametric curve to extract the objects during a process
of minimizing energy functional. However, this model has
some intrinsic disadvantages, such as it cannot efficiently
handle topological changes like splitting and merging of
the evolving curve. In order to overcome this problem, the
level set method [4] proposed by Osher and Sethian could
easily represent the curve or surface as the zero level set
of a high-dimensional function which can effectively han-
dle topological changes. With the evolution of the level
set function, the curve is moving implicitly, which pro-
motes the combination with the active contour model.
Up to now, in order to provide an effective way, active
contour models [3,5-7] based on the theory of curve and
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sively studied and successfully used in the field of image
segmentation.

Generally, active contour models can be roughly cat-
egorized into two different classes: edge-based models
[6,8-11] and region-based models [7,12-17]. Edge-based
models use local image gradient information to attract
the active contour toward the object boundaries and
stop there. Geodesic active contour (GAC) model [6] is
a famous example of this kind, which mainly depends
on the local gradient information to control the shrink-
ing or expanding of the contour. This kind of models
is sensitive to the initial conditions and sometimes with
boundary leakage problems, especially to the weak or
fuzzy boundaries. Comparing with the edge-based mod-
els, region-based models aim to identify each region by
introducing region descriptors to drive the contour evo-
lution. Depending on the statistical region information,
they offer advantages such as that they do not rely on any
edge or gradient information and are generally robust to
noise and less sensitive to the contour initialization. In this
paper, we mainly focus on the region-based models.

Among the region-based models, the Mumford-Shah
model [18] is well known in minimizing an energy func-
tional to approximate the image. In the Mumford-Shah
model, the image is decomposed into some regions. In this
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way, each region is approximated as a smooth function.
The C-V model [7], as a simplified case of the Mumford-
Shah model, in a piecewise constant way, has achieved
a good performance in two-phase image segmentation
with a fast convergence rate. On the basis of the C-V
model, in [19,20], the authors further generalized and
proposed some variants which are called piecewise con-
stant models. On the other hand, the energy functional
of the C-V model is non-convex, so it is prone to get-
ting struck in undesirable local minima. In [21-23], the
authors presented some convex relaxation methods. How-
ever, the C-V model is based on the assumption that
the image is statistically intensity homogeneous in each
region, thus it has some limitations in actual applications.
In fact, the image with intensity inhomogeneity exists
widely in the real world, and it is considered as a chal-
lenging problem in image segmentation. In addition, the
typical C-V model can only deal with the problem of two-
phase segmentation. As an extension, a multiphase level
set framework [24] is presented for the multi-region image
segmentation, which can be used to deal with the prob-
lem of intensity inhomogeneity. However, re-initialization
is required periodically for the level set function so the
computational cost is expensive. On the other hand, for
the benefit of vector-valued image segmentation, in [25],
the authors extended the C-V model to the vector-valued
images. In [16,17], local region information is incorpo-
rated into the active contour models; and it is worth
mentioning that the local binary fitting (LBF) model, also
called region-scalable fitting model, shows a better per-
formance than the C-V model on extracting objects to
the images with intensity inhomogeneity. However, the
LBF model has a large dependency on the contour initial-
ization; especially if the initial position of the contour is
far away from the objects, the LBF model may be prone
to getting stuck in local minima. Apart from the LBF
model, in [26-28], active contour models mainly based
on the local region information are further developed
and effectively used to segment the images with intensity
inhomogeneity. In [29], Tao et al. integrated the multi-
ple piecewise constant with the GAC model, which can
also overcome the problem of intensity inhomogeneity
and multiple objects for image segmentation. Besides, in
[30], the authors integrated the local region information
with the C-V model, which is effective for the images
with intensity inhomogeneity.

In the traditional level set methods, in order to keep
the regularity and numerical stability during the evolving
process, periodical re-initialization [31-33] as a numeric
remedy is introduced to maintain the level set function
regularity. However, this method is time-consuming and
sometimes it may move the location of the zero level set
[34]. Considering these problems, in [35-37], the authors
proposed a series of variational level set methods, which
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can approximately maintain the signed distance property
with the level set evolution. Therefore, these methods
completely avoid the re-initialization procedure. Besides,
in [27,38], the authors used the Gaussian filtering process-
ing to regularize the level set function.

In particular, Zhang et al. [39] proposed a reaction dif-
fusion method, in which the level set evolving process can
be divided two steps, where the re-initialization procedure
is also completely unnecessary.

In this paper, we propose an efficient operator splitting
method for local region C-V model, which employs the
local image region information to drive the active contour
evolving. Unlike the C-V model, we bring in a window
function to calculate the local means of image intensi-
ties inside and outside the contour, respectively, and apply
them to improve the C-V model. For the sake of simplic-
ity, we call it as local C-V model. In the level set evolving
process, the local C-V model mainly relies on the local
image region information so that it is desirable to segment
the images with intensity inhomogeneity. Furthermore,
considering the regularity of the level set function, we
present an operator splitting method to update the level
set function, which performs well in maintaining its
smoothness and stability. Specifically, in the first step, the
level set formulation is iterated. In the second step, moti-
vated by the relative contributions in [27,39], we introduce
the Laplacian operator to act on the level set function,
which forms a diffusion term to regularize the level set
function. This diffusion term can ensure the smoothness
and stability of the level set function, thus the costly re-
initialization procedure is not essential. In addition, we
increase a new constraint term, which avoids updating
the level set function seriously and maintains its stability
as well. Moreover, we extend our method to the vector-
valued image segmentation, as a special case, which can
be used to extract the objects on the color images.

The outline of this paper is organized as follows. In
Section 2, we mainly review the well-known Mumford-
Shah model and the C-V model and its extension form on
the vector-valued images. In Section 3, we first propose
the local region C-V model, and then we present an oper-
ator splitting method to realize the level set evolution and
keep its smoothness and stability at the same time. Fur-
thermore, we also extend our method to the vector-valued
images. In Section 4, we carry out some experiments to
demonstrate the effectiveness and performance of our
method. Finally, we summarize this paper in Section 5.

2 Previous related works

2.1 Mumford-Shah model and Chan-Vese model

In [18], Mumford and Shah proposed the Mumford-Shah
model. Its main idea is as follows: given an image I, by
minimizing an energy functional to find a pair of (&, C) for
partitioning the image into some disjoint sub-regions, u is
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an almost piecewise smooth approximation of the origi-
nal image 7, and C denotes the smooth and closed contour.
The energy functional is defined as

EMS(M,C):/ |u—I|2dxdy+M/ \Vu|>dxdy+v|C|,
Q Q\C

(1)

where Q2 defines the image domain, and p and v are fixed
parameters, and |C| is the length of the contour C C Q.
In this energy functional, the first term is the data fidelity
term. The second and third terms are the smooth term
and the length restraint term of the contour C. In fact,
because of non-convex property, it is a difficult problem
to find the optimal solution of (1). In [7,24,40], the authors
turned to simplify or modify this problem for practical
applications.

Based on the Mumford-Shah model, Chan and Vese [7]
considered a special case by restricting u to a piecewise
constant function and proposed an energy functional as
follows:

ESV(C,en,e2) =[C] + A1 / (,y) — c1]2dxdy

inside(C)

i [ i) - coldsdy
outside(C)

2)

where i > 0, v > 0, A; > 0, and A2 > 0 are parameters.

In the C-V model (2), the combination of the last two
terms is called fitting energy, which is based on the statis-
tic region information inside and outside the contour C,
respectively. In totality, this fitting energy plays a major
role in the process of the contour evolution. In calcu-
lus of variations and level set methods, the contour C is
readily represented by the zero level set ¢ (x,y) = 0. Cor-
respondingly, ¢ (x,y) > 0, if (x, y) is inside C, and reversely
¢(x,y) < 0,if (x,y) is outside C. Minimizing the energy
functional (2) is equivalent to solving the corresponding
level set formulation as follows:

0 ¢
5 =@ [Mdlv (W') — )

(3)
—c1)? + rxy) — 62)2} ,

where § is the Dirac function. Similarly, after fixing ¢, ¢;
and cy are easily obtained as

Jo 1G9 H(¢ (x, y))dxdy
Jo H@(x,y))dxdy

Jo I, y)(1 — H(¢ (x, )))dxdy
Jo = H(¢(x,9))dxdy

where H is the Heaviside function.

() = (4)

c(P) = )
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The C-V model is considered as one of the most widely
used models for two-phase image segmentation. One of
the prominent advantages of the C-V model is that it
performs well on the images with fuzzy or even without
edges. However, as a limitation, the C-V model always
supposes the image with intensity homogeneity. In fact,
from Equations 4 and 5, we can observe that c¢; and ¢; are
mainly related to the global property for they rely on the
region information inside and outside the contour, respec-
tively. Without taking the local image region information
into account, the C-V model cannot effectively deal with
the problem of intensity inhomogeneity. In addition, it is
unable to segment the multi-region images with different
intensities.

2.2 Vector-valued Chan-Vese model

In [25], Chan et al. presented a natural extension of the

traditional C-V model to the vector-valued images. In this

extension, let J; be the ith channel of an image on 2, with

i = 1,---, N channels, and C the evolving curve. All

the channels originate from the same image with some

differences. Let
ct=(cf, - ct) and ¢ =(c, -, cy)

be two unknown constant vectors. Then the extension of

the C-V model to the vector case is as follows:

BT, ¢>)=M|CI+/

ZA 1;(x,y) — ] |2dxdy
inside(C) N

+/ LN AT y) — o Pdxdy,
outside(C) N Z ’ ! )
©)

where )\j' > O0and A; > O are parameters for the ith
channel. For convenience, we call the energy functional (6)
as vector-valued C-V model. As an extension, the vector-
valued C-V model balances the length of the contour C in
the image, with fitting of /, averaged over all channels. In
this form, the model (6) can detect edges presented in the
last one of the channels and not necessarily in all channels.
In the level set methods, the energy functional (6) can be
easily rewritten as

E(ct,c™, ) = /Q 8(p(x, M|V (%, ) |dxdy
1 N
+ fQ 5 DA L) — cf PH(@ ) dxdy
i=1

N
1
+ fQ N D A Ui y) — ¢ P(1 — H( (x,9)))daxdly.
i=1

@)
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Similar to the C-V model in minimizing the energy func-
tional (7) with respect to the constants c;“ and ¢; for
i=1,---,N, weobtain
Jo LiGx, ) H(9 (%, y))dxdy
Jo H(@(x,y))dxdy
Jo Lite, y)(1 — H(g (%, 9)))dxdy
Jo(1 = H(¢(x,9)))dxdy
Then we assume that ¢+ and ¢~ are constant vectors, and

then we minimize the energy functional (7) with respect
to ¢ to have

(@) = 8)

)

¢ (@) =

d¢ (V) 1 h
5, =3@) [Mdlv (w) N in Li(x,y)
i=1 (10)
LN
— 4 D Ui y) — c,«)z} :
i=1
The vector-valued C-V model can be used to extract
complete information of the image, including the missing
information in one or more channels. The reason is that
each single channel is insufficient for determining the final
location of the evolving contour. Thus, the vector-valued
C-V model is better with the combinatorial form of all the
channels. As a special example in [25], the vector-valued
C-V model is effective to segment the color images. In
fact, the vector-value C-V model inherits all the benefits of
the traditional C-V model, such as robustness to the noise
and automatic detection of interior contours. Neverthe-
less, the vector-value C-V model still cannot deal well with
the image with intensity inhomogeneity.

3 An efficient operator splitting method for local
region Chan-Vese model

3.1 Alocal region Chan-Vese model

As discussed in subsection 2.1, in the level set formulation
(3) of the C-V model, ¢; and c; represent the global mean
intensities of the image inside and outside the contour,
respectively. As a result of this simplified representation,
the C-V model fails in segmenting the image with intensity
inhomogeneity. Generally, the intensity inhomogeneity is
slowly varying in the image domain. A remarkable charac-
teristic of the image with intensity inhomogeneity is that
for each point (x,y) € , its intensity is not completely
similar to its neighboring points, sometimes with a great
deal of difference. Therefore, it is unreasonable to only
use two constants ¢; and ¢ for approximating the image
intensities inside and outside the contour, respectively. To
address these issues, we assume that for each point (x, y),
in a small neighboring region, the image intensities sub-
mit to a certain probability distribution function, such as
the Gaussian distribution. For the benefit of incorporat-
ing the local region information, we introduce a truncated
rectangular window function W (x,y), where k is related
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to the size of this rectangular window. Then we define c]f
and c} as follows:

cf = mean(l € ({(x,y) € Q¢ (x,) > 0} N Wi(x,9))),
(11)

¢y = mean(l € ({(x,5) € Qlp(x,5) < 0} N Wi(x, 7)),
(12)

where we choose the truncated rectangular Gaussian
window with a standard deviation o. Comparing with
Equations 4 and 5, it is more complex for calculating c]f
and c%, which greatly relies on the size of the window
function. Due to the effect of the window function, the
contributions of the intensities of the neighboring points
to the center point are not the same for the different dis-
tances. To deal well with the problem of the image with
intensity inhomogeneity, we use ¢} and ¢} to replace ¢;
and ¢p. Therefore, the level set formulation (3) can be
rewritten as

3 (Vo

(13)
— )’ +halxy) — c%)z] )
where ¢} and c% are with local region property of the
image, thus we call Equation 13 as the local region Chan-
Vese model. Comparing with the level set formulation (3),
one of the primary advantages here is that instead of the
global region information, we bring in the local image
region information to drive the contour evolution. In this
way, by adjusting the size and variance of the Gaussian
window function, the image region with intensity inho-
mogeneity can be distinctively treated with the contour
evolution, which greatly enhances the improvement of
segmentation quality.
To solve the level set formulation (13), similarly in [7,30],
we use a finite difference method in numerical scheme.
Then Equation 13 can be discretized as

n+1 n
P =% g
N

In numerical implementation, we use the Neumann
boundary condition. In fact, we can directly update the
level set function by Equation 14 after initialization. Nev-
ertheless, the regularity and stability of the level set func-
tion cannot be availably maintained during the evolving
process.

(14)

3.2 An operator splitting method

In the level set methods, how to maintain the smooth-
ness and stability is a key problem. As discussed in
Section 1, the re-initialization [32] has been extensively
used as a numerical remedy for maintaining the stabil-
ity and the signed distance property during the level set
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evolution. However, the procedure is time-consuming,
and, more importantly, it may lead to the movement of
the zero level set location. In [35-37], variational level
set methods are presented, all of which effectively elim-
inate the re-initialization procedure and improve the
computational efficiency. But these methods are not eas-
ily extended to other level set methods based on par-
tial differential equations [39], and sometimes with the
boundary leakage problems, which extremely restrict
their extension and utilization on the image segmen-
tation. More specifically, it is essential and extremely
important to regularize the level set function during
its evolution process. In other words, for our proposed
level set formulation (13), the regularization procedure
of the level set function is a requisite with its evo-
lution process. Consequently, motivated by the discus-
sion in the works of [27,39], we present an operator
splitting method to evolve the level set function as
follows:

e Step 1. Based on Equation 14, update the level set
function by ¢"+1/2 = ¢" + Aty - L(¢").

e Step 2. Compute
¢n+1 — ¢n+1/2 + Aty - A¢n+1/2 + At3- (¢n+1/2 — ™).

Remark 1. In this two steps, At; is the time step of step
1. At and Atf3 represent the two time steps of step 2.
In step 1, we obtain ¢"*1/2 and then utilize it in step
2, where A¢"+1/2 represents the Laplacian operator that
acts on the level set function. The third term of step 2 is a
new restraint term to avoid updating the level set function
seriously.

The purpose of this operator splitting method is signifi-
cant. Owing to the execution of step 1, the contour evolves
toward the object boundaries. After that, as a smoothing
way, step 2 is extremely important as well for it elim-
inates the costly re-initialization procedure and avoids
updating the level set function severely. As indicated in
[27,38], the evolution of a function with its Laplacian
is equivalent to a Gaussian filtering process to regular-
ize the level set function. Thus, step 2 plays a natural
role for smoothing the level set function and maintain-
ing its stability. Actually, as a following procedure of step
1, step 2 can be influenced by step 1 at the same time.
If the level set function is too steep, it needs to prop-
erly increase Aty so as to smooth more. On the other
hand, step 2 has a direct impact on step 1. It is just the
mutual cooperation of these two steps that promotes the
steady evolution of the level set function and reduces the
computational complexity. More significantly, this oper-
ator splitting method can be easily extended to other
related level set methods based on partial differential
equations.
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3.3 An extension on vector-valued images

As the vector-valued C-V model [25], the extension of
our model on vector-valued images is natural. Similarly to
the analysis in Subsection 3.1, we calculate each channel
singly and combine each other to control the contour evo-
lution. Specifically, for i = 1,---,N, we define ch and
L

¢

as

¢t = mean(l; € ({(x,9) € QP (x,9) > 0} N Wi(x,9))),
(15)

¢t = mean(l; € ({(x,9) € QP (x,y) < 0} N Wi(x,9))),
(16)

where I; is the ith channel of the image.

Next, a natural idea is to consider using ci+L and cl-_L to
replace c?' and c;, thus the level set formulation (10) of
the vector-valued C-V model can be further rewritten as

0 _ WACAWE R
5 =@ [de<|v¢|) ~ ;Ai Ui(x,9)
= (17)

N
1 _ _
=N+ 5 Y A Uiy — ¢ Lﬁ} :
i=1

From the construction of Equation 17, the evolving con-
tour is driven by the local region force. As a result of
this replacement, all the local region information in every
channel of the vector-valued image is integrated with each
other, which is beneficial to detecting the object bound-
aries. In addition, it can also avoid some limitations of
using a single channel for the vector-valued images.

3.4 Numerical implementation

In numerical implementation, as discussed in [39], the
second time step Afy should be set small, which can
reduce the risk of moving the zero level set away from its
original location. A¢; is related to updating of the level set
function and has an impact on its smoothness. Generally,
the choices of this two time steps should be compara-
ble with Aty < At;. Furthermore, except for maintaining
the smoothness and numerical stability, choosing a small
At, is reasonable for avoiding the emergence of bound-
ary leakage problems. Similarly, Ats3 should be selected
small for maintaining the stability of the level set function
satisfactorily.

For the convenience of calculation, as mentioned in
[7,17], the Heaviside function H and the Dirac function §
are usually approximated by a smooth function H, and its
derivative §; as

H.(z) = % [1 + %arctan (i):| , (18)

1 e

8e(z) = = .
E(Z) 7T82+22

(19)
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Summarizing the descriptions on Subsections 3.1, 3.2,
and 3.3, the main steps of our method for image segmen-
tation are presented as follows:

1. Input an original image I Initialize the level set
function ¢, where we can choose a signed distance
function [7,25] or a binary function [27,35,36,39].

2. If I is a gray scale image, compute c]f and clz“ by
Equations 11 and 12. On the other hand, if I is a
vector-valued image, compute c;rL and c;L by
Equations 15 and 16.

3. Implement the presented operator splitting method
in Subsection 3.2 sequentially.

4. Check whether the level set function satisfies the
stationary condition. If not, return to step 2.

Remark 2. In step 2, we first need to judge whether the
imputing image is a gray scale image or not, where we
can test it with the help of some simple experiments, such
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as the MATLAB program (MathWorks Inc, Natick, MA,
USA). Especially, in most cases, the color image can be
distinguished by direct observation.

Remark 3. Our method is different from the methods
in [41,42]. Even if the authors also introduced the local
region model by employing the maximum a posteri-
ori estimation and Parzen method, they mainly focused
on the statistical interpretation and application of the
Mumford-Shah model. Besides, they approximated it
from a maximum a posteriori model where each region is
modeled by the mean estimated in a local Gaussian neigh-
borhood. However, focusing on the improvement of the
C-V model, our method use the local region information
to replace the global region information and present an
operator splitting method for implementation. Further-
more, our method is easily extended to the vector-valued
images.

Figure 1 Comparison results for the synthetic images. Column 1, initial contours. Column 2, results of the C-V model. Column 3, results of our
method.
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Figure 2 The evolving process and the final results of our method. The evolving process and the final results of our method with application to
the images with intensity inhomogeneity. There are initial contour, middle results and final result from left to right in every row.

4 Experimental results

In this section, a series of synthetical and real-world
images are used to test the effectiveness and performance
of our method. All the experiments are implemented in
Matlab 7.0 on a personal computer with Intel Pentium D
(Intel Corp, Sta. Clara, CA, USA) CPU 3.00 GHz and 1 GB
of memory. We choose the size of the truncated Gaussian
window as 4k + 1 by 4k + 1, where k is the greatest integer
smaller than the standard deviation o. Unless otherwise
specified, the default parameters are set as Aty = 0.1,
At; = 0.01, At3 = 0.01, ¢ = 1.0, and A1 = Ao = 1.0,
andfori=1,---,N, )\ZT" = A; = 1.0. Besides, the param-
eters 0 and p should be set as different values according

to the image characteristics, such as intensity, shape, and
color.

Comparing with the C-V model in the beginning, we
test the performance of our method on some synthetic
images. Figure 1 shows the comparison results of the
C-V model and our method. In row 1 and row 2, the two
test images are with noise. With the same initial contours,
the comparison results illustrate that our method can
obtain similar performances as the C-V model. Besides,
our method performs well for the noisy image with low-
intensity inhomogeneity. In our method, we choose o =
10.0, = 0.1 x 2552 in the first image, and 0 = 3.0,
u = 0.005 x 2552 in the last two images.

Figure 3 Comparison results for a synthetical image with different initial contours. Column 1, initial contours. Column 2, results of the C-V
model. Column 3, results of the LBF model [16,17]. Column 4, results of our method.
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Table 1 Iterations and CPU time (in seconds) of two
different kinds of level set initialization in Figure 3

Row 1 Row 2
Iteration Time (s) Iteration Time (s)
c-v 300 8.05 300 8.80
LBF [16,17] 200 8.39 850 32.53
Our method 180 9.08 1500 7149

Figure 2 shows our method with application to the
images with intensity inhomogeneity. In every row, there
are the initial contour, middle results, and the final result
from left to right. The evolving process indicates that the
contour is driven by the local region fitting energy and
moves toward the object boundaries. The results illustrate
that our method has a satisfying performance to deal with
the problem of intensity inhomogeneity, which demon-
strates the advantage of the introduction of the local image
region information. Here, we set 0 = 10.0, u = 0.001 x
2552 in the first image, and o = 3.0, . = 0.003 x 2552 in
the second image.

In Figure 3, we show the comparison results of the
C-V model, the LBF model, and our method. The
test image is a typical synthetic image with intensity
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inhomogeneity [17]. We choose two different initial con-
tours, that is, a square curve in the first row and a
cycle curve in the second row. All the parameters in the
C-V model and the LBF model are tried many times and
selected for the best performance. In the first row, the
level set function initialization is a binary function. By
relying on the global region information, the C-V model
cannot segment the image with intensity inhomogeneity
satisfactorily. The LBF model is sensitive to the location
of the initial contour [30], and therefore it fails in detect-
ing the object boundaries. It is clear that only our method
obtains desirable results. In the second row, even if we
initialize the level set function as a signed distance func-
tion, the C-V model still performs badly. However, the
LBF model and our method detect the object bound-
aries successfully. In our method, we set 0 = 5.0, p =
0.003 x 2552, All the iterations and CPU time are pre-
sented in Table 1. From the comparison results in Figure 3
and Table 1, we can easily observe that the different kinds
of the level set initialization for our method still lead to
similar segmentation results, which is better than the LBF
model. In addition, in our method, different initial con-
tours need different iterations and time. As a whole, our
method spends more time than the C-V model and the
LBF model.

HEI EEi
]

HEI EEi
] R

Figure 4 Comparison results for segmenting multi-objects with different intensities. Column 1, initial contours. Column 2, results of the C-V
model. Column 3, results of the SBGFRLS method [38]. Column 4, results of our method.
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Table 2 Iterations and CPU time (in seconds) for segmenting multi-objects with different intensities in Figure 4

Row 1 Row 2 Row 3
Iteration Time (s) Iteration Time (s) Iteration Time (s)
Cv 120 3.50 120 3.25 150 4.08
SBGFRLS [38] 80 191 80 1.94 100 2.35
Our method 140 11.58 140 11.24 180 15.65

Figure 4 shows that the comparison results for some
synthetic images, which have multi-objects with different
intensities. We compare our method with the C-V model
and the selective binary and Gaussian filtering regular-
ized level set (SBGFRLS) method [38]. In the first row,
as the same experiment to be tested in [38], the back-
ground intensity is 200, and the three objects are 120, 100,
and 50 from left to right, where all three methods extract
objects successfully. In the second row, the left object
intensity is 180, which is close to the background inten-
sity. As discussed in [38], the results of the C-V model
and the SBGFRLS method are unsatisfactory because the
left object with intensity 180 is not extracted. The most
important reason is that the two methods mainly depend
on the global region information. However, because of
introducing the local image region information effectively,
our method extracts all the objects successfully. More-
over, in the third row, the background intensity is 220,
and the intensities of six objects are 50, 80, 110, 140, 170,
and 200 from left to right and top to bottom, respec-
tively. The C-V model and the SBGFRLS method fail in
extracting two objects with intensities 170 and 200 in the
bottom. However, our method extracts all the objects as
before. Therefore, owing to the local property, our method
performs well for segmenting the multi-objects with dif-
ferent intensities. All the iterations and CPU time are

shown in Table 2, from which we can see that our method
takes more iterations and CPU time than other two meth-
ods. Even so, our method is very competitive for it can
satisfactorily segment multi-objects with different inten-
sities. We choose 0 = 6.0, & = 0.001 x 2552 in our
method.

The next experiments are focused on demonstrating
the effectiveness of our method with application to the
vector-valued images. As a special example, we use the
color image. By dividing the image into three channels
using red, green, and blue colors, one can extract objects
that normally undetectable when the color image is trans-
formed to a scalar intensity image [25]. Figure 5 takes on
the evolving process of the contours and the final results
of two real-world color images, which specifies that our
method can extract the objects clearly. We set 0 = 3.0,
= 0.01 x 2552,

In comparing with the vector-valued C-V model [25],
Figure 6 shows three examples to illustrate the perfor-
mance between our method and the vector-valued C-V
model with application to the color images. From the
comparison results, it is clear that the performance of the
two kinds of methods are roughly similar, but there are
some difference in details. Because of the global property,
the vector-valued C-V model extracts all the prominent
objects of the images. However, for the real-world images

Figure 5 Evolving process and the final results of our method with application to real-world color images. There are initial contour and
middle and final results from left to right in every row.
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Figure 6 Comparison results for the real-world color images. Column 1, initial contours. Column 2, results of the vector-valued C-V model [25].
Column 3, results of our method.

with complicated background, we usually pay attention
to some big or desirable objects. Thus, we can consider
to initialize the contours near the object boundaries; and
largely owing to the influence of the local image region
information, our method obtains more desirable results.
To be specific, for the leaf image with single object in the
first row, the two kinds of results are similar to each other.

The second image with complex background, comparing
with the vector-valued C-V model, our method demon-
strates better in visual perception. In the third image, a
major concern is the rabbit in the grass. Therefore, the
comparison results illustrate that our method performs
better than the vector-valued C-V model. We choose o0 =
3.0 in our method and with the same other parameters

() (b)

o = 50.(d) The result of 0 = 8.0.

(©) (d

Figure 7 Comparison results for different values of the standard deviation o.. (a) Initial contours. (b) The result of o = 2.0. (¢) The result of
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as the vector-valued C-V model. Specifically, we set u =
0.01 x 2552 in the first row and the second row, and
i = 0.05 x 2552 in the last row.

To further test the sensitivity of the proposed method to
the standard deviation of the truncated Gaussian window,
we design several different values for o, and their results
are presented in Figure 7. We borrow the same image as
in Figure 2, where ¢ = 3.0. Though we choose differ-
ent values, the results are similar and satisfying, which
demonstrates that our method is less sensitive to the
choice of 0. We set i = 0.01 x 2552,

5 Conclusion

In this paper, we have proposed an efficient operator split-
ting method for local region C-V model. By introducing
the window function, we increased the local image region
information to improve the C-V model, which performs
better than the traditional C-V model on segmenting
images with intensity inhomogeneity. In order to regu-
larize the level set function and maintain the numerical
stability during the level set evolution, we presented an
operator splitting method. In this method, we employed
the Laplacian operator to act on the level set function and
increased a new restraint term to prevent updating the
level set function seriously. Comparing with other related
methods [7,17,42], the motivation and superiority of our
method have been discussed in details. Furthermore, our
method has been extended to the vector-valued image
segmentation, such as the color image. Our method can
effectively eliminate the re-initialization procedure and
ensure the numerical calculation stability. A large num-
ber of numerical experiments have been used to test and
demonstrate that our method can effectively segment the
gray scale images with intensity inhomogeneity and multi-
objects with different intensities, and perform well on the
real-world color images.
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