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Abstract

A multichannel characterization for autoregressive moving average (ARMA) spectrum estimation in subbands is
considered in this article. The fullband ARMA spectrum estimation can be realized in two-channels as a special form of
this characterization. A complete orthogonalization of input multichannel data is accomplished using a modified form
of sequential processing multichannel lattice stages. Matrix operations are avoided, only scalar operations are used,
and a multichannel ARMA prediction filter with a highly modular and suitable structure for VLSI implementations is
achieved. Lattice reflection coefficients for autoregressive (AR) and moving average (MA) parts are simultaneously
computed. These coefficients are then converted to process parameters using a newly developed Levinson–Durbin
type multichannel conversion algorithm. Hence, a novel method for spectrum estimation in subbands as well as in
fullband is developed. The computational complexity is given in terms of model order parameters, and comparisons
with the complexities of nonparametric methods are provided. In addition, the performance is visually and statistically
compared against those of the nonparametric methods under both stationary and nonstationary conditions.

Keywords: Parametric modeling, Subband spectrum estimation and sensing, Frequency estimation and tracking,
Radar and speech analysis

1 Introduction
While parametric or model-based methods are used
extensively for high-resolution spectrum estimation, these
methods perform poorly when SNR and spacing between
frequencies is small. In many cases, input noise is assumed
to be white; if this is not the case, colored noise can
be adapted, provided that its statistics are known. How-
ever, such statistics may not be known in many cases,
and instead, noise may incorrectly be assumed white.
Such shortcomings can be overcome by applying subband
decomposition methods in spectrum estimation.
It was shown by Rao and Pearlman [1] that the well-

known AR modeling was a promising method for spec-
trum estimation in subbands, and it was proved that
pth-order prediction from subbands is superior to pth-
order prediction in the fullband when p is finite, and
subband decomposition of a source resulted in a whiten-
ing of the composite subband spectrum. The equivalence
of linear prediction and AR spectrum estimation was then
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exploited to show that AR spectrum from subbands offers
a gain over fullband AR spectrum estimation. Unfortu-
nately, new problems such as spectral overlapping and the
increase in the variance of estimated parameters appear.
The first disadvantage was addressed in a conference
paper by Bonacci et al. [2], where nonreal-time procedures
have been proposed to perform subband spectral estima-
tion without discontinuities or aliasing at subband bor-
ders. However, this procedure is appropriate for a uniform
filter bank, even though methods applicable to any kind
of filter bank are desired. In another conference paper,
Bonacci et al. [3] proposed to tackle the second drawback
by a Subband Multichannel Autoregressive Spectral Esti-
mation method, which was also intended for an off-line
implementation.
Another popular model, autoregressive moving average

(ARMA) model, which includes AR and MA methods as
its special cases, has the input–output relationship given
by

y(n) = −
p∑

�=1
a1�y(n − �) +

q∑
j=0

a2j x(n − j) (1)
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for an ARMA(p, q) process. Here, x(n) is zero mean, white
noise with a variance of σ 2

x , and â1� and â2j , respectively,
represent the �th and jth coefficients related to AR and
MA parts. Such processes arise in various applications
such asmodeling radar signals [4,5] or speech signals [6,7],
where spectral zeros as well as poles are often present due
to the physical mechanism generating the data. In addi-
tion, processes that are purely autoregressive are often
transformed into ARMA(p, p) processes by addition of
measurement noise, and especially sinusoids in noise are
known to obey the degenerate ARMA equation [8,9]. Even
though an ARMA process can be represented by a unique
ARmodel of generally infinite order, the ARMAmodeling
approach often leads to more efficient implementations.
A hierarchical ARMA modeling method for classifying
high-resolution radar signals at multiple scales was pre-
sented in [10], and it was shown that the radar signal at
a different scale obeyed an ARMA process if it was an
ARMA process at the observed scale.
ARMA model-based applications such as the classifi-

cation of high-resolution radar signatures using multi-
scale features, and lattice speech analysis/synthesis were
reported in [11,12], respectively. As a consequence of
degenerate ARMA modeling of sinusoids in noise, adap-
tive multiple frequency tracking, previously considered
in [13-15], has gained momentum recently [16], and
presents great interest in communications [17], biomed-
ical engineering [18], speech processing [19], and power
systems [20,21]. Another recent consequence of degen-
erate ARMA modeling of sinusoids in noise is related to
spectrum sensing for cognitive radios [22,23], where the
primary task is to dynamically explore the radio spectrum
for the existence of signals (sinusoids) so as to deter-
mine portions of the frequency band that may used for
radio transmission. In view of these developments, we
think thatmethods of subband spectrum estimation based
on ARMA modeling with possible extensions to full-
band spectrum estimation can provide good alternatives
in radar and speech classification, adaptive multiple fre-
quency tracking as well as spectrum sensing for cognitive
radio applications.
In this article, we propose a novel method that relies

on estimation of the driving noise in subbands. Even
though methods based on estimation of the driving noise
were previously proposed for fullband [24], the impor-
tant difference of our method is that we first transform
the subband ARMA filtering problem into multichannel
AR filtering problem by embedding subband ARMA
processes into multichannel AR processes, and then we
achieve a complete modified Gram-Schmidt orthogo-
nalization of input multichannel signal using a modified
version of the sequential processing multichannel lat-
tice stages (SPMLSs) [25]. A number of alternatives for
adaptive multichannel processing were proposed after

the introduction of SPMLSs in [25]. Two of such alterna-
tives are the modular lattice architectures proposed by
Lev-ari [26], and Glentis and Kalouptsidis [27]. While the
architecture in [26] is suitable for equal channel orders
and involves more computations than SPMLSs, neither of
these architectures is preferable for sequential processing.
Another alternative is theQR decomposition-based lattice
approach in [28], which is also for equal channel orders,
and was later extended to unequal channel orders by
Yang [29]. Newer versions of multichannel QR algorithms
based on orthogonal Givens rotation for equal as well as
unequal channel orders were later presented by Ronto-
giannis and Theodoridis [30]. Recently, an array-based
QRmultichannel lattice filter that extends the correspon-
dence between recursive least-squares update equations
and Kalman filter equations to the multichannel lattice
case was presented by Gomes and Barrosso [31]. In addi-
tion, transversal-type algorithms such as [32,33] were
proposed due to their lower complexity and direct rela-
tion to channel coefficients. However, these algorithms
generally require the implementation of stabilization
techniques, and their structure is less regular. The princi-
ple of modular decomposition appears to be the implicit
basis in all these adaptive multichannel processing tech-
niques, and provides for the scalar only operations. In
QR decomposition approaches, the Q matrix is implicitly
formed and then used to compute the R matrix, whereas
in the Gram-Schmidt approach, the inverse of the R is
implicitly formed and then used to compute theQmatrix.
As a consequence of this fact, Regalia and Bellanger [34]
showed that there exists a duality between QR and lat-
tice methods, and the possibility of combining elements
of both approaches to obtain new hybrid algorithms.
With respect to developing these hybrid algorithms, Ling
[35] showed that a orthogonal Givens rotation-based
algorithm algebraically coincides with the recursive-
modified Gram-Schmidt-based lattice algorithm
in [36].
In accordance with this perspective in multichannel

signal processing, as SPMLSs already have modularity,
order recursiveness, regularity, simplicity, sequentiality,
and equal as well as unequal channel processing capabili-
ties, we modify them in order to improve their numerical
performance by using the error-feedback formula of the
recursive-modified Gram-Schmidt algorithm [35,36] in
the processing cells. Thus, the complete orthogonaliza-
tion of multichannel input data and sequential nature of
the modified SPMLSs make it possible to feed back the
delayed forward prediction error signals to represent the
unknown input noise signals of original ARMA processes.
Although we introduced the complete orthogonalization
concept previously in linear and nonlinear adaptive deci-
sion feedback equalization frameworks in [37,38], its
application to adaptive spectrum estimation problem in
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subbands as well as in fullband results in novel imple-
mentations, particularly to the development of a new
Levinson–Durbin type conversion algorithm for the mod-
ified SPMLSs in order to compute ARMA process param-
eters from lattice reflection coefficients. To the best of the
authors’ knowledge, this particular multichannel lattice
prediction filter structure for ARMA spectrum estimation
in subbands or in fullband and the new Levinson–Durbin
type multichannel conversion algorithm do not exist in
the literature.
A two-subband ARMA spectrum estimation problem is

considered in this article due to the ease of explanation
and space limitations in developing the method. However,
it is considered straightforward to apply the method to
any number of subbands, and to AR spectrum estimation
in subbands. The method is appropriate for uniform and
nonuniform filter bank realizations, while aliasing prob-
lems due to spectral overlapping in adjacent channels are
also addressed. A highly modular, regular, time and order
recursive, recursive least squares (RLS) ARMA param-
eter estimator with inherently good numerical proper-
ties, suitable for VLSI and recent programable system on
chip implementations [39], is designed, and AR and MA
parameters are found simultaneously. With these proper-
ties, the method is applicable for both off-line and on-line
implementations; it is especially possible to monitor the
forward prediction error signal, start the parameter esti-
mation for a fullband AR(p) or ARMA(p,q) or ARMA(p,p)
process; if performance requirements are not met, end
up for subband ARMA(pk , qk) or ARMA(pk , pk) realiza-
tions. Consequently, it dynamically extends the lattice
parametrization of fullband spectrum into subbands, and
thereby arises as an useful and practical method for radar
signal analysis/classification, speech analysis/synthesis,
adaptive multiple frequency tracking, and cognitive radio
spectrum sensing tasks.
An adaptive FIR filtering approach to spectral esti-

mation, which is referred to as amplitude and phase
estimation of a sinusoid (APES) and has applications to
radar target recognition, was proposed by Li and Sto-
ica [40], and the adaptive FIR filtering approach to the
Capon method was also discussed by Stoica and Moses
[41]. Moreover, the APES method has been extended to
array processing by Yardibi et al. [42], and named as
iterative adaptive approach for amplitude and phase esti-
mation (IAA-APES). An FIR filtering reinterpretation of
the Thomson’s multitaper method [43,44] with applica-
tions to spectrum sensing for cognitive radio was also
presented by Farhang-Boroujeny [45]. Recently, compu-
tationally efficient versions of the adaptive Capon and
APES, and IAA methods have been proposed in [46,47],
respectively. In this article, we compare the complexity
and performance of our method with those of the Peri-
odogram, multitaper, Capon, APES, and IAA methods,

and show that our method is competitive in terms of
complexity and performance.
The remainder of this article is organized as follows. In

Section 2, we present the development of the new multi-
channel ARMA lattice prediction filter using the modified
SPMLSs. In Section 3, we develop the new Levinson–
Durbin type multichannel conversion algorithm for the
modified SPMLSs, and relate lattice parameters to process
parameters. Spectrum estimation expression in two-
subbands is given in Section 4. The computational com-
plexity computations are treated in Section 5. Section 6 is
concerned with the experimental results. Finally, Section
7 is about the discussions of results and conclusions. The
following notations are used in this article. (•)∗ represents
the complex conjugate of (•). (•)T and (•)H stand for the
transpose and theHermitian transpose of (•), respectively.
The variablesm, i, and n are global while all other variables
are local. The variable m represents the stage number
while n and i are the time indexes related to data and coef-
ficients, respectively, till we equate them in Section 3 to
have a single time index.

2 Adaptive multichannel ARMA lattice prediction
filtering

2.1 Multichannel prediction problem
An illustration of the adaptive multichannel ARMA pre-
diction filtering in subbands for two-subband case is
presented in Figure 1. Therein, y(n) represents the input
fullband signal while y1(n) and y2(n) stand for the input
subband signals. In adaptive multichannel ARMA pre-
diction filtering, the objective is to find an exponentially
windowed, LS solution for the AR and MA coefficients of
the kth forward prediction filter that minimizes each of
the two cost functions

Jk(i) =
i∑

n=0
λi−n | f kpk (n) |2 (2)

at each time instant i, and k = 1, 2. The forward prediction
error f kpk (n) in this expression is defined as

f kpk (n) = dk(n) − d̂ki (n) (3)

and the kth forward prediction filter output, d̂ki (n), is an
estimate of the kth desired signal, dk(n) = yk(n), is given
by

d̂ki (n) =
pk∑
j=1

ãk∗1,j(i)yk(n − j) +
qk∑
l=0

ãk∗2,l(i)ûk(n − l). (4)

Herein, pk and qk denote the order of the (pk , qk) predic-
tion error filter associatedwith the kth subband, and ûk(n)
is the estimate of the kth ARMA process input signal.
The estimated kth ARMA process input signal, ûk(n), is
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Figure 1 A block diagram of the adaptive multichannel ARMA prediction filtering in subbands.

obtained by delaying and feeding back the pkth-order for-
ward prediction error, ûk(n) = f kpk (n−1). Hence, the input
vector to the kth ARMA filter at time instant n, ỹk(n), and
the corresponding coefficient vector ãk(i), at time instant
i, are defined as

ỹk(n) = [
yk(n − 1), . . . , yk(n − pk), ûk(n), ûk(n − 1), . . . ,

ûk(n − qk)
]T

(5)

and

ãkT(i) =
[
ãk1,1(i), . . . , ã

k
1,pk (i), ã

k
2,0(i), ã

k
2,1(i), . . . , ã

k
2,qk (i)

]
,

(6)

respectively. Herein, ãk1,j(i) and ãk2,j(i), respectively, repre-
sent the jth coefficient related to the AR and MA parts of
the forward prediction filter for the kth subband at time
instant i. It is assumed, without loss of generality, that
pk ≥ qk . pk = qk case corresponds to the prediction
filter for an ARMA(pk , pk) process, while pk > qk pre-
diction filter is for a general ARMA(pk , qk) process. Note
that an ARMA backward prediction can be performed for
the desired signal, dk(n) = yk(n − pk), and the prediction
filter in that case would use the reversed and conjugated
forward prediction filter coefficients, which are defined in
the backward prediction error coefficient vector as

c̃kT (i) =
[
c̃k1,pk (i), . . . , c̃

k
1,1(i), c̃

k
2,qk (i), . . . , c̃

k
2,1(i), c̃

k
2,0(i)

]
(7)

where c̃k1,j(i) and c̃k2,j(i) are, respectively, defined as the jth
coefficient related to the AR and MA parts of the back-
ward prediction filter for the kth subband at time instant
i.
Consequently, the main concern of the exponentially

weighted LS problem under consideration is to find, at

each time i, the kth optimal coefficient vector, ãk(i) that
would minimize the cost function

Jk(i) =
i∑

n=0
λi−n | dk(n) − ãkH(i)ỹk(n) |2 . (8)

The kth optimal coefficient vector related to the kth
subband filter

ãkopt(i) = R−1
k (i)Pk(i) (9)

is found by differentiating Jk(i) with respect to ãk(i), set-
ting the derivative to zero, and solving for ãk(i), where

Rk(i) =
i∑

n=0
λi−n ỹk(n)ỹHk (n) (10)

and

Pk(i) =
i∑

n=0
λi−nỹk(n)dk∗(n). (11)

2.2 Sequential lattice orthogonalization
In order to find a modular, regular, and simple solution
to the two-subband ARMA prediction problem, we would
like to use a single multichannel lattice filter as depicted
in Figure 2, instead of using two separate transversal fil-
ters and solving two separate optimization problems as
in Figure 1. We would also like to avoid direct evalua-
tions as in (9), and achieve good numerical properties.
As the number of channels at different sections of the
proposed multichannel lattice filter is different due to
the sequential processing nature of SPMLSs, we carry
out the exponentially weighted LS optimization problem
by taking into consideration each of these sections sepa-
rately, and therefore we assume that the filter is comprised
of three cascaded filters, which are two-channel, three-
channel, and four-channel lattice sections; and we use a
different index for each section while using m to indicate
a stage in the whole filter. We also assume p1 = p2 for the
ease of explanation without loss of generality.
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Figure 2 A block diagram of the adaptive multichannel ARMA
lattice prediction filtering in subbands.

In order to sequentially solve the exponentially weighted
LS optimization problem under consideration, we first
organize the elements of input signal vectors y1(n) =
[ y1(n), . . . , y1(n−�)]T , and y2(n) =[ y2(n), . . . , y2(n−�)]T
according to the natural ordering of SPMLSs as

ȳ�+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(n)
y2(n)

y1(n − 1)
y2(n − 1)
− − −−
y1(n − �)

y2(n − �)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

and input to two-channel stages for which the stage num-
ber (m) has a range of values given by 0 < m ≤ (p1 − q1).
Accordingly, we redefine Equations (10) and (11) using
this new data vector as follows

R�(i) =
i∑

n=0
λi−n ȳ�+1(n) ȳH�+1(n) (13)

and

P�,k(i) =
i∑

n=0
λi−n ȳ�+1(n)dk∗(n) (14)

where k = 1, 2. The orthogonalization of data using
SPMLSs corresponds to the transformation of (13) and
(14) into

Df
�+1(i) =

i∑
n=0

λi−n �
f
�(i)ȳ�+1(n)ȳH�+1(n) �

f H
� (i) (15)

and

Zf
�+1,k(i) =

i∑
n=0

λi−n �
f
�(i−1) ȳ�+1(n−1)dk∗(n), (16)

respectively. Here, �
f
�(i) is the 2� × 2� lower triangu-

lar transformation matrix for forward prediction, and is
sequentially realized stage-by-stage using 2 × 2 lower
triangular transformation matrices

Lf�(i) =
[
1 0
κ̂
f
� (i − 1) 1

]
(17)

whose diagonal elements are all equal to unity at time
instant i, and κ̂

f
� (i) is the reflection coefficient com-

puted at the single circular cell in the triangular-shaped
self-orthogonalization processor of the �th two-channel
SPMLS. Then, the forward lattice predictor coefficients
are computed using

�
f
�,k (i) = D−f

�+1(i − 1)Zf
�+1,k(i) (18)

where �
f
�,k (i) represents the kth row of the 2 × 2� lattice

forward prediction reflection coefficient matrix �
f
�(i),

and is also sequentially implemented stage-by-stage by
means of 2 × 2 forward prediction reflection coefficient
matrices

�
f
�(i) =

[
κ̄
f
�,1,1(i) κ̄

f
�,1,2(i)

κ̄
f
�,2,1(i) κ̄

f
�,2,2(i)

]
(19)

in which κ̄
f
�,k,j (i) is the jth reflection coefficient related to

the forward prediction of the kth channel signal, and it is
computed at the (k, j)th single circular cell of the square-
shaped reference-orthogonalization processor related to
forward prediction at the �th two-channel SPMLS. Note
that the matrix inversion operation in Equation (9) is
transformed into a simple scalar inversion operation in
(18) due to the diagonal nature of Df

�+1(i). The backward
prediction counterpart of this optimization problem is
similarly solved using 2 × 2 lower triangular transforma-
tion matrices Lb�(i), and 2 × 2 lattice backward prediction
reflection coefficient matrices, �b

�(i).
After the processing of input signals by two-channel

lattice stages, the delayed and fed back forward predic-
tion error û1(n) = fp1(n − 1) is incorporated at the
(p1−q1+1)th stage, as the third channel. Accordingly, we
expand the optimization problem by organizing the ele-
ments of the input data vectors y1(n) =[ y1(n), . . . , y1(n−
α)]T , y2(n) =[ y2(n), . . . , y2(n − α)]T , and û1(n) =
[ û1(n), . . . , û1(n − α)]T as follows:

ȳα+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(n)
y2(n)
û1(n)

− − −−
y1(n − α)

y2(n − α)

û1(n − α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)
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and input to three-channel lattice section, where the stage number (m) takes values in the range given by (p1−q1) < m ≤
(p2 − q2). Subsequently, we solve the optimization problem in (18) once again with the new input vector, in which case
�

f
α(i) and �

f
α(i) are the 3α × 3α lower triangular transformation and the 3 × 3α forward lattice prediction coefficient

matrices, respectively.�f
α(i) is computed sequentially bymeans of 3×3 lower triangular transformationmatrices, Lfα(i),

and �
f
α(i) is similarly realized stage-by-stage making use of 3×3 forward prediction coefficient matrices,�f

α(i), at time
instant i. Note that, since the delayed and fed back signal is considered to constitute a new channel in the multichannel
sequential lattice filtering, we have three desired signals at this point, dk(n), where k = 1, 2, 3, one of which did not exist
in the optimization problem stated in Section 2.1, and this new desired signal, d3(n), is related to the MA part of the
first subband ARMAmodeling.
Finally, the optimization problem is expanded one more time with the inclusion of the second delayed and fed back

forward prediction error û2(n) = fp2(n−1), and this time, the elements of input data vectors y1(n) =[ y1(n), . . . , y1(n−
ν)]T , y2(n) =[ y2(n), . . . , y2(n−ν)]T , û1(n) =[ û1(n), . . . , û1(n−ν)]T , and û2(n) =[ û2(n), . . . , û2(n−ν)]T are organized
as

ȳν+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1(n)

y2(n)

û1(n)

û2(n)

− − −−
y1(n − ν)

y2(n − ν)

û1(n − ν)

û2(n − ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where the stage number (m) is in the range given by (p2 − q2) < m ≤ p2 due to four-channel processing. Similar to
two-channel and three-channel cases, we solve the optimization problem in (18) using the new data vector in Equation
(21), in which case �

f
ν(i) and �

f
ν(i) are 4ν × 4ν lower triangular transformation, and 4 × 4ν forward lattice prediction

coefficient matrices at the time instant i, respectively. Similar to previous cases, these matrices are computed stage-
by-stage by the use of 4 × 4 lower triangular transformation matrices, Lfν(i), and 4 × 4 forward prediction coefficient
matrices, �f

ν(i), at time instant i, respectively. As the second delayed and fed back signal is also considered as a new
channel in the multichannel sequential lattice filtering, hereafter we have four desired signals, dk(n), where k = 1, 2, 3, 4,
and this fourth desired signal, d4(n), is associated with the MA part of the second subband ARMA modeling.

2.3 Matrix visualization
In order to further explain the sequential lattice orthogonalization, we consider a (8, 5) and (8, 2) ARMA prediction
lattice prediction filter for the first and second subbands, and organize the elements of input data vectors y1(n) =
[ y1(n), . . . , y1(n − 8)]T , y2(n) = [ y2(n), . . . , y2(n − 8)]T , û1(n) = [ û1(n), û1(n − 1), . . . , û1(n − 5)]T , and û2(n) =
[ û2(n), û2(n − 1), . . . , û2(n − 2)]T as columns of a matrix,⎡

⎢⎢⎣
y1(n) y1(n − 1) y1(n − 2) y1(n − 3) y1(n − 4) y1(n − 5) y1(n − 6) y1(n − 7) y1(n − 8)
y2(n) y2(n − 1) y1(n − 2) y1(n − 3) y2(n − 4) y2(n − 5) y2(n − 6) y2(n − 7) y2(n − 8)

û1(n) û1(n − 1) û1(n − 2) û1(n − 3) û1(n − 4) û1(n − 5)
û2(n) û2(n − 1) û2(n − 2)

⎤
⎥⎥⎦ (22)

by taking into consideration different number of parameters in the feedforward and feedback channels and shifting
properties of input data. This matrix helps us to visualize the orthogonalization process, and thus to draw a diagram of
the four-channel prediction filter structure under consideration as in Figure 3. Note that the elements of the first and
second rows are related to the input signals of the first and the second subband channels of the ARMA filter under
consideration, while the third and fourth rows are associated with the fed back and delayed signals. Lattice orthogo-
nalization begins with the elements of the first two rows using two-channel sequential lattice processing stages until
the first fed back and delayed channel is incorporated as the new channel. Then, the orthogonalization continues with
three-channel lattice stages until the fourth channel, which is the second fed back and delayed channel, is taken into the
process, and so the orthogonalization of input data finalizes with four-channel stages when the mean squared predic-
tion error performance requirements are met, and thereby the kth desired signal, dk(n), is sequentially predicted using
self-orthogonalized and delayed backward prediction error signals as follows:
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Figure 3 A diagram of the four-channel ARMA lattice filter structure for two-subband spectrum estimation.
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d̂ki (n) =
p1−q1∑
m=1

2∑
j=1

κ̄
f ∗
m,k,j(i − 1)b̂jm−1(n − 1)

+
p2−q2∑

m=p1−q1+1

3∑
j=1

κ̄
f ∗
m,k,j(i − 1)b̂jm−1(n − 1)

+
p2∑

m=p2−q2+1

4∑
j=1

κ̄
f ∗
m,k,j(i − 1)b̂jm−1(n − 1). (23)

Here, the first and second summations represent the
prediction accomplished by the two-channel and three-
channel sections, respectively, and the fourth summation
is connected with the four-channel prediction section.
In each section, κ̄

f
m,k,j(i) represents the jth forward pre-

diction reflection coefficient at the mth stage related
to the kth channel as defined in the previous sub-
section, and b̂jm−1(n) represents the jth element of
the self-orthogonalized backward prediction error sig-
nal vector, b̂m−1(n), at the input of the mth stage.
The self-orthogonalized backward prediction error vector,
b̂m−1(n), is produced by the lower triangular transfor-
mation of the input backward prediction error vector,
bm−1(n), using Lfm(n), and this operation is accomplished
at the triangular shaped self-orthogonalization processor
(related to forward prediction) of the mth SPMLS. Note
that the sizes of vectors, b̂m−1(n), bm−1(n), and matrix,
Lfm(n), at different sections of the proposed lattice filter
are as follows: 2 × 1, and 2 × 2 in two-channel section,
3 × 1, and 3 × 3 in three-channel section, and 4 × 1, and
4 × 4 in four-channel section, respectively.
We would also like to point out that a lattice filter for

fullband ARMA spectrum estimation is a special form
of the two-subband implementation, and therefore it can
similarly be realized using sequential processing one-
channel and two-channel lattice stages as illustrated in
Figure 4 for an ARMA(10,2) implementation.

3 Conversion of lattice coefficients to process
parameters

Since the mathematical link between process parameters
and reflection coefficients of a lattice prediction filter is
provided by the Levinson–Durbin algorithm [48,49], we
develop a new Levinson–Durbin type conversion algo-
rithm specifically for SPMLSs in order to convert lat-
tice reflection coefficients to subband ARMA process
parameters. Due to the sequential nature of the pro-
posed lattice structure, we carry out the development
of the new Levinson–Durbin type multichannel conver-
sion algorithm by taking into consideration each of these
sections separately, and therefore we assume that the filter
is comprised of three cascaded filters as in Section 2.2.

We first consider the conversion algorithm for the two-
channel section of lattice prediction filter, and we organize
the input signal samples to two-channel lattices as

ȳ�+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − �)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − �)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − 1)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − 1)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where we define the data vectors as y1(n) =
[ y1(n), . . . , y1(n − � + 1)]T , y2(n) = [ y2(n), . . . , y2(n −
� + 1)]T , and 0 < m ≤ (p1 − q1). The corresponding for-
ward and backward prediction error coefficient matrices
for the �th-order transversal filter for the kth channel are
defined as

âkT (i) =
[
âk0(i), â

k
1(i), â

k
2(i), . . . , . . . , â

k
2�−2(i), â

k
2�−1(i), â

k
2�(i)

]
(25)

and

ĉkT (i) =
[
ĉk2�(i), ĉ

k
2�−1(i), ĉ

k
2�−2(i), . . . , . . . , ĉ

k
2(i), ĉ

k
1(i), ĉ

k
0(i)

]
(26)

where k = 1, 2 due to two-channel lattice processing,
and âk0(i) = ĉk0(i) = 1.0. Since the signal time shift-
ing and ordering properties of SPMLSs when expressed
in matrix form as in Equation (12) are different than
the organization of input signal samples in matrix form
as in Equation (24), we use (2� + 1) × (2� + 1) shuf-
fling matrices, J1�+1 for the first channel and J2�+1 for
the second channel, to reorder the elements of coeffi-
cient matrices, â1H� (i), â2H� (i) and ĉ1H� (i), ĉ2H� (i), according
to the sample ordering of SPMLSs. Therefore, the for-
ward and backward prediction errors for the end of the
observation interval n = i at the output of the gen-
eral �th-order filters with transversal structure can be
stated as

[
f 1� (n)
f 2� (n)

]
=

[ J1�+1â1H� (n) 0
0 J2�+1â2H� (n)

]
ȳ�+1(n) (27)

[
b1�(n)
b2�(n)

]
=

[ J1�+1ĉ1H� (n) 0
0 J2�+1ĉ2H� (n)

]
ȳ�+1(n) (28)
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Figure 4 A diagram of the two-channel ARMA lattice filter structure for fullband spectrum estimation.

where 0 is a 1x(� + 1) zero matrix. Then, we can express
the (� − 1)th prediction errors as

[
f 1�−1(n)

f 2�−1(n)

]

=
[ J1�+1

[â1H�−1(n) 0 0
] 0

0 J2�+1
[â2H�−1(n) 0 0

] ]
ȳ�+1(n)

(29)

[
b1�−1(n − 1)
b2�−1(n − 1)

]

=
[J1�+1

[
0 0 ĉ1H�−1(n−1)

] 0
0 J2�+1

[
0 0 ĉ2H�−1(n−1)

]] ȳ�+1(n)

(30)

Note that the size of each coefficient matrix increases by
two when the order of prediction filter increases from �−1
to �, and 0 is a 1 × (� + 1) zero matrix as before. Subse-
quently, we define the �th-order prediction errors in terms
of lattice parameters and the (� − 1)th-order prediction
errors as follows

[
f 1� (n)

f 2� (n)

]
=

[
f 1�−1(n)

f 2�−1(n)

]
+

[
κ̄
f ∗
�,1,1(n − 1) κ̄

f ∗
�,1,2(n − 1)

κ̄
f ∗
�,2,1(n − 1) κ̄

f ∗
�,2,2(n − 1)

]

×
[

1 0
κ̂
f ∗
� (n − 2) 1

][
b1�−1(n − 1)
b2�−1(n − 1)

] (31)

[
b1�(n)

b2�(n)

]
=

[
b1�−1(n − 1)
b2�−1(n − 1)

]
+

[
κ̄b∗
�,1,1(n − 1) κ̄b∗

�,1,2(n − 1)
κ̄b∗
�,2,1(n − 1) κ̄b∗

�,2,2(n − 1)

]

×
[

1 0
κ̂b∗
� (n − 1) 1

] [
f 1�−1(n)

f 2�−1(n)

]
(32)

where the lower coefficient triangular and square matrices
are generated in triangular shaped self-orthogonalization
and square shaped reference-orthogonalization proces-
sors in a two-channel SPMLS as defined in Equations (17)
and (19). Accordingly, we multiply these lower triangular
and square coefficient matrices, and make the following
definitions

�
f
�(n) =

[
�
f
�,1,1(n) �

f
�,1,2(n)

�
f
�,2,1(n) �

f
�,2,2(n)

]

=
[

κ̄
f
�,1,1(n) + κ̄

f
�,1,2(n)κ̂

f
� (n − 1) κ̄

f
�,1,2(n)

κ̄
f
�,2,1(n) + κ̄

f
�,2,2(n)κ̂

f
� (n − 1) κ̄

f
�,2,2(n)

]

(33)

�b
� (n) =

[
�b

�,1,1(n) �b
�,1,2(n)

�b
�,2,1(n) �b

�,2,2(n)

]

=
[

κ̄b
�,1,1(n) + κ̄b

�,1,2(n)κ̂
b
� (n) κ̄b

�,1,2(n)
κ̄b
�,2,1(n) + κ̄b

�,2,2(n)κ̂
b
� (n) κ̄b

�,2,2(n)

] (34)

in order to obtain compact versions of Equations (31) and
(32) as follows[

f 1� (n)
f 2� (n)

]
=

[
f 1�−1(n)
f 2�−1(n)

]
+ �

f ∗
� (n − 1)

[
b1�−1(n − 1)
b2�−1(n − 1)

]
(35)
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[
b1�(n)
b2�(n)

]
=

[
b1�−1(n − 1)
b2�−1(n − 1)

]
+ �b∗

� (n − 1)
[
f 1�−1(n)
f 2�−1(n)

]
.

(36)

Then, the �th-order prediction error matrices in
Equations (27) and (28), and the (�−1)th-order prediction
error matrices in Equations (29) and (30) are substituted
in the �th-order prediction error expressions in (35) and
(36) so as to obtain the following pairs of order updates

â1�(n) =
[ â1�−1(n)

0
]

+ �
f ∗
�,1,1(n − 1)J1�+1

[ 0
ĉ1�−1(n − 1)

]

+ �
f ∗
�,1,2(n − 1)J2�+1

[ 0
ĉ2�−1(n − 1)

]
(37)

â2�(n) =
[ â2�−1(n)

0
]

+ �
f ∗
�,2,1(n − 1)J1�+1

[ 0
ĉ1�−1(n − 1)

]

+ �
f ∗
�,2,2(n − 1)J2�+1

[ 0
ĉ2�−1(n − 1)

]
(38)

ĉ1�(n) =
[ 0
ĉ1�−1(n − 1)

]
+ �b∗

�,1,1(n − 1)J1�+1

[ â1�−1(n)
0

]

+ �b∗
�,1,2(n − 1)J2�+1

[ â2�−1(n)
0

]
(39)

ĉ2�(n) =
[ 0
ĉ2�−1(n − 1)

]
+ �b∗

�,2,1(n − 1)J1�+1

[ â1�−1(n)
0

]

+ �b∗
�,2,2(n − 1)J2�+1

[ â2�−1(n)
0

]
(40)

and since the size of each coefficient matrix increase by
two, 0 is a 2 × 1 zero matrix. The three-channel section
starts with the incorporation of the third channel (û1(n))
as the new channel at the (p1 −q1 +1)th stage. In order to
develop the Levinson–Durbin algorithm for this section,
we assume that three-channel section is a separate filter,
and thereby considering the input signal samples to the
three-channel section as follows

ȳα+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − α)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − α)

⎤
⎦

⎡
⎣ û1(n)

− − −−
û1(n − α)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − 1)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − 1)

⎤
⎦

⎡
⎣ û1(n)

− − −−
û1(n − 1)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

where y1(n) = [
y1(n), . . . , y1(n − α + 1)

]T , y2(n) =[
y2(n), . . . , y2(n − α + 1)

]T , and û1(n) = [
û1(n), . . . ,

û1(n − α + 1)
]T . Correspondingly, the forward and back-

ward prediction error coefficient matrices for the αth-
order transversal filtering are defined as

âkT (n) =
[
âk0(n), âk1(n), âk2(n), âk3(n), . . . , . . . ,

âk3α−2(n), âk3α−1(n), âk3α(n)
] (42)

and

ĉkT (n) =
[
ĉk3α(n), ĉk3α−1(n), ĉk3α−2(n), . . . , . . . ,

ĉk3(n), ĉk2(n), ĉk1(n), ĉk0(n)
] (43)

where k = 1, 2, 3 due to three-channel processing. Then,
the prediction filtering continues with three-channel lat-
tice stages for (p1 − q1) < m ≤ (p2 − q2). The Levinson–
Durbin recursions for the three-channel section can be
developed similar to the two-channel section by estab-
lishing the mathematical link between transversal and
lattice filter coefficients. Since the organization of signal
samples in Equation (41) is different than the ordering
of signal samples entering into three-channel SPMLSs in
(20), we use (3α + 1) × (3α + 1) shuffling matrices,
J1α+1 for the first channel, J2α+1 for the second chan-
nel, and J3α+1 for the third channel to reorder the ele-
ments of coefficient matrices, â1Hα (n), â2Hα (n), â3Hα (n) and
ĉ1Hα (n), ĉ2Hα (n), ĉ3Hα (n), according to the sample ordering
of SPMLSs. Similar to Equations (27) and (28) in two-
channel case, the forward and backward prediction errors
in three-channel case for the output of the general αth-
order filter with transversal structure are expressed as

⎡
⎣ f 1α (n)

f 2α (n)

f 3α (n)

⎤
⎦=

⎡
⎣ J1α+1â1Hα (n) 0 0

0 J2α+1â2Hα (n) 0
0 0 J3α+1â3Hα (n)

⎤
⎦ ȳα+1(n)

(44)⎡
⎣ b1α(n)

b2α(n)

b3α(n)

⎤
⎦=

⎡
⎣ J1α+1ĉ1Hα (n) 0 0

0 J2α+1ĉ2Hα (n) 0
0 0 J3α+1ĉ3Hα (n)

⎤
⎦ȳα+1(n)

(45)
where 0 is a 1 × (α + 1) zero matrix in this case. We can
then express the (α − 1)th prediction errors as
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⎡
⎣ f 1α−1(n)

f 2α−1(n)

f 3α−1(n)

⎤
⎦ =

⎡
⎣ J1α+1

[â1Hα−1(n) 0 0 0
] 0 0

0 J2α+1
[â2Hα−1(n) 0 0 0

] 0
0 0 J3α+1

[â3Hα−1(n) 0 0 0
]
⎤
⎦ ȳα+1(n) (46)

⎡
⎣ b1α−1(n − 1)
b2α−1(n − 1)
b3α−1(n − 1)

⎤
⎦ =

⎡
⎣ J1α+1

[
0 0 0 ĉ1Hα−1(n − 1)

] 0 0
0 J2α+1

[
0 0 0 ĉ2Hα−1(n − 1)

] 0
0 0 J3α+1

[
0 0 0 ĉ3Hα−1(n − 1)

]
⎤
⎦ ȳα+1(n). (47)

Note that the size of each coefficient matrix in three-
channel case increases by three when the order of predic-
tion filter increases from α − 1 to α. Similar to Equations
(35) and (36) in two-channel case, the lattice prediction
errors for the αth three-channel stage can be expressed in
compact form with the following equations⎡

⎣ f 1α (n)
f 2α (n)
f 3α (n)

⎤
⎦ =

⎡
⎣ f 1α−1(n)
f 2α−1(n)
f 3α−1(n)

⎤
⎦+�

f ∗
α (n−1)

⎡
⎣ b1α−1(n − 1)
b2α−1(n − 1)
b3α−1(n − 1)

⎤
⎦

(48)

⎡
⎣ b1α(n)
b2α(n)
b2α(n)

⎤
⎦ =

⎡
⎣ b1α−1(n − 1)
b2α−1(n − 1)
b3α−1(n − 1)

⎤
⎦+�b∗

α (n−1)

⎡
⎣ f 1α−1(n)
f 2α−1(n)
f 3α−1(n)

⎤
⎦

(49)

where

�
f
α(n) =

⎡
⎢⎣ �

f
α,1,1 (n) �

f
α,1,2 (n) �

f
α,1,3(n)

�
f
α,2,1 (n) �

f
α,2,2 (n) �

f
α,2,3(n)

�
f
α,3,1 (n) �

f
α,3,2 (n) �

f
α,3,3(n)

⎤
⎥⎦

=
⎡
⎢⎣ κ̄

f
α,1,1(n) κ̄

f
α,1,2(n) κ̄

f
α,1,3 (n)

κ̄
f
α,2,1(n) κ̄

f
α,2,2(n) κ̄

f
α,2,3 (n)

κ̄
f
α,3,1(n) κ̄

f
α,3,2(n) κ̄

f
α,3,3 (n)

⎤
⎥⎦

×
⎡
⎢⎣

1 0 0
κ̂
f
α,2,1(n − 1) 1 0

κ̂
f
α,3,1(n − 1) κ̂

f
α,3,2(n − 1) 1

⎤
⎥⎦

and

�b
α(n) =

⎡
⎢⎣ �b

α,1,1 (n) �b
α,1,2 (n) �b

α,1,3(n)
�b

α,2,1 (n) �b
α,2,2 (n) �b

α,2,3(n)
�b

α,3,1 (n) �b
α,3,2 (n) �b

α,3,3(n)

⎤
⎥⎦

=
⎡
⎢⎣ κ̄b

α,1,1(n) κ̄b
α,1,2(n) κ̄b

α,1,3 (n)
κ̄b
α,2,1(n) κ̄b

α,2,2(n) κ̄b
α,2,3 (n)

κ̄b
α,3,1(n) κ̄b

α,3,2(n) κ̄b
α,3,3 (n)

⎤
⎥⎦

×
⎡
⎣ 1 0 0

κ̂b
α,2,1(n) 1 0

κ̂b
α,3,1(n) κ̂b

α,3,2 (n) 1

⎤
⎦ .

The αth-order prediction error matrices in Equations
(44) and (45), and the (α − 1)th-order prediction error
matrices in Equations (46) and (47) are subsequently sub-
stituted in the αth-order prediction error expressions in
(48) and (49) so that the following pairs of order updates
are produced

â1α(n) =
[ â1α−1(n)

0
]

+ �
f ∗
α,1,1 (n − 1)J1α+1

[ 0
ĉ1α−1(n − 1)

]

+ . . . + �
f ∗
α,1,3 (n − 1)J3α+1

[ 0
ĉ3α−1(n − 1)

]
(50)

â2α(n) =
[ â2α−1(n)

0
]

+ �
f ∗
α,2,1 (n − 1)J1α+1

[ 0
ĉ1α−1(n − 1)

]

+ . . . + �
f ∗
α,2,3 (n − 1)J3α+1

[ 0
ĉ3α−1(n − 1)

]
(51)

â3α(n) =
[ â3α−1(n)

0
]

+ �
f ∗
α,3,1 (n − 1)J1α+1

[ 0
ĉ1α−1(n − 1)

]

+ . . . + �
f ∗
α,3,3 (n − 1)J3α+1

[ 0
ĉ3α−1(n − 1)

]
(52)

ĉ1α(n) =
[ 0
ĉ1α−1(n − 1)

]
+ �b∗

α,1,1 (n − 1)J1α+1

[ â1α−1(n)
0

]

+ . . . + �b∗
α,1,3 (n − 1)J3α+1

[ â3α−1(n)
0

]
(53)

ĉ2α(n) =
[ 0
ĉ2α−1(n − 1)

]
+ �b∗

α,2,1 (n − 1)J1α+1

[ â1α−1(n)
0

]

+ . . . + �b∗
α,2,3 (n − 1)J3α+1

[ â3α−1(n)
0

]
(54)

ĉ3α(n) =
[ 0
ĉ3α−1(n − 1)

]
+ �b∗

α,3,1 (n − 1)J1α+1

[ â1α−1(n)
0

]

+ . . . + �b∗
α,3,3 (n − 1)J3α+1

[ â3α−1(n)
0

]
(55)
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where the size of 0 is a 3 × 1 zero matrix. Finally, the
fourth channel( û2(n)), which represents the fed back and
delayed signal related to the second subband, is taken into
the orthogonalization process at the (p2 − q2 + 1)th stage,
and the prediction filtering continues with four-channel
lattice stages through (p2 − q2) < m ≤ p2. In order to
develop the Levinson–Durbin recursions for this section,
we define the forward and backward prediction error
coefficient matrices for the νth-order transversal filtering
as

âkT (n) =
[
âk0(n), â

k
1(n), â

k
2(n), â

k
3(n), â

k
4(n), . . . , . . . ,

âk4ν−3(n), â
k
4ν−2(n), â

k
4ν−1(n), â

k
4ν(n)

]
(56)

and

ĉkT (n) =
[
ĉk4ν(n), ĉ

k
4ν−1(n), ĉ

k
4ν−2(n), ĉ

k
4ν−3(n), . . . , . . . ,

ĉk4(n), ĉ
k
3(n), ĉ

k
2(n), ĉ

k
1(n), ĉ

k
0(n)

]
(57)

where k = 1, 2, 3, 4 due to four-channel lattice process-
ing, and we also visualize as before that the following
organization of the elements of input vectors y1(n) =
[ y1(n), . . . , y1(n− ν + 1)]T , y2(n) =[ y2(n), . . . , y2(n− ν +
1)]T , û1(n) =[ û1(n), . . . , û1(n − ν + 1)]T , and û2(n) =
[ û2(n), . . . , û2(n − ν + 1)]T is established:

ȳν+1(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − ν)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − ν)

⎤
⎦

⎡
⎣ û1(n)

− − −−
û1(n − ν)

⎤
⎦

⎡
⎣ û2(n)

− − −−
û2(n − ν)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ y1(n)

− − −−
y1(n − 1)

⎤
⎦

⎡
⎣ y2(n)

− − −−
y2(n − 1)

⎤
⎦

⎡
⎣ û1(n)

− − −−
û1(n − 1)

⎤
⎦

⎡
⎣ û2(n)

− − −−
û2(n − 1)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(58)

Similar to the previous two steps, the signal sample
ordering in Equation (58) is different than the order-
ing in Equation (21), hence we use (4ν + 1) × (4ν +
1) shuffling matrices, J1ν+1 for the first channel, J2ν+1
for the second channel, J3ν+1 for the third channel, and
J4ν+1 for the fourth channel to reorder the elements
of coefficient matrices â1Hν (n), â2Hν (n), â3Hν (n), â4Hν (n) and
ĉ1Hν (n), ĉ2Hν (n), ĉ3Hν (n), ĉ4Hν (n), according to the sample

ordering of SPMLSs. Then, the development of the
Levinson–Durbin recursions for this section unfolds as
in two and three-channel sections. First, the νth and the
(ν − 1)th order forward and backward prediction errors
are stated as the output of a transversal. Second, the pre-
diction order update equations for the (ν − 1)th and
the νth-orders are expressed for a four-channel lattice
section, and finally the νth and the (ν−1)th-order forward
and backward transversal filter prediction error expres-
sions are substituted in the lattice prediction order update
equations such that the following pairs of order updates
are obtained

â1ν(n) =
[ â1ν−1(n)

0
]

+ �
f ∗
ν,1,1(n − 1)J1ν+1

[ 0
ĉ1ν−1(n − 1)

]

+ · · · + �
f ∗
ν,1,4(n − 1)J4ν+1

[ 0
ĉ4ν−1(n − 1)

]
(59)

â2ν(n) =
[ â2ν−1(n)

0
]

+ �
f ∗
ν,2,1(n − 1)J1ν+1

[ 0
ĉ1ν−1(n − 1)

]

+ · · · + �
f ∗
ν,2,4(n − 1)J4ν+1

[ 0
ĉ4ν−1(n − 1)

]
(60)

â3ν(n) =
[ â3ν−1(n)

0
]

+ �
f ∗
ν,3,1(n − 1)J1ν+1

[ 0
ĉ1ν−1(n − 1)

]

+ · · · + �
f ∗
ν,3,4(n − 1)J4ν+1

[ 0
ĉ4ν−1(n − 1)

]
(61)

â4ν(n) =
[ â4ν−1(n)

0
]

+ �
f ∗
ν,4,1(n − 1)J1ν+1

[ 0
ĉ1ν−1(n − 1)

]

+ · · · + �
f ∗
ν,4,4(n − 1)J4ν+1

[ 0
ĉ4ν−1(n − 1)

]
(62)

ĉ1ν(n) =
[ 0
ĉ1ν−1(n − 1)

]
+ �b∗

ν,1,1(n − 1)J1ν+1

[ â1ν−1(n)
0

]

+ · · · + �b∗
ν,1,4(n − 1)J4ν+1

[ â4ν−1(n)
0

]
(63)

ĉ2ν(n) =
[ 0
ĉ2ν−1(n − 1)

]
+ �b∗

ν,2,1(n − 1)J1ν+1

[ â1ν−1(n)
0

]

+ · · · + �b∗
ν,2,4(n − 1)J4ν+1

[ â4ν−1(n)
0

]
(64)
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ĉ3ν(n) =
[ 0
ĉ3ν−1(n − 1)

]
+ �b∗

ν,3,1(n − 1)J1ν+1

[ â1ν−1(n)
0

]

+ · · · + �b∗
ν,3,4(n − 1)J4ν+1

[ â4ν−1(n)
0

]
(65)

ĉ4ν(n) =
[ 0
ĉ4ν−1(n − 1)

]
+ �b∗

ν,4,1(n − 1)J1ν+1

[ â1ν−1(n)
0

]

+ · · · + �b∗
ν,4,4(n − 1)J4ν+1

[ â4ν−1(n)
0

]
.

(66)

Note that 0 is a 4 × 1 zero matrix, and that conver-
sion of lattice parameters to process parameters started
with two channels, but ended with four channels due to
sequential processing. The new Levinson–Durbin type
conversion algorithm for a fullband ARMA spectrum
estimation can be similarly developed as a special case
of subband implementation. The lattice prediction filter
for fullband ARMA spectrum estimation, which consists
of one and two-channel sections, is shown in Figure 4.
The corresponding conversion algorithm can also be real-
ized in two sections as summarized in Subsection New
Levinson-Durbin Type Conversion Algorithm for Two-
Channel ARMA Lattice Prediction.

3.1 New Levinson-Durbin type conversion algorithm for
two-channel ARMA lattice prediction

Initialization :

â10(n) = 1.0, ĉ10(n) = 1.0, â2p−q(n) = 1.0,

ĉ20(n) = 1.0.
(67)

One-channel Section (0 < m ≤ (p − q)) :

â1m(n) =
[ â1m−1(n)
0

]
+ �

f ∗
m,1(n − 1)

[
0
ĉ1m−1(n − 1)

]
(68)

ĉ1m(n) =
[

0
ĉ1m−1(n − 1)

]
+ �b∗

m,1(n − 1)
[ â1m−1(n)

0

]
.

(69)

Two-channel Section ((p − q) < m ≤ p) :

â1m(n) =
[ â1m−1(n)

0

]
+ �

f ∗
m,1,1 (n − 1)J1m+1

[
0

ĉ1m−1(n − 1)

]

+ �
f ∗
m,1,2 (n − 1)J2m+1

[
0

ĉ2m−1(n − 1)

]
(70)

â2m(n) =
[ â2m−1(n)

0

]
+ �

f ∗
m,2,1 (n − 1)J1m+1

[
0

ĉ1m−1(n − 1)

]

+ �
f ∗
m,2,2 (n − 1)J2m+1

[
0

ĉ2m−1(n − 1)

]
(71)

ĉ1m(n) =
[

0
ĉ1m−1(n − 1)

]
+ �b∗

m,1,1 (n − 1)J1m+1

[ â1m−1(n)

0

]

+ �b∗
m,1,2(n − 1)J2m+1

[ â2m−1(n)

0

]
(72)

ĉ2m(n) =
[

0
ĉ2m−1(n − 1)

]
+ �b∗

m,2,1 (n − 1)J1m+1

[ â1m−1(n)

0

]

+ �b∗
m,2,2(n − 1)J2m+1

[ â2m−1(n)

0

]
.

(73)

4 Spectrum estimation from subbands
After computing process parameters from lattice coef-
ficients, we established the link between multichannel
prediction and spectrum estimation. Hence, the estimated
spectrum in subbands can be expressed in terms of the
subband prediction filter parameters as

Sy(wk) =
∣∣∣∣∣1 + ā31e−jwk + · · · + ā3q1e

−jq1wk

1 + ā11e−jwk + · · · + ā1p1e
−jp1wk

∣∣∣∣∣
2

.σ̂ 2
x1

+
∣∣∣∣∣1 + ā41e

−jwk + · · · + ā4q2e
−jq2wk

1 + ā21e−jwk + · · · + ā2p2e
jp2wk

∣∣∣∣∣
2

.σ̂ 2
x2

(74)

where σ̂ 2
xk represents the prediction error variance for

the kth subband; and the coefficients, ā11, . . . , ā1p1 and
ā31, . . . , ā3q1 are related to the AR and MA parts of the
first subband ARMA spectrum while the coefficients
ā21, . . . , ā

2
p2 and ā

4
1, . . . , ā

4
q2 are associated with AR andMA

parts of the second subband ARMA spectrum. Specif-
ically, we determine the coefficients related to the first
and second subbands in Equation (74) from the elements
of coefficient vectors in Equations (25), (42), and (56)
using the coefficient selection rule given in Subsection
Coefficient Selection Rule for Process Parameters in Four-
Channel ARMA Lattice Prediction. Note that we omit the
extra coefficients, â10 and â20, in Equation (42), and â10, â

2
0,

and â30 in Equation (56) as they had appeared due to sep-
arate filter assumption for the sections of ARMA lattice
prediction filter. We also present the coefficient selec-
tion rule for the two-channel fullband case in Subsection
Coefficient Selection Rule for Process Parameters in Two-
Channel ARMA Lattice Prediction.
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4.1 Coefficient selection rule for process parameters in
four-channel ARMA lattice prediction

Two-channel section (1 ≤ � ≤ (p1 − q1)) :

ā1�(n) = â12�−1(n) (75)

ā2�(n) = â22�(n) (76)

Three-channel section (1 ≤ � ≤ (p1 − q1) − (p2 − q2)) :

ā1�+p1−q1(n) = â13�−2(n) (77)

ā2�+p1−q1(n) = â23�−1(n) (78)

ā3�+p1−q1(n) = â33�(n) (79)

Four-channel section (1 ≤ � ≤ q2) :

ā1�+p2−q2(n) = â14�−3(n) (80)

ā2�+p2−q2(n) = â24�−2(n) (81)

ā3�+p2−q2(n) = â34�−1(n) (82)

ā4�+p2−q2(n) = â44�(n) (83)

4.2 Coefficient selection rule for process parameters in
two-channel ARMA lattice prediction

One-channel section (1 ≤ � ≤ (p − q)) :

ā1�(n) = â1�(n) (84)

Two-channel section (1 ≤ � ≤ q) :

ā1�+p−q(n) = â12�−1(n) (85)

ā2�+p−q(n) = â22�(n) (86)

The connection between subband and fullband frequen-
cies can be explained using an example from [15]. Accord-
ingly, a sinusoid of frequency w0 in fullband is mapped
into the frequency wM in subbands with

wM = M.w0 mod(2π) (87)

where M is the number of subbands. On the other hand,
knowing the sinusoid frequency wM at subbands, the
frequency w0 can be obtained by

w0 = 2π
M

.K + wM
M

(88)

where K is the integer part of M.w0
2π .

5 Computational complexity
The number of operations required for the two-channel
ARMA lattice prediction filter for fullband spectrum esti-
mation is calculated as 10p + 16q using the number
of operations required for one-channel and two-channel
sequential processing lattice stages [25], where “one oper-
ation is considered as one multiplication (division) and
one addition”. The Levinson–Durbin recursion for one-
channel lattice sections requires (p − q)(p − q + 1)
operations, and 4q(q + 1) operations for two-channel lat-
tice sections to compute the ARMA process parameters.
Therefore, the number of operations required becomes
p2 + 11p− 2pq+ 5q2 + 19q, and then this expression can
be extended to the total number of required operations for
anM subband, multichannel implementation as

Total complexity =
M∑
k=1

p2k+11pk−2pkqk+5q2k+19qk .

(89)

Accordingly, we would like to compare the total num-
ber of operations for the proposed method with adap-
tive transversal filtering, and the nonparametric methods,
namely, the Periodogram, multitaper, Capon, APES, and
IAA methods.
The computational complexity of a fast RLS transver-

sal ARMA filter can also be expressed in order of pk and
qk [50]. When the fast Fourier transform (FFT) is utilized
in implementing the Periodogram method, the required
number of operations, which is the total number of real
additions(subtractions) and multiplications(divisions) is
CFFT(N) = 4N log2 N , where N is the number of signal
samples and is a power of 2 [51].
The computational complexity of the multitaper

method is then approximately given by CMT ≈ NWCFFT
(N), where NW and 2W are defined as the time-
bandwidth product and the resolution bandwidth,
respectively [41,43]. The complexity of brute force
computations of the adaptive Capon and APES spec-
tral estimators are given in [46] as CCAPON(Nf ,K)

≈ N3
f + N2

f K and CAPES(Nf , Lw,K) ≈ N3
f + N2

f L
2
w+

(N2
f + L2w + Nf Lw), respectively, where K represents

the size of uniformly spaced grid of frequencies, Nf
is the filter length, and Lw is the sliding window size.
It is also shown in [46] that these complexities can be
reduced to CCAPON(K) ≈ 12K and CAPES(K) ≈ 42K
if computationally efficient versions of adaptive Capon
and APES spectral estimators, which are classified as
FRLS-III type, are utilized. Similarly, the complexity
of brute force version of the IAA spectral estimator is
provided in [47] as CIAA = mc[ 2KN2

o + KNo + N3
o ],

where mc is the number of IAA iterations neces-
sary to allow for convergence, and K and No are the
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frequency grid size and the number of observed data
samples. Then, the computationally efficient version
of IAA method, which is named as fast segmented
IAA-II(FSIAA-II), is given in [47] as CFSIAA-II =
mc[N2

s + (5 + 7Ls)CFFT(2Ns) + (Ls + 2)CFFT(K)], where
CFFT(2Ns) and CFFT(K) denote the cost of performing
FFT of lengths 2Ns and K, respectively, Ns is the nonover-
lapping segment length (Ns = No/Ls), Ls is the number of
segments, and K is the frequency grid size.
In order to provide an comparative analysis, we plot-

ted the complexities of the ARMA lattice and transversal
filters in fullband, two-subband, and four-subband cases
against the complexity of the Periodogram method in
Figures 5, 6, and 7, respectively. When generating a spe-
cific complexity curve for the proposed and transversal
filtering methods, we assumed that the same spectrum
estimation method and configuration is implemented in
all subbands. Accordingly, we considered four different
data lengths for the Periodogram method while allowing
the filter order p to change up to 256 for ARMA(p, p), and
AR(p) filters.
Since a transversal implementation does not require

a Levinson–Durbin type conversion algorithm, the fast
RLS transversal ARMA filtering method in subbands is
computationally advantageous as compared to the pro-
posed lattice method. The computational complexity of
the proposed lattice method for ARMA(p, p) spectrum
estimation compared to the Periodogram method (N =
128) is low as long as filter order (p) is smaller than 27

in fullband, 19 in two-subbands, and 13 in four-subbands.
Similarly, the complexity for AR(p) lattice spectrum esti-
mation compared to the Periodogram method (N = 128)
is low as long as filter order (p) is smaller than 52 in
fullband, 36 in two-subbands, and 23 in four-subbands.
If longer data lengths are preferred, the low complex-
ity threshold value of filter order for ARMA(p, p) and
AR(p) implementations moves to higher values as can be
observed in Figures 5, 6, and 7.We would also like to point
out that it is possible to generate a family of complexity
curves for each case by assuming different configurations
for subband prediction filters.
We compare the computational complexities of Capon,

APES, IAA, and multitaper methods with the proposed
lattice ARMA(p, p) method for a data length of N = 128
in Figures 8, 9, and 10. When computing the computa-
tional complexity of the multitaper method, we assumed
that the time-bandwidth product was NW = 2. Four
nonoverlapping (Ns = 32, Ls = 4) segments, and ten
iterations for convergence (mc = 10) were considered
for FSIAA-II. In addition, the frequency grid size for the
FRLS-III type Capon and APES methods, and for the
FSIAA-II method was K = 4096.
Accordingly, under the assumed conditions, the com-

putational complexity of the proposed lattice method
for ARMA(p, p) spectrum estimation comparing to the
multitaper method is low as long as the filter order (p)
is smaller than 38 in fullband, 23 in two-subbands, and
19 in four-subbands. Then, we compare the complexity

Figure 5 Computational complexity curves for comparative analysis of fullband lattice and transversal prediction filtering versus the
Periodogrammethods.
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Figure 6 Computational complexity curves for comparative analysis of two-subband lattice and transversal prediction filtering versus
the Periodogrammethods.

of proposed lattice ARMA(p, p) method with that of the
Capon method, and find that its complexity is lower than
the complexity of Caponmethod as long as the filter order
(p) is smaller than 108 in fullband, 74 in two-subbands,
and 55 in four-subbands. When a similar comparison

is carried out for the APES method, the computational
complexity of the proposed ARMA(p, p) method is lower
than the APES method as long as filter order (p) is less
than 204 in fullband, 142 in two-subbands, and 100 in
four-subbands. When the IAA method is considered,

Figure 7 Computational complexity curves for comparative analysis of four-subband lattice and transversal prediction filtering versus
the Periodogrammethods.
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Figure 8 Computational complexity curves for comparative analysis of fullband lattice prediction filtering versus the multitaper, Capon,
APES, and IAAmethods.

the IAA method’s complexity is larger than the proposed
ARMA(p, p) method as long as filter order (p) less than
3400 in fullband, 2450 in two-subbands, and 1750 in
four-subbands.

6 Experimental results
We focused on ARMA(p, p) spectral estimation in sim-
ulation experiments due to its relevance in subband

implementations. Accordingly, the objectives of sim-
ulation experiments are to visually and statistically
demonstrate that the proposed method has the frequency
spacing improvement, whitening and SNR improvement
properties, and compare its performance with the perfor-
mances of nonparametric methods, viz., the Periodogram,
multitaper, Capon, APES, and IAAmethods. Accordingly,
we present and compare the ARMA(p, p) lattice subband

Figure 9 Computational complexity curves for comparative analysis of two-subband lattice prediction filtering versus the multitaper,
Capon, APES, and IAAmethods.
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Figure 10 Computational complexity curves for comparative analysis of four-subband lattice prediction filtering versus the multitaper,
Capon, APES, and IAAmethods.

spectrum estimation results with the ARMA(p, p) lat-
tice fullband results, and then compare the lattice
four-subband results with the nonparametric results.
The forgetting factor was λ = 0.995 for stationary cases

while it was smaller in nonstationary cases, λ = 0.98, so
as to better track the time-varying signal. We repeated

simulation experiments one hundred times; the results
of these simulations are then ensemble-averaged. In sub-
band decomposition of input signals, we used the Kaiser
window based approach in [52] for designing cosine
modulated filter banks. In two- and four-subband decom-
positions, the filter lengths are 30 and 60, respectively,

Figure 11 Frequency responses of two-subband decomposition filters.
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and their frequency responses are presented in Figures 11
and 12.
We used a data length of N = 128, and data was

zeropadded to 32 times the data length in stationary sig-
nal simulations involving the proposed lattice method,
multitaper, and the Periodogram methods. In nonstation-
ary cases, no zeropadding was utilized with any of the
methods. In the comparisons with the Capon, and APES,
we used the batch processing versions of these methods
in [41], then we implemented the adaptive brute force
versions of these methods in [46] for nonstationary sig-
nal experiments. In stationary signal cases involving the
IAA method, we utilized the batch processing brute force
version in [47], and subsequently in nonstationary signal
cases, we made use of the adaptive brute force version in
[53]. The filter lengths for the Capon and APES meth-
ods were Nf = 63, and we used data observation lengths
of No = N/2 and No = N in visual results and statisti-
cal analysis subsections for the IAA method, respectively.
The frequency grid sizes were chosen as K = 4096 for the
Capon, APES, and IAA methods. The sliding window size
for the adaptive version of APES method was determined
as Lw = 50. The number of IAA iterations for conver-
gence was mc = 10. We used a time-bandwidth product
of NW = 2 for the multitaper method.
In order to determine prediction filter order in simula-

tions, we mainly relied on our knowledge of input pro-
cess order, and started with this order. Since our criteria
of optimization is the minimization of forward predic-
tion error, we increased the order of prediction filter,
and monitored output forward prediction error. If the
decrease in output prediction error was negligible with

the increase of filter order, we stopped increasing the fil-
ter order. Since we would not have a priori knowledge
of process order in a practical situation, a model estima-
tor such as ARMAsel [54] can be used for this purpose.
As ARMAsel itself functions based on prediction error
evaluations, we might not even need further prediction
error evaluations. In addition to these considerations, we
kept the total complexity the same in all configurations in
order to provide a fair comparison of performance such
that the order of fullband predictor filter was 48 while
the order of predictor filters in two and four-subband
implementations were 24 and 12, respectively, in all
simulations.
During the simulations when the input signal is station-

ary, we considered two closely spaced cisoids embedded
in white as well as colored noise cases. The time series for
cisoids in white noise are given by

y(n) = A1e−j2π f1n+φ1 + A2e−j2π f2n+φ2 + u(n),
1 ≤ n ≤ N , (90)

where u(n) is whiteGaussian complex noise with uncorre-
lated real and imaginary parts, eachwith a variance σ 2

u and
zero mean, such that the SNR for the kth cisoid is defined
as

SNRk = 10 log10

( | Ak |2
2σ 2

u

)
. (91)

The time series generated by two cisoids embedded in col-
ored noise are similarly expressed by passing the white
Gaussian complex noise u(n), with zero mean and unit

Figure 12 Frequency responses of four-subband decomposition filters.
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variance, through a second-order AR coloring filter given
by

v(n) = 0.1v(n− 1) − 0.3v(n− 2) + u(n), 1 ≤ n ≤ N ,
(92)

and the local SNR in this case for the kth cisoid is defined
as

SNRk = 10 log10

( | Ak |2
V (ejwk )

)
(93)

whereV (ejwk ) denotes the spectral density function of the
AR process at the frequency of the kth cisoid. While the
cisoidal frequencies were f1 = 0.05 and f2 = 0.0656 in the
white noise case, they were f1 = 0.2106 and f2 = 0.2262 in
the colored noise case. The initial phases φ1 and φ2 were
zero in both cases.
In the nonstationary input signal experiments, we again

considered two closely spaced cisoids embedded in white
noise, but in this case, the frequencies of each individual
cisoid in (90) was varied deterministically according to the
following rule in the visual subsection,

fk(n) = f̂k − γk .(n − 1), k = 1, 2, and n = 1, . . . ,N
(94)

where γ1 = γ2 = 0.0001, and f̂1 = 0.12 and f̂2 =
0.1044, so that the difference between the frequencies of
cisoids is kept constant (same as the stationary signal case)
during frequency sweep interval, and then according to

the random walk model of [9] in the statistical analysis
subsection,

fk(n) = fk(n − 1) + γk .ϕk(n), k = 1, 2, and (95)
n = 2, . . . ,N

where γ1 = γ2 = 0.001, and ϕk(n) is zero mean white
Gaussian noise of unit variance independent of ϕj(n), j �=
k, and independent of the phases φk and the measure-
ment noise u(n) for both cisoids (k = 1, 2). The initial
frequencies of cisoids in (95) were f1(1) = 0.05 and
f2(1) = 0.0656, respectively, and the initial phases φk in
both of the nonstationary signal cases were randomly cho-
sen in the interval [ 0, 2π ]. The parameters, γk , and initial
frequencies in (94) and (95) were chosen so as to keep
the frequency variation inside the bandwidths of the first
two- and four- subband decomposition filters during the
frequency variation interval.

6.1 Visual results
6.1.1 Stationary signal case
We first consider the frequency spacing improvement
simulations in which the input time series were gener-
ated using Equation (90) with no noise. The individual
SNRs are infinite so that the only improvement can be
due to frequency spacing. In Figure 13, we show that two-
subband lattice implementation improves the frequency
spacing between closely spaced cisoids, and that this
improvement is even furthered by four-subband lattice

Figure 13 Frequency spacing improvement performance of the proposed ARMA lattice method.
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Figure 14 Comparison of frequency spacing improvement performance of the proposedmethod in four-subbandswith the Periodogram
andmultitaper methods.

when compared to fullband lattice implementation. We
compare the performance of the proposed method imple-
mented in four-subbands with those of the Periodogram
and multitaper methods in Figure 14, and with those of
the Capon, APES, and IAA methods in Figure 15.
In the SNR improvement simulations, we again used

the input time series generated by (90) with relatively
low SNRs, SNR1 = SNR2 = −3 dB, so that the SNR
improvement can be better displayed. Figure 16 illustrates
that two-subband lattice implementation is able to resolve
cisoids better comparing to fullband lattice implementa-
tion, and that four-subband implementation can resolve

themmuch better due to SNR improvement effect of sub-
band filtering. We show the performance of the proposed
method in four-subbands together with the Periodogram
and multitaper methods in Figure 17, and then with the
Capon, APES, and IAA methods in Figure 18.
The next property to be considered is the whitening

property of subband filtering. In this experiment, we once
again generated the input time series using Equation (90),
however the white noise u(n) was replaced with the col-
ored noise v(n) in Equation (92). The local SNRs for
the cisoids are SNR1 = SNR2 = 0 dB in this case. In
Figure 19, we compare the estimated spectrums based on

Figure 15 Comparison of frequency spacing improvement performance of the proposedmethod in four-subbands with the Capon,
APES, and IAAmethods.
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Figure 16 SNR improvement performance of the proposed ARMA lattice method.

fullband, two-, and four-subbands ARMA lattice filtering.
Evidently, the cisoids are better resolved in the two- and
four-subband spectrums when compared to the fullband
spectrum. Also, they are more clearly resolvable in four-
subbands than in two-subbands. Figure 20 demonstrates
the comparison of the proposedmethod in four-subbands
with the Periodogram method and multitaper methods,

and Figure 21 does the comparison with the Capon, APES,
and IAA methods.
In Figures 14, 17, and 20, we see that nulls between

cisoids are deeper in the Periodogram and multitaper
spectrums than those of the four-subband lattice method;
the proposed lattice method in four-subband results in
smoother spectrums with narrow mainlobes and low

Figure 17 Comparison of SNR improvement performance of the proposedmethod in four-subbands with the Periodogram and
multitaper methods.
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Figure 18 Comparison of SNR improvement performance of the proposedmethod in four-subbandswith the Capon, APES, and IAA
methods.

sidelobes while the Periodogram and multitaper spec-
trums have broader mainlobes and higher sidelobes. We
then compare the lattice four-subband spectrums with
those of the Capon, APES, and IAA in Figures 15, 18, and
21. It can be seen in these figures that the Capon spec-
trums have the highest null between cisoids among all of
the methods, but they are smooth with relatively broader

mainlobes and higher sidelobes comparing to the lat-
tice four-subband spectrums. The APES spectrums have
deeper nulls between cisoids than the lattice four-subband
spectrums, and they are also smooth with broader main-
lobes and higher sidelobes than the lattice four-subband
spectrums. The IAA spectrums have the lowest nulls,
but their mainlobes are broader and their sidelobes are

Figure 19Whitening effect performance of the proposed ARMA lattice method.
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Figure 20 Comparison of whitening effect performance of the proposedmethod in four-subbands with the Peridogram andmultitaper
methods.

higher in SNR improvement and whitening experiments
comparing to the proposed method using four-subbands.

6.1.2 Nonstationary signal case
We again consider the input time series that were gen-
erated using Equation (90), but cisoidal frequencies

are varied deterministically according to Equation (94).
SNR1 = SNR2 = 15 dB was assumed. In Figure 22, we
plotted one of the frequencies estimated by the pro-
posed lattice method in fullband, two-subbands, and
four-subbands against the true frequency trajectory as
a function of number of iterations. It can be observed
that the lattice four-subband estimates are closer to the

Figure 21 Comparison of whitening effect performance of the proposedmethod in four-subbands with the Capon, APES, and IAA
methods.
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Figure 22 Estimation of time-varying frequencies of two cisoids embedded in white noise with the proposed ARMA lattice method.

true frequency values and also converges earlier than the
lattice two-subband and fullband estimates. Figures 23,
24, and 25 compare the lattice four-subband frequency
estimates with those of the Capon, APES, and IAA
estimates, respectively. Note that the Capon method con-
verges earlier than the lattice four-subband method, and
the converge behavior of the APES method is similar to

the proposed method using four-subbands, however its
values at the end of converge duration are farther away
from the true frequency values comparing to those of the
lattice method. Figure 25 illustrates that the IAA method
converges earlier than the proposed method using
four-subbands after a rather fluctuating convergence
behavior.

Figure 23 Comparison of the proposedmethod in four-subbands with the Caponmethod bymeans of estimated time-varying
frequencies of two cisoids embedded in white noise.
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Figure 24 Comparison of the proposedmethod in four-subbands with the APES method bymeans of estimated time-varying
frequencies of two cisoids embedded in white noise.

6.2 Statistical analysis
We also consider the statistical analysis section under
stationary and nonstationary signal cases. In station-
ary signal case, we investigate the parameter estimation
performance of the proposedmethod by performing vari-
ance and mean bias simulations for SNRs ranging from
−20 to 20 dB with 1 dB increments. We assumed that the

number of cisoids are known in these simulations, and
then compared the variance performance of the proposed
method against the Cramer-Rao bound (CRB) in [55]. In
nonstationary signal case, we provide the parameter esti-
mation performance by means of variance and mean bias
versus number of iterations, and also compare against the
CRB as a function of number of iterations.

Figure 25 Comparison of the proposedmethod in four-subbands with the IAAmethod bymeans of estimated time-varying frequencies
of two cisoids embedded in white noise.
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Figure 26 Variance versus SNR plots for estimating the frequencies of two cisoids embedded in white noise with the proposed ARMA
lattice method.

6.2.1 Stationary signal case
In the first experiment, the input time series were gen-
erated by Equation (90) for two closely spaced cisoids in
white noise. We present the variance curves of the pro-
posed lattice method in Figure 26, and then compare
the lattice four-subband variance curve with the variance
curves generated using the Periodogram and multitaper
methods in Figure 27, and the Capon, APES, and IAA
methods in Figure 28, respectively. It can be observed

in Figure 26 that subband filtering improvement effects
are more pronounced in the low-SNR region (−20 dB ≤
SNR ≤ −10 dB), and the threshold SNR, below which
the estimation accuracy degrades rapidly, is about −9 dB.
In the higher-SNR region (−10 dB < SNR < 10 dB), the
subband estimation variance curves cross over the CRB
while saturating earlier (at approximately SNR = 7 dB
and SNR = 9 dB in two- and four-subbands, respec-
tively) than the fullband estimation variance curve due

Figure 27 Comparison of the proposedmethod with the Periodogram andmultitaper methods by means of variance versus SNR plots
for estimating the frequencies of two cisoids embedded in white noise.
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Figure 28 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of variance versus SNR plots for
estimating the frequencies of two cisoids embedded in white noise.

to the shorter data lengths in subbands and the quanti-
zation effects induced by the sampling of the frequency
variable. The saturation point can be moved to higher
SNRs and accordingly the estimation accuracy can be
improved by using longer data and more zeropadding
at the cost of more computation time. When we com-
pare the lattice four-subband variance curve with those

of the Periodogram and multitaper methods in Figure 27,
we can see that the lattice four-subband variance values
are very close to those of the Periodogram and multita-
per methods throughout all SNR regions. In Figure 28,
the variance curve of the proposed method using four-
subbands is plotted against those of the Capon, APES,
and IAA methods. It can be observed that the variance

Figure 29Mean bias versus SNR plots for estimating the frequencies of two cisoids embedded in white noise with the proposed ARMA
lattice method.
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Figure 30 Comparison of the proposedmethod with the Periodogram andmultitaper methods by means of mean bias versus SNR plots
for estimating the frequencies of two cisoids embedded in white noise.

curve of the proposed method using four-subbands is
higher than those of the Capon, APES, and IAA in the
medium SNR region (−10 dB< SNR < 5 dB), and close
to those of the Capon, APES, and IAA in the rest of
SNR range.
In Figure 29, we present mean bias curves for full-

band as well as subband implementations for two cisoids

in white noise. Similar to the variance curves, the mean
bias values of the proposed method in fullband and two-
subbands are relatively higher than those of the proposed
method in four-subbands in the low-SNR region, and
the mean bias values of the proposed method in two-
subbands are also higher that those of the proposed
method in four-subbands in the same SNR region, and

Figure 31 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of mean bias versus SNR plots for
estimating the frequencies of two cisoids embedded in white noise.
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Figure 32 Variance versus SNR plots for estimating the frequencies of two cisoids embedded in colored noise with the proposed ARMA
lattice method.

in the higher-SNR region (SNR > −9), the proposed
method in fullband, two-subbands, and four-subbands
display similar mean bias behaviors. In Figure 30, it can
be seen that the Periodogram and multitaper have higher
mean bias values comparing to the lattice four-subband
method in the full SNR range, and in Figure 31, it can

be observed that the lattice method in four-subbands per-
forms better than the Capon, APES methods, and IAA
methods in the SNR region (−20 dB ≤ SNR ≤ 5 dB)
while it is better than the Capon and APES methods
and slightly worse than the IAA method in the rest of
SNR region.

Figure 33 Comparison of the proposedmethod with the Periodogram andmultitaper methods by means of variance versus SNR plots
for estimating the frequencies of two cisoids embedded in colored noise.
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Figure 34 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of variance versus SNR plots for
estimating the frequencies of two cisoids embedded in colored noise.

Figure 32 demonstrates variance curves of the proposed
lattice method when the input time series were generated
by Equation (90) with the colored noise v(n) in Equation
(92) replaced the white noise u(n). In Figure 32, it can be
observed that the threshold local SNR moved to approx-
imately SNR=2 dB in fullband, SNR=−7 dB in two-
subbands, and −9 dB in four-subbands. Again, subband

filtering effects are more pronounced in the low-SNR
region while they relatively improve the estimation per-
formance in the higher-SNR region. Note that only four-
subband variance curve crosses the CRB in the col-
ored additive noise simulation. We compare the vari-
ance performance results of the proposed lattice method
using four-subbands with those of the Periodogram and

Figure 35Mean bias versus SNR plots for estimating the frequencies of two cisoids embedded in colored noise with the proposed ARMA
lattice method.
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Figure 36 Comparison of the proposedmethod with the Periodogram andmultitaper methods by means of mean bias versus SNR plots
for estimating the frequencies of two cisoids embedded in colored noise.

multitaper in Figure 33, and the Capon, APES, IAA
methods in Figure 34. In both of these figures, it can
be observed that the proposed lattice in four-subbands
performs much better than the nonparametric methods
throughout the complete SNR range due to the whitening
property of subband implementations.
In Figure 35, we present the mean bias curves, which

demonstrate the relatively better performance of subband

implementations especially in the low-SNR region. In
Figures 36 and 37, we compare the mean bias curves of
the nonparametric methods with the proposed method
using four-subbands. In both of these figures, there is
a performance difference in favor of the four-subband
lattice implementation in the SNR region (−20 dB ≤
SNR ≤ −5 dB), on the other hand, in the rest of the SNR
region, the performance of the proposed lattice method

Figure 37 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of mean bias versus SNR plots for
estimating the frequencies of two cisoids embedded in colored noise.
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Figure 38 Variance versus number of iterations plots for tracking the frequencies of two cisoids embedded in white noise with the
proposed ARMA lattice method.

in four-subbands is worse than those of the Periodogram,
multitaper, Capon, APES, and IAA methods.

6.2.2 Nonstationary signal case
We present the variance and mean bias of frequency esti-
mation versus number of iterations plots when estimating
the randomly time-varying frequencies of two cisoids

embedded in white noise (SNR1 = SNR2 = −15 dB)
for the proposed lattice method in Figures 38 and 39
respectively. Therefore, the time series in this experiment
were generated by using Equation (90) with frequencies
replaced with the randomly time varying frequencies in
Equation (95). The plots presented in Figures 38 and 39
are for one of the frequencies in order to improve the

Figure 39 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of variance versus number of
iterations plots for tracking the frequencies of two cisoids embedded in white noise.
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Figure 40Mean bias versus number of iterations plots for tracking the frequencies of two cisoids embedded in white noise with the
proposed ARMA lattice method.

readability, and they also display that the tracking perfor-
mance improves as we increase the number of subbands.
We think that the number of subbands in the proposed
method plays a similar role to the pole contraction factor,
ρ, in [8,9], and frequency tracking with the proposed lat-
tice method in fullband, two-subband, and four-subband
cases can be likened to increasing pole contraction factors
in notch filtering. An approximate way of corresponding

the number of subbands to pole contraction factor can be
by using the normalized bandwidth of complex notches,
which is given as BW = (1−ρ) in [8,9]. Accordingly, a typ-
ical pole contraction factor of ρ = 0.95, and therefore the
normalized notch bandwidth of BW = 0.05 corresponds
to using ten-subbands in our method. In Figures 40 and
41, we compare the variance andmean bias versus number
of iterations curves of the proposed lattice method in

Figure 41 Comparison of the proposedmethod with the Capon, APES, and IAAmethods bymeans of mean bias versus number of
iterations plots for tracking the frequencies of two cisoids embedded in white noise.
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four-subbands with the adaptive nonparametric meth-
ods (Capon, APES, and IAA), and demonstrate that
the variance and mean bias performances of the pro-
posed lattice four-subband method are better those
of the adaptive Capon, APES, and IAA methods, and
it is also considered that the better performance of
the proposed method in such a low-SNR condition is
mainly due to the SNR improvement effect of subband
filtering.

7 Conclusions
A novel lattice method for adaptive ARMA spectrum esti-
mation in subbands has been presented. The proposed
method is different from previous methods such that it
first transforms the ARMA spectrum estimation problem
in subbands into an equivalent, multichannel prediction
filtering problem, and then completely orthogonalizes the
multichannel input signal using SPMLSs. In order to
convert lattice reflection coefficients to process parame-
ters, the method includes a new Levinson–Durbin type
multichannel conversion algorithm specially developed
for SPMLSs. The fullband spectrum estimation is a spe-
cial form of the proposed subbands spectrum estimation
method, and also gives rise to a novel two-channel predic-
tion filter implementation.
The advantages of the method are that it can dynam-

ically parameterize all subbands at once using a single
filter structure, which is modular, regular, order-recursive,
and therefore suitable for VLSI implementations such as
developing both programable DSP chips and dedicated
system on chip solutions; its inherently good numeri-
cal properties due to the avoidance of matrix inversions;
and scalar only operations. The other strengths of the
method are applicability to uniform as well as nonuni-
form subband filtering, and also to on-line and off-line
implementations.
A detailed computational analysis has been provided by

comparing the complexity of the proposed method with
those of adaptive fast RLS transversal prediction filtering
in subbands and the Periodogram method for different
model orders and data lengths. Then, the complexity has
also been compared against the multitaper, the Capon,
APES, and IAA for one data length (N = 128), and it has
been shown that the proposed method is computation-
ally advantageous comparing to the multitaper and Capon
methods for a range of lattice prediction filter orders,
while it is computationally more advantageous than the
APES method for a wide range of lattice prediction filter
orders, and it is less complex than the IAA method for a
very wide range of lattice prediction filter orders.
The simulation results demonstrate that the proposed

subband spectrum estimation method has the SNR and
frequency spacing improvement and whitening effect

advantages of a typical subband implementation. In sta-
tionary signal case, the variance and mean bias values
versus SNR performance when estimating the frequen-
cies of two cisoids in additive white and colored noise
has been presented, and compared against the CRB for
white noise as well as against the performances of the Peri-
odogram, multitaper, Capon, APES, and IAA methods. In
nonstationary signal cases, the performance has also been
investigated, and compared against the Capon, APES,
and IAA methods under deterministically and randomly
time-varying signal conditions.
The performance results display that the proposed

method improves the poor performance of parametric
methods in low SNR and small frequency spacing, and
colored noise conditions. It can also perform competi-
tively with respect to the nonparametric methods in a
computationally efficient manner. Consequently, it is con-
sidered that the proposedmethod with increasing number
of subbands has good potential for cognitive radio spec-
trum sensing, radar and speech recognition tasks, and
frequency estimation and tracking applications.
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