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Abstract

architectures.

Multi-carrier (MC) signaling is currently in the forefront of a myriad of systems, either wired or wireless, due to its high
spectral efficiency, simple equalization, and robustness in front of multipath and narrowband interference sources.
Despite its widespread deployment, the design of efficient architectures for MC systems becomes a challenging task
when adopting filter bank multi-carrier (FBMC) modulation due to the inclusion of band-limited shaping pulses into
the signal model. The reason to employ these pulses is the numerous improvements they offer in terms of
performance, such as providing higher spectral confinement and no frequency overlap between adjacent subcarriers.
These attributes lead to a reduced out-of-band power emission and a higher effective throughput. The latter is indeed
possible by removing the need of cyclic prefix, which is in charge of preserving orthogonality among subcarriers in
conventional MC systems. Nevertheless, the potential benefits of FBMC modulations are often obscured when it
comes to an implementation point of view. In order to circumvent this limitation, the present paper provides a unified
framework to describe all FBMC signals in which both signal design and implementation criteria are explicitly
combined. In addition to this, we introduce the concept of flexible FBMC signals that, unlike their traditional MC
counterparts, do not impose restrictions on the signal parameters (i.e,, symbol rate, carrier spacing, or sampling
frequency). Moreover, our framework also proposes a methodology that overcomes the implementation issues that
characterize FBMC systems and allows us to derive simple, efficient, and time-invariant transmitter and receiver

1 Introduction

Multi-carrier (MC) signals are present in a myriad of
applications such as high-speed digital subscriber lines
[1], wireless communications [2], and wireless positioning
[3,4], just to mention a few. From a digital broadcasting
perspective, MC signals are used in many standards such
as the Digital Video Broadcasting (DVB-T [5], DVB-T2
[6], DVB-SH [7], and DVB-RCT [8]), Digital Audio Broad-
casting (DAB) [9], and Digital Multimedia Broadcasting
(DMB) [10], where orthogonal frequency-division multi-
plexing (OFDM) is the most widespread format of MC
signaling adopted therein. In the recent years, though,
there has been a growing interest in filter bank multi-
carrier (FBMC) signals as an alternative to conventional
MC signaling based on OFDM [11]. Compared to the
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latter, FBMC can be understood as a generalized signal-
ing scheme that allows the replacement of the rectangu-
lar shaping pulse by a band-limited one. This property
provides a more robust performance in front of carrier
frequency mismatches, multiple access, and narrowband
interferences. In contrast to what occurs in OFDM, FBMC
signals can be designed so as to preserve the subcarrier
orthogonality in multi-path propagation without neces-
sarily requiring the insertion of a cyclic prefix. This advan-
tage, together with the reduction of out-of-band power
emissions [12], allows FBMC signals to enjoy higher spec-
tral efficiency than the one provided by OFDM, which is
especially attractive for band-limited systems. However,
the obtained efficiency improvement in the frequency
domain comes at the expense of longer pulses in the
time domain, which overlap one with each other because
their duration exceeds the symbol time. As a result of
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this overlap, many challenges do appear in the practi-
cal implementation of FBMC transceivers as compared to
their OFDM counterparts [13], thus resorting to the use
of advanced filter bank architectures.

Apart from implementation issues, another concern
with FBMC signals is the wide range of FBMC vari-
ations that can be found in the literature, such as
filtered multi-tone (FMT) [14], cosine modulated multi-
tone (CMT) [15], discrete wavelet multi-tone (DWMT)
[16], or offset quadrature amplitude modulated OFDM
(OQAM/OFDM) [17]. Each of these variations uses a
case-specific signal model as well as some restrictions
over their signal parameters, thus making it difficult to
address the design of transmitter and receiver architec-
tures in a systematic way, as well as to perform a fair
comparison among all possible FBMC alternatives. More-
over, the need for adjustable multi-rate architectures is
currently emerging in FBMC-based cognitive radio, thus
pushing filter bank architectures and FBMC signaling
schemes beyond the limits of their initial designs [18-20].
In that sense, one of the goals of this work is to bridge
the gap between existing variations of FBMC signals and
a unified formulation capable of encompassing any FBMC
scheme as a particular case of a generic and unconstrained
FBMC signal model.

Attempts to do so have already been made in the exist-
ing literature [13,21]. Nevertheless, most contributions on
unified FBMC signaling formats are circumscribed to the
study of analysis and synthesis filter banks, namely, in the
context of image processing [21] or speech coding [22],
where a single-carrier signal is typically undergoing some
kind of sub-band processing [23]. The application of these
signaling formats to the field of digital multi-carrier com-
munications is not straightforward, since the conceptual
approach is completely different here (i.e., the order of
analysis and synthesis operations is inverted [24]) and new
signal parameters, design constraints, and performance
metrics do appear [25,26]. Due to the lack of consensus
in the FBMC signal definition, research efforts are being
devoted to provide a suitable and generalized formula-
tion for communications-oriented filter bank modulations
[27]. An example of it is the so-called generalized multi-
carrier (GMC) signal model [28], which considers all MC
signals as subclasses of a unique signal model. A similar
example is the case of non-orthogonal frequency divi-
sion multiplexing NOFDM), where neither the number of
subcarriers, their spectral spacing, the shaping pulse (and
its length), nor the symbol rate are specified [29-31].

Unlike previous contributions, our work is not merely
focused on the definition of a generalized signal model.
Instead, it aims at linking both signal design and imple-
mentation aspects of FBMC signals. To do so, we pro-
pose to parameterize FBMC signals by a set of key and
common attributes. This generic parameterized scheme
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allows a free optimization of the signal so as to fulfill
certain predefined criteria in terms of out-of-band radia-
tion, power/bandwidth efficiency, physical layer security,
synchronization performance, or implementation com-
plexity. All these aspects highlight the importance of the
general scope of our contribution and the necessity to
avoid an exclusive focus on the well-known OFDM or
other case-specific schemes, which might be suboptimal
in many practical cases.

The general scope of our work, and the interest in
encompassing the largest possible amount of different
FBMC signals, is in contrast to traditional contributions
on FBMC signaling. Typically, most works such as [21]
and [32] do not consider all possible FBMC signals but
only a small subset thereof, where simple implementations
can easily be derived [27]. Other works like [14,33,34]
do address those intricate cases, but the resulting archi-
tectures entail time-varying filtering coefficients, which
require an unnecessary complex control and operation of
memory buffers. The authors in [35] have come up with
efficient architectures for some of theses intricate cases,
but the overall process is specifically tailored to these
signals, thus lacking a systematic derivation and general
applicability in practice. In contrast, we address herein the
efficient implementation of unfavorable types of FBMC
signals that have been either eluded, partially addressed,
or solved by time-variant schemes in the literature to date.

Since the emphasis is placed here on FBMC com-
munication systems, our designs are parameterized by
communication and signal-level parameters such as the
symbol period or the subcarrier spacing. Moreover, we
are interested on the impact these parameters have from
an architectural point of view, in order to determine up
to which extent a given combination of these parameters
leads to feasible or unfeasible hardware implementations.
This is contrast to most existing contributions, where the
underlying structure of FBMC communication signals is
typically ignored and where the focus is placed on effi-
cient filter designs with the aim of achieving the perfect
reconstruction (PR) property [36,37] (i.e., as pursued in
non-communication applications such as speech coding).
It is interesting to note that the PR property is not a
mandatory feature in wireless applications, since an addi-
tional equalization stage is actually needed at the receiver
side to compensate for the frequency selective wireless
channel [38,39].

In summary, the main contributions of the present work
are the following. First, we provide a unifying formulation
that allows a compact parametrization of any FBMC sig-
nal out of a reduced set of parameters. Second, we offer
a detailed methodology to derive flexible and computa-
tionally efficient architectures stemming from our uni-
fied formulation. Third, we obtain time-invariant schemes
even in those challenging cases where signal parameters
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are not favorable from an implementation viewpoint. That
alleviates the computational complexity of those cases for
which time-variant architectures have been usually pro-
posed. Additionally, we show how to obtain equivalent
architectures for any FBMC signal, thus enabling a tai-
lored design of the user and network terminals according
to some performance requirements.

The remainder of this paper is organized as follows.
A unified framework is proposed in Section 2, where
any generic FBMC signal is mapped onto a quadruple
of signal’s key parameters. Some multi-rate techniques
and basic filter-bank theory are reviewed in Section 3 in
order to support the derivation of flexible FBMC architec-
tures as a function of such parameters. Section 4 provides
implementation guidelines, through the extensive use of
polyphase filters, along with the derivation steps that
enable a transition from the signal formulation to the
final transmitter architectures. An analogue reasoning is
employed in Section 5 to derive the dual receiver archi-
tectures. Both transmitter and receiver architectures are
presented for different types of polyphase network layouts
and arbitrary signal parameter sets. Finally, an analysis
of the computational complexity of the architectures is
provided in Section 6.

2 Signal model and parametrization of flexible
FBMC signals

In this section, we formulate a signal model that is flex-

ible enough to encompass all existing MC signal formats

by properly selecting the values of a few key parameters.

Before doing so, we provide in Table 1 a reference list

with the most important signal-level parameters, and in

Table 1 Summary of the key signal-level parameters
involved in the quadruple proposed in (4)

Description

D = N¢s/N  Ratio between the symbol period and the number of
subcarriers (samples/subcarrier)

Fo=1/Ty Subcarrier frequency separation (Hz)

Fs Sampling rate (samples/second)

Lg Prototype filter length (samples)

L’g =Llg/P  Ratio between the prototype filter length and the
subcarrier period (unitless)

N Number of FBMC subcarriers.

Ny = FsT FBMC symbol duration (samples)

P=F/Fo Fundamental subcarrier period (samples)

Q = Nss /P Subcarrier spacing normalized to the symbol rate (unitless)

R=1/T Symbol rate (symbols/second)

T Symbol period (seconds)

Ty Duration (seconds) of the prototype filter impulse response

To Subcarrier period (seconds)
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Table 2 a reference list with the key notation and math-
ematical operators is used throughout this work. These
tables are provided for the sake of clarity and to help the
reader follow the technical content of this paper.

2.1 Signal model of transmitted and received flexible
FBMC signals

Let us consider the following continuous-time baseband

equivalent model for an FBMC signal made up by N

subcarriers with a frequency separation of Fp = 1/Ty

oo N-1

=Y Y s,he— 1) g, (1)

l=—00 n=0

where s),(]) are the symbols to be transmitted (in general,
s,() € C), g(®) is the shaping waveform, R = 1/T is the
signaling rate (i.e., 7' is the MC symbol period), and ¢, ()
is a possibly additional phase term used in some cases to
ensure that the symbols are separable at the receiver. For
instance, in OQAM/OFDM a 90° rotation is alternatively
applied in the frequency and time dimensions (which are
represented by indexes 7 and /, respectively) to force that
the symbols adjacent to a real one are imaginary, and vice
versa. In order to simplify the notation, we can gather the
symbols and the additional phases into an equivalent sym-
bol term s, (!) = s,,(I) &9 The signal model in (1) can
also be used to represent MC-based offset modulations
(i.e., those relying on offset quadrature phase shift key-
ing (OQPSK) or minimum phase shift keying (MSK), on
a per subcarrier basis). In that case, it is only necessary to
interpret T as half of the actual symbol period.

The analog signal propagating through the channel is
evidently independent of any sampling frequency. How-
ever, we are interested in both transmitter and receiver
digital architectures, so we formulate the discrete-time
version of the transmit signal in (1) sampled at a rate
F,=1/Ts

oo N-1
x[m] = x(mTs) = Z Z snlllglm — INys] 2%,
l=—00 n=0

2)

where the fundamental subcarrier discrete-time period
(i.e., expressed in samples) is P= Fs/Fp, N is the number
of active subcarriers, and N F;T = Fs/R is the num-
ber of samples per MC symbol. The discrete-time shaping
pulse g[m] = g(mT;) is also called prototype filter, it is
real-valued and has a length of L, = Fs T, samples with T,
the duration of its impulse response. Finally, Lg, P and Nis
are considered to be integer values.

One of the main characteristics of MC modulation sys-
tems resides on the fact that a total of N source symbols
sy {] are involved in the generation of a single MC symbol.
Normally, such source symbols are strictly associated to N



Gutiérrez et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:103

http://asp.eurasipjournals.com/content/2014/1/103

Table 2 Summary of the notation and mathematical
operators used throughout this paper

Description

* Linear convolution

()* Complex conjugate

ol Transpose operator

1 Ceil operator (i.e, rounds to the nearest integer towards
infinity)

L] Floor operator (i.e, rounds to the nearest integer towards

minus infinity)
Reconstruction delay affecting the received source symbols

Reconstruction delay affecting the transmitted signal

B Order of the polyphase network

B Order of the polyphase network at the FBMC receiver

Bt Order of the polyphase network at the FBMC transmitter
8 Fraction of the symbol time devoted to cyclic prefix
Ds{-} Downsampling operation by a factor B

DFT;p ith output of a P-points discrete Fourier transform (DFT)

glnl Impulse response of the prototype filter

gilnl ith polyphase subfilter

Gty Complexity gain with respect a conventional
transmultiplexer implementation

Is{-} Upsampling operation by a factor B

IDFT;p ith output of a P-points inverse discrete Fourier transform
(IDFT)

lcm Least common multiple

mod(a,b)  aModulob (ie.a— [ £]b)

NrCM Number of complex multiplications per multi-carrier
symbol at the FBMC receiver

NtCM Number of complex multiplications per multi-carrier
symbol at the FBMC transmitter

Nsso Integer number such that Icm (Py, Nss) = NssoPt

P, Fundamental subcarrier period (samples) at the FBMC
receiver

Py Fundamental subcarrier period (samples) at the FBMC
transmitter

Pro Integer number such that lcm (Pr, Nss) = ProNss

Pto Integer number such that lcm (Pr, Nss) = ProNss

P Roll-off factor

salf] Source symbols to be transmitted on the n-th subcarrier at
the /th FBMC symbol

Splf] Phase-rotated version of the source symbols

Splh Source symbols recovered at the FBMC receiver

Sr’;od(w[/] \DPFT transformed source symbols (i.e,,
Smod(,’p)[/] = IDFTip(lsol N, 51011, .., sp—1L0T1))

x[m] FBMC transmitted signal

xi[K] Input signal to the ith polyphase filter

yilk] Output signal from the ith polyphase filter
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subcarrier frequencies. Hence, that leaves us with P — N
subcarriers that are not associated to any source sym-
bol conveying actual information, and therefore they are
referred to as virtual subcarriers. The role of these subcar-
riers is typically to improve the spectral confinement and
to facilitate carrier synchronization at the receiver end.
Following the same notation as in the transmit sig-
nal model, it is possible to formulate the discrete-time
signal model of the reconstructed MC source symbols
from a received signal x[ m]. The reconstructed symbols
associated to the nth subcarrier can be expressed as

e¢]

Y almle ™" glINg — m]. (3)

m=—0o0

Sall] =

At this point, it should be mentioned that depend-
ing on the configuration of the transmitter and receiver
architecture, the reconstructed symbols may differ from
the transmitted source symbols. That is the reason why
the notation §,[/] has been used in (3). If the designed
schemes do not ensure a proper time and frequency
orthogonality, this can lead to inter-symbol interference
(ISI) and/or inter-carrier interference (ICI) even in the
absence of noise. In those cases, an additional equalization
would be required at the receiver end in order to eliminate
these intrinsic interferences [14,40].

Once the signal model has been introduced, it can
be seen that (2) and (3) result from the conventional
FBMC transmitter and receiver architectures depicted
in Figure 1. The concatenation of the transmission and
reception structures is also known as transmultiplexer
[41] and it was originally created to transform time-
division multiplexed (TDM) systems into frequency divi-
sion multiplexing (FDM). In this work, we assume that
the shaping pulse coefficients are real and have even sym-
metry. Therefore, the expression in (3) corresponds to
the right-hand side of the scheme in Figure 1, given that
g'l—m]=g[m].

2.2 Parametrization of flexible FBMC signals

Both in transmission and reception, the format of a flexi-
ble FBMC signal can be defined by four critical parameters
or a combination thereof. In particular, we consider the
quadruple:

Iy . Fs FO Tg _ Nss Nss Lg
{N’DlQng}:{ Yy ) T o = N; 3 y?
(4)

where both the continuous-time and the discrete-time
versions are provided in (4) for the sake of clarity.

The flexibility of the proposed model comes from the
fact that any MC signal can be represented by a set of
specific values of these four parameters {N, D, Q, Lé}. The
parameter D can be regarded as the oversampling factor,
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Figure 1 Conventional architecture for a flexible FBMC transmitter (left) and receiver (right). It can be observed that neither the number of
input signals, the upsampling factor, nor the subcarrier period need to be the equal to one another.

representing the ratio between the sampling frequency F
and the total MC symbol rate RN. This leads to D = ;—;\[
in continuous-time, or equivalently, D = % in discrete-
time notation. In turn, the parameter Q represents the
subcarrier spacing normalized to the symbol rate, Q = %0
in continuous-time, or equivalently, Q = A# in discrete-
time notation. Note that the minimum spacing that makes
subcarrier orthogonality possible corresponds to Q = 1.
Moreover, since Q can take non-integer values, this model
is also valid for the representation of non-orthogonal or
generalized MC signals. Finally, Lé represents the proto-

type filter length normalized to the subcarrier period, thus

. . Ty . . . .
leading to Lé = Ti in continuous-time, or equivalently,

L = %g in discrete-time notation.
For the sake of clarity, Figure 2 illustrates two dif-
ferent setups of FBMC signals where their different

frequency-domain characteristics have been mapped onto
the applicable parameters of the quadruple in (4). The
following additional examples will further illustrate how
the quadruple of parameters relates to the FBMC signal
characterization:

e Example 1. OFDM with N subcarriers where a
fraction 8 of the symbol time is devoted to the cyclic
prefix. This is a paradigmatic case of OFDM signaling
where the signal is typically sampled at N samples
per subcarrier period, leading to P = N. Moreover,
both the symbol period and the OFDM rectangular
pulse shape length become Ngs = Ly = (1 + 6)N.
The resulting signal can thus be characterized by
(N, D, Q,LL,} ={N,1+4,1+3,1+ 8}.Ifa null guard
interval was used instead of the cyclic prefix, the
representation would be {N,1 + 4,1 + 6, 1}.

R-N=0.4Fs

=N

/0.4=25
.2/0.2 =1

0oz
oo

o

Amplitude

o

0.1 02 03

assumed.

R-N=0.25Fs
1 Setup B N=2
° 0.8+ R=0.125Fs Nss =8 D=1/0.25=4
'2067 P=5 Q=0.2/0.125=1.6
£ 77| Fo=0.2Fs
€ 041 H
< 1
0.2f i
0 1 ‘;’ 1 1 1 1 1 1 1

. 0. . 0.
Discrete—time frequency (F/

07 08 09 1
FJ

s

Figure 2 Frequency-domain interpretation of parameters {N, D, Q} in (4) for two different setups of MC signals. A fixed value for L/g is
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e Example 2. FBMC signal with square-root raised-
cosine (SRRC) shaping pulses whose length is limited
to Lg, a roll-off factor p and a one-sided bandwidth
equal to HT’)R. Let us first consider the case of N
subcarriers with separation Fy = R and overlapping

each other at the % amplitude level. Then, assuming
the Nyquist condition is fulfilled, a minimum
sampling frequency of Fs = RN + 2§R = R(N + p)
would be required to avoid incurring in aliasing. This
involves having D = £+ =1+ £ andQ= 2 =1,

leading to {N, 14+ &1, 1%]
different case with non-overlapping subcarriers. To
do so, we would need a minimum subcarrier spacing
of equal to twice the one-sided pulse bandwidth,
leading to Fo = (1 + p)R. If we want to preserve the
same number of subcarriers N as in the previous
case, we need to increase the sampling frequency up
to a minimum of Fg = N(1 + p)R, thus oversampling
by a factor D = 1‘% = 1+ p. This setup would
correspond to an FMT signal whose quadruple

becomes {N, 1+ 0,14 p, 1%}

. Let us consider next a

This formulation has the advantage of making appar-
ent that, for instance, FMT is very similar to OFDM from
a structural point of view, but FMT simply uses a longer
shaping pulse.

3 Multi-rate preliminaries for FBMC modulations

The processes of FBMC signal transmission and recep-
tion usually require several rate conversion operations
between the multiplexed signals and the different sub-
channels. This is similar to what happens in MC demul-
tiplexer/demodulators (MCDD) in satellite broadcasting
[42], in cable TV channelizers [43], or in time-division
to frequency-division multiplexing (TDM-to-FDM) [44],
where several users and data streams are channelized into
different subbands of the transmission bandwidth. The
efficient implementation of such user and rate adaptation
is done through the so-called polyphase architectures,
which allow a significant reduction of the overall com-
plexity by reordering the way down-conversion and filter-
ing operations are carried out in traditional transceivers.
Interestingly, polyphase architectures lead naturally to
parallel architectures where intensive and high-rate com-
putations are converted into a series of simple and low-
rate simultaneous operations. For the case of high-rate
filtering, the efficient implementation is based on the
so-called filter banks, which are nothing but a bank
of parallel short-length filters implementing the equiva-
lent filtering operation at a much lower clock rate [45].
It is interesting to note that multi-rate filter bank sys-
tems are widely adopted in DVB satellite transponders
[46], which can be understood in general terms as a
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multi-user multi-carrier system. For the case of flexible
FBMC communication systems, in which a single user has
actually allocated multiple carriers, the application of tra-
ditional filter bank architectures is not straightforward.
The reasons are the different signal parameters, design
constraints and performance metrics of these systems,
and the actual impact of coherently processing several
subcarriers at the signal level (e.g., the impact in terms
of latency across subcarriers or the resulting mean square
bandwidth, which is of interest for positioning applica-
tions). In view of this limitation, a dedicated study is
required in order to come up with efficient architectures
enabling FBMC communication as well as positioning
systems. To this end, we will start first by briefly review-
ing the basics of multi-rate digital signal processing and
filter banks theory [47], and then we will proceed by
presenting the proposed schemes enabling both trans-
mit and receive architectures for FBMC communication
systems.

As a previous step to the derivation of efficient flexible
FBMC architectures, it is advisable to gain more insight
in rate conversion operations and their interaction with
finite impulse response (FIR) filters. Additionally, we will
introduce here a notation for rate conversion operations
accompanying digital filters that will be extensively used
in forthcoming sections.

3.1 Interpolation and decimation filters

As it can be seen in Figure 1, the straightforward imple-
mentation of a FBMC system is highly inefficient from a
computational point of view. For instance, the convolu-
tion between each subband signal and the prototype filter
g[ m] is carried out at the highest sampling rate, each con-
volution involves all the prototype filter coefficients and
must be replicated for all subcarriers. Fortunately, multi-
rate digital signal processing provides us the tools for
reducing the computational requirements both in terms of
clock rate and memory resources, thus leading to efficient
architectures [48]. Interpolation and decimation are two
of these tools, and they are extensively used in the present
work. Let us first start by introducing the so-called inter-
polation filter, which operates with some arbitrary input
signal u[m], whose rate has been increased by a factor
B, and provides an output signal y[ m] after convolution
with a FIR filter g[m]. This operation is schematically
represented in Figure 3. Mathematically, we can express
y[m] as

e e]

ylml= " ullBlglm—IB]= Tp{ulm)}xglm], (5)

I=—00

where the notation Zp{-} denotes that the upsampling
operation by a factor B is carried out before the fil-
tering operation. Analogously, a decimation filter can
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u[m| — glm)|

BT

Figure 3 Block diagram of an interpolation filter.

g[m Bt FB—uylm]

Figure 5 Block diagram of a filter followed by an upsampler.

be defined as a digital filter followed by a downsam-
pling operation by B, whose output can be expressed
as

oo

> ulllglmB — )= Dy{ulm] xglm]}, (6)

I=—00

ylm] =

with Dp{-} the notation for the downsampling operation
by a factor B. This is the result of the convolution between
u[ m] and g[ m], as it is shown in Figure 4.

3.2 Complementary sampling rate conversion schemes

It is worthwhile introducing the complementary cases
to the interpolation and decimation filters introduced
in subsection 3.1. Let us first start by the time-domain
expression of a filter followed by an upsampling operation
(Figure 5):

e e]

Y ulllglm—0¢, (7)

l=—0c0

ylm]=1p{ylm]} =1p

where y[m] =y [%] for m = kB with k€Z and y[m] = 0
otherwise. Analogously, the output of a filter preceded by
a downsampling operation (Figure 6) is given by

e¢]

> ullBlglm —I)=Dg{ulm]} xglm] (8)

I=—00

ylm] =

Using these concepts, a quick inspection of (2) reveals
that x[ m] is generated by adding up N different signals
sp[ 1] after their convolution with the interpolation filter
g[ m], whose interpolation factor is Ny, and then modu-
lated by a different exponential term associated to each
subcarrier frequency. This sequence of operations in (2)
is indeed represented in the scheme shown in the block
diagram of Figure 1, which is the straightforward but
inefficient implementation of a FBMC system.

3.3 Preliminaries of polyphase structures

The basic idea behind polyphase theory is that coefficients
of both interpolation (5) and decimation filters (6) can be
decomposed into B subsets of coefficients called subfil-
ters, where B is referred to as the order of the polyphase
network [49]. The decomposition of the decimation fil-
ter is called type 1, whereas the one corresponding to the
interpolation filter is called type 2. In both cases, the coef-
ficients of the ith subfilter, i € {0, 1,...,B — 1}, are defined
by the expression g;[m]= g[mB + i]. The main inter-
est of the polyphase concept for MC signals comes down
to the fact that subfilter coefficients may be associated to
a unique exponential term in the convolution operation.
Therefore, unlike conventional transmultiplexer imple-
mentations, it becomes no longer necessary to execute
convolution operations for each subcarrier and involve the
whole shaping pulse. On the contrary, they will be reduced
to convolutions between subfilters and sets of samples of
the input signal.

As a consequence of this rearrangement, the rate of
each polyphase component is B times lower than the
serial signals u[ m] and y[ m], and each subfilter is also B
times shorter than the prototype filter. Both facts highlight
the implementation efficiency benefits of this approach.
Finally, and because of the modular (i.e., circular) struc-
ture of polyphase decompositions, we can exploit the
cyclic (i.e., periodic) behavior of the complex exponentials
in (2) and (3). This will allow us to make an extensive use
of the DFT operation, and thus to further benefit from the
efficient computation properties of fast Fourier transform
(FFT) processors [50].

4 Efficient FBMC transmitter architectures

So far we have introduced the structures required to trans-
mit and receive FBMC signals and how the filter bank
theory can be used to improve the efficiency of such struc-
tures. Furthermore, we have shown that different types of
FBMC signals can be obtained from a generic signal model
characterized by a set of four signal parameters. In this

u[m] —  g[m] B

Figure 4 Block diagram of a decimation filter.

Bl glm] B—y[m]

Figure 6 Block diagram of a filter preceded by a downsampler.
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section, we introduce a unified framework that connects
all these elements in the form of a systematic architecture
derivation for flexible FBMC transmitters with arbitrary
signal parameters. A conceptual representation of the
architectures that will be presented herein is schematically
depicted in Figure 7. The proposed framework allows the
particularization of the different parts of the system by
means of a proper design of a polyphase network and a
matching network. The main purpose of the matching net-
work is to adapt the sampling rates of the signals delivered
by the IDFT block to the ones required by the filters that
make up the polyphase network.

Apart from the quadruple of key signal parameters
described in Section 2, FBMC architectures are deter-
mined by an additional parameter: the order of the
polyphase network B. Different choices of B can be
adopted at either the transmitter or the receiver end,
so the subscripts ¢ and , are adopted herein to indicate
transmission and reception, respectively. Typically, the
following values of B have been adopted in the litera-
ture: B, = {Icm(Px, NSS),Lg} where x = {¢,r} and lcm
stands for least common multiple. However, a more gen-
eral approach suggests a wider range of possibilities. In
particular, we consider the following set of values for our
study:

By = {Px, Ngs, lem(Py, Ngs)} . )

Such values represent the most significant examples
from an architectural point of view. Architectures for
other pairs of values (B, B;) can be easily derived fol-
lowing the steps presented in this section. That is the
case of (B, B;) = Ly for instance, for which the fol-
lowed methodology would vyield architectures based on
polyphase subfilters of unitary length. It is important to
mention that the matching network module in Figure 7
usually requires interpolation operations by a factor Q,
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integer number. The implementation for rational values
of Q becomes challenging and it can be shown that the
role of these interpolation modules would lead to time-
variant input-output responses of the polyphase network
when conventional methods are used [14,33,34]. In this
work though, we show that it is possible to obtain efficient
and time-invariant architectures for any value of Q, thus
enabling a much simpler and cheaper implementation of
FBMC user and network terminals. Addressing the extra
complexity entailed by rational values of Q, which are usu-
ally avoided in practice, is one of the main contributions
of this paper.

4.1 Efficient transmitter architectures for integer values
of Q

First of all, we introduce the transmitter architectures
obtained for integer values of Q, which are conceptually
simpler in terms of implementation. The advantages of
polyphase structures become apparent in this case since
it is possible to obtain a polyphase network of order
Py (ie., the very same number of transmitted subcarri-
ers) that minimizes the required amount of hardware.
For an arbitrary quadruple of design parameters, we can
express the reference transmission signal model (2) as
follows:

oo N-1

wlml= 3" 3" sull] glm —1QP] &R

|=—00 n=0

(10)

At this point, it can be observed in (10) that a P-
point IDFT operation over the source symbols appears
naturally. We are assuming here that typically PN and
we proceed to arrange the source symbols in an (N x
1) vector: s[/] = [so[l],sl[l],...,stl[l]]T, where the
superscript | denotes the transpose operator. Likewise,
we define the following notation for the IDFT opera-

) . . ) . _ 27
which can be easily accommodated as long as Q is an tion: Sf:;od(m,Pt)[l] = IDFT,,p,(s[{]) = Zznvzolsn[l]e/ TP
NXPt PtXBt BtXBL thl
) > o
So[l] —
> > > &l
—> —_
Sl[l] IDFT E
. ) . . | »
. - | MATCHING | « |POLYPHASE | * | 2| _ z[m
sy_1[l] NETWORK NETWORK o [ ]
_ —> . ~ 4
<
. 2
. - | <
L] L] m
L 5 >
Figure 7 General architecture for a flexible FBMC transmitter.




Gutiérrez et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:103

http://asp.eurasipjournals.com/content/2014/1/103

which leads to the following compact expression of the
signal model:

Z

The above model, which extensively relies on the use
of IDFT, was originally introduced by [51] and has
been considered one of the catalysts in the success and
widespread deployment of MC systems due to its effi-
cient implementation through FFT processors. In that
sense, one of the interesting features of polyphase struc-
tures is the exploitation of the cyclic nature of the
IDFT/DFT exponentials, which leads us to introduce the
modulo operation in the generated signal sample index
in (11). Since any integer m can always be expressed
mod(m, Py) + I_%tjpt, we can rewrite (11) as

s

mod(m1,Py) (1 1)

x[m] = [l1g[m—1QP].

as m =
follows:

x[m] Z Smod(m Pt) |:m0d(m, Py)

SERH!

Given that mod(m, P;) takes the values {0, 1, ..., Py — 1},
we can consider that the signal in (12) implies a total of
P different discrete-time convolutions, one associated to
each value of mod(m, Pr). In terms of a polyphase decom-
position, each of those convolutions will be associated to
a different subfilter and consequently, to a different row in
the polyphase network of Figure 7. Hence, we can regard
the term mod(m1, Py) as a branch (or row) index that iden-
tifies the specific subfilter involved in the generation of the
mth sample. Moreover, since each subfilter operates at a
sampling rate P; times lower than the serial signal x[ m],
we ought to apply a subfilter decimation by a factor of P;
over the prototype filter g[ m]. We will henceforth make

(12)
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use of the notation introduced in (5) to rewrite (12) so that
it explicitly reflects the mentioned manipulations:

o0
P P
Z Sinod(mpo L gmod(mpt)u J ZQ]

I=—00

= TQUIDFT (1) (5K} Loy = 1, (13)

x[m] =

where gm o d( mp L k] denotes the polyphase subfilter result-
ing from a P-order decimation of the prototype filter
g[ m] with an offset of mod(m, P;) samples:

(Py)

Emod(m,P; )[ k] = g[ kP; + mod(m, Py)] .

(14)

The advantage of (13) is that it clearly outlines the
series of operations that needs to be carried out for gen-
erating x[ m] in an efficient manner. In particular, x[ m]
is the result of the convolutions of each IDFT output
an)to dmPy) [ k] (upsampled by Q) with a downsampled ver-

sion of the prototype filter gmod(m P)[k] followed by an
upsampling operation by P;. Therefore, there is a corre-
spondence among the subfilters indexes defined in (14),
the sample index of x[m], and the phase index on the
IDFT output, thus leading to a rather intuitive architec-
ture as depicted in Figure 8.

Note that the case of minimum frequency separation
(Q = 1) leads to the simplest possible polyphase architec-
ture, where no upsampling operation would be required
prior to the subfiltering operations. This example might
correspond to the case of an OFDM modulation where no
cyclic prefix has been added.

4.2 Efficient transmitter architectures for non-integer
values of Q

We now move one step further by considering the more

general case of any rational value of Q (i.e., when the sub-

carrier period and the MC symbol period do not share

any common link). In that case, it follows from (13) that

N x Pt P x Py Pt x 1
G ==~ B -
soll So 1] e ! | z[m]
- UM ropy ST SRl jopy
| . I Z—l .
. | |
s1[l] STl i i -
— P, | . |
Q1 i gg )[m] i!PtT |
IDFT ! i i
! i i
! i |
! ! =1
SNflm 55'71[1] ! P il i
— —— Q4w A mlfHP T
| — || o—__ j
P/S
Figure 8 General architecture for a flexible FBMC transmitter with an integer normalized frequency spacing factor Q.
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rational upsampling operations would be required prior
to the subfilter convolution, thus complicating the design
of time-invariant structures. The main implementation
obstacle here is set by the rate imbalance between the
symbol rate and the polyphase network output rate, which
is given by the order of the polyphase network. In partic-
ular, a P"-order polyphase transmitter network generates
blocks of Py samples at its output (one for each subfilter).
However, the number of samples per symbol generated
should be Ny in order to meet the desired output rate
of the digital communication signal being transmitted. In
other words, if Q is not an integer, the symbol period
in samples, Ngs, does not account for an integer num-
ber of periods of the fundamental subcarrier frequency,
thus making it hard to exploit the cyclic nature of the
IDFT. Furthermore, since the duration of the symbol in
samples is not a multiple of the order of the polyphase
network, it would be necessary to apply a different set of
filter coefficients to every symbol delivered by the IDFT
block.

For these reasons, the implementation issues of this
type of MC signals have been ignored in the litera-
ture or solved by means of time-variant schemes [33,34].
In spite of these obstacles, we show in this work that
if the polyphase and matching networks are properly
designed, it is certainly possible to obtain a time-invariant
structure for any rational value of Q. This clearly pro-
vides significant advantages, enabling complete free-
dom in the choice of the MC signal parameters that
best suit the requirements of the application under
consideration.

Regarding the architectures to be presented next, it
should be noted that they are essentially equivalent in
the extent that they generate the same signal, while
merely differing in the layout of the polyphase and
matching networks. The flexibility of the framework pro-
vided in this work is clearly highlighted by this fact,
since any of these schemes can be used indistinctly
depending on the specific constraints of the applica-
tion of interest. Hereunder we present a derivation of
such structures for the proposed polyphase orders By =
{P¢, Ngs, lem(Pt, Ngs)}. This set of values of By will let us
show the necessary steps required to derive any other
architecture.

4.2.1 Order of the polyphase network By = Py

For the sake of clarity, let us express the index of the con-
volution in (2) as a function of two subindexes: [ = [,P; +
I, being [, = I_I%J and /, = mod(/, P). This decomposi-
tion is motivated by the order of the polyphase network
P; and allows us to introduce the term mod(/, P;), which
will serve as a row (or branch) index in the resulting
polyphase network. Besides, there is a multiple-of-P; term
that acts as a sample index of the convolution operation

Page 10 of 26

for each subfilter. Then, we can rewrite (2) according to
the notation introduced in (11) as follows:

Pi—1 o0
Alml=" 3" St ampolbPe+ L1 glm — [N
L,=0 ly=—00
- leths] .
(15)

Additionally, we can further decompose the term m —
[+Nss according to the dual indexing that we will be per-
manently seeking throughout this paper, which consists in
expressing the sample index as the sum of a multiple-of-B;
term plus a modulus-of-B; residual. That leads us to

m — [N
P

Therefore, we can rewrite x[ m] applying the notation in
(13) to reflect the P,fh -order subfilter decimation:

m—I,Ngs = L JPt—f—mod(m—l,Nss,Pt). (16)

Pi—1 o0
B p @
x[m] = 2 E Sinodm,po L 6Pt + 1] &odom—1.N.P)
1,=0 ly=—c0

m — [N,
[ ]

P—1

P P
= Z INSS {Dpt {Srr:Od(Wl,Pt) [ k + lr] }} * gf(nct)‘)j(m_erSSth) [ k]
1,=0

X

e 2|
(17)

A careful analysis of (17) reveals some similarities with
the transmitted signal expression in the case of integer
Q shown in (13). In this case though, there appears an
additional delay term of [,Nss samples that affects each
subfilter output as well as the subfilter indexes. There-
fore, it is not possible to generate the transmit signal x[ m]
with a single PEh—order polyphase structure like the one
shown in Figure 8. However, it is actually possible to con-
sider separately the architecture defined by each value of
I, and deal with them as different parts of a bigger struc-
ture. These parts are actually polyphase networks of order
P; themselves that we will refer to as subnetworks. There-
fore, the resulting scheme employs a total of P; polyphase
subnetworks of order P.

Moreover, the IDFT output must be downsampled by
P¢ and it is also subject to a variable sampling offset of
I, samples that is constant for each subnetwork. There-
fore, the samples delivered by the IDFT will be processed
separately by different subnetworks within the entire
polyphase network. This fact is reflected in the architec-
ture through what we call a block-wise serial-to-parallel
converter of order P;. This module vertically concatenates
Py blocks of P; samples as they are sequentially output by
the IDFT. In addition, it should be noticed that in (17),
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the index of the polyphase subfilters mod(m — [,Ngs, Pr)
and the index of the IDFT output mod(m, P;) will not
coincide, as opposed to what happened in the case of
integer Q. Then, in order to achieve a proper match-
ing between the IDFT output and the polyphase network
rows, it is necessary to compensate the unbalance of /, N
samples between the subscript terms in (17). One possi-
ble way to do it is through the introduction of a phase
rotation over the input source symbols s,[]. Such a rota-
tion will take place at the input of the IDFT and will
produce a delay of the same amount of samples at its out-
put. With this slight modification and by virtue of the
Fourier transform properties, we are able to compensate
the mentioned unbalance and we also make sure we are

not altering the generated signal. Hence, let us define
P IrNss .
Sulll =s,[1] SR = sl 1] €277 Q 5o that we obtain
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Finally, we are left with the following expression for the
transmit signal:

Pi—1
x[m] = Z In,, {Dp, {IDET, N0, GLA + 1))}
,=0

(Py)
* gmod(mferss,Pt) [ k]

S

(21)

The final transmitter architecture shown in Figure 9 fol-
lows directly from (21). It is worth to observe that the
phase rotation over the source symbols remains constant
within each subnetwork because it is a function of the
subnetwork index /,. Besides, according to the properties
of the convolution, the delay of /Ny samples in (21) has

N-1
IDFT,,_;n,.p GL1]) = Z 5,01] eiznnm*,l,'tN“ (18) been readily moved to the subfilter outputs with no loss of
"m0 generality.
N-1 I 4.2.2 Order of the polyphase network B; = N
=D sillle te © (19 The approach adopted in the previous case would lead to
=0 time-variant architectures for the present case of By =
= IDFT,,p,(s[1]). (20)  Ng. Since time-varying schemes is indeed what we intend
Block-wise S/P Polyphase Network of
of order Pt order Pt
N x P, r
S0 [l] — |
1 !
; !
i
sill] —2~  IDFT
I 27liQ
SN—1 [l] —@—

eI 2TU(N-1)Q

Figure 9 P{h-order polyphase architecture for FBMC transmitters with rational normalized frequency separation factor Q.

Polyphase Network of
order Pt
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to avoid in this work, a slightly different approach is
required herein. To do so, let us decompose the output
index of the convolution m into both a multiple-of-Ng
term (m;) and a modulus-of-Ng residual (m1,) according
to the desired polyphase order. Therefore,

m
m = mpNgs + m, = \‘N

J Ngs + mod(m, Ng).  (22)
ss
This decomposition by itself does not lead to the deriva-
tion of an efficient architecture, so we need to apply a
further decomposition of the index m,, as follows:
mp = mp Pro + mpp, (23)
where mj,1= LZ’T?,J and my = mod(my, Py,). We have also
assumed that lem (P, Ngg)= PoNgs, being Py, an integer

number as well. Replacing (22) and (23) in (11) we are left
with:

x[m] = x[mp1, mpy, my] (24)
%)
_ P, (Nss)
- SH:Od(meNss‘f’mryPt) [ ] ngd(mr Nss) [ mblpto
I=—00
+myy — 1. (25)

Note that we have applied a subfilter decimation by N
in order to obtain an Nth-order polyphase structure.

The associated subfilters are defined as g(]\([)s;)(mr Neo)

[ k] = g[ kNss + mod(m1;,, Ngs)].

It is important to highlight that the order of the
polyphase network N is higher than the duration (in
samples) of the subcarrier fundamental period P;. That
means that the number of polyphase rows is larger than
the length of the IDFT output in the architecture. This
asymmetry can be easily compensated by extending the
length of the IDFT output to match the order of the
polyphase network. In particular, we propose a solution
based on the addition of the initial part of the symbol at
the end of the first P; samples, creating a cyclic exten-
sion of the IDFT output. These Ngs — P; extra samples
can be seen as a cyclic prefix appended to the actual sym-
bol that otherwise would have a duration of P; samples
(e.g., as if no redundancy was introduced). Indeed, there
is a degree of freedom from a design point of view to fill
up these samples at the last part of the symbol. Note that
this clarification was not necessary in the previous case
(subsection 4.2.1), since the length of the IDFT output and
the order of the polyphase network coincided. Finally, it
has to be considered that the values adopted here for the
samples in the final part of the symbol are not unique.
Other solutions like zero-padding or pilot signaling would
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be also valid and would not have any meaningful impact
on the obtained architectures.

Additionally, due to the imbalance between the order of
the polyphase network and the size of the IDFT, the phase
continuity over time of the different subcarriers in (2) can-
not be ensured with a single N{"-order structure. This fact
is highlighted in (25) where the subscripts of the IDFT
output, mod(mpyNss + my, Pr), and the prototype filter,
mod(m,, Ng), do not match. Therefore, it is convenient
to resort once more to a phase rotation over the input
source symbols to ensure the signal phase continuity at
every symbol transition. Let us then define the following
equivalent IDFT output:

Sl]rz:od(mr—meNss,Pt)[l] = IDFTmr*mszsstt(g[l]) (26)
N-1 Ns
= S5 PTTRT @)
n=0
N-1 b2 ss . my—mpo Nss
[l] e/Zﬂn e/Zﬁn P,
n=0
= IDFT,,,p (s[]), (28)

~ . .21”1"1;,271\755
where 3,[1] = s,[]] ¢ Py
represents a phase-rotated version of the source symbols.
Using the results of (28) in (25) and expressing x[ m] as a
function of the output sample index m, we obtain

=su[{] /2 nmod(m/Nss],Po)Q

o0
_ <P (Nss)
x[m] = Z Smtod(mod(m,Nss),Pt) [ &mod(m,Nss)
l=—0

L))

(29)

Now the indexes of the IDFT output and the subfil-
ter coincide, although the range of variation of the IDFT
indexes is restricted to P, which is precisely the moti-
vation for the cyclic extension. The expression of the
transmitted signal is

xlm] =1p, {me {IDFTmod<m,NSS> P BLKD) * gty

[romea([5 ) 7))

Finally, the resulting architecture can be built upon Py,
polyphase subnetworks of order N as it is illustrated in
Figure 10.

=]

(30)
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Figure 10 Ng's‘-order polyphase architecture for FBMC transmitters with rational normalized frequency separation factor Q.
4.2.3 Order of the polyphase network By = lcm(Py, Nss) numbers. Given that the order of the polyphase network
Let us rewrite the polyphase order B: as P,,Nss = isamultiple of the subcarrier period in samples P, we can

NgsoPr = lem(Py, Ngs), where both Py, and N, are integer  proceed in this case as we did in subsection 4.2.1. Hence,
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we can conveniently decompose the convolution index as
| = [P+, with [,= LP—iOJ and /,= mod(/, Py,). Replacing
(11) we obtain

Pyo—1 o

dlml=" 3" S iompollPeo + 1 81m — [N

L,=0 I,=—00

- thtONss] .

(31)

As it was done in (16), we work with a decomposition

of the term m — [Ny according to the desired polyphase
structure order Py, Ngs:

m — 1N

m_erssz\‘ PN,
tod\ss

J PtoNss
(32)

+ mod(m — erss; PtoNSS)-

Then replacing (32) in (31) and applying a PoN'-order
subfilter decimation, we obtain:

Pypo—1 o
_ P, (Icm)
Alml=) " D SpoaempolbPro + 1) Emodtm N PN
1,=0 lb:—OO

IR==inll
T _lb ,
PtoNss

where gr(rle)?gmr,PmNss) [ k] = gl kPioNss + mod(m1;, PeoNss)].
We can see that there appears again a shift of [.Nys samples
in (33) at the subscripts of the prototype filter with respect
to the IDFT output subscript. Following an analogous
reasoning to subsection 4.2.1), we can write

(33)

Pp—1 o0
P,
x[m] = Z Z Smod(m—1,Nog,P L bPro + lr] %
=0 l=—00
% (Icm) LZ’JVSS —1
ngd(m_erSs:PtONSS) PtONSS b
Pyp—1
= " Dp (IDFT,yng p GLE+ LD (34)
=0
(Icm)
X Emod(m—1;Nis ProNoo) K] k= s |

Note that we have applied the same phase rotation over
the source symbols as in (18). Besides, the block-wise
serial-to-parallel converter now concatenates Py, blocks of
size lem (P, Ns) as it is shown in the resulting transmitter
architecture depicted in Figure 11.

Analogously to the previous cases, the final architec-
ture is made up of several polyphase subnetworks of
order lem(Py, Ngs), where the subindex I, can be seen as
a subnetwork index for a total of Py, identical polyphase
structures of order Py,Ngs. Note that although the ranges
of variation of the subscripts in (34) do not coincide,
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the order of the polyphase networks is an integer num-
ber of fundamental carrier cycles. Hence, there is no
need to include further phase corrections inside each
network block. In other words, intra-block phase conti-
nuity is guaranteed by the design of the polyphase layout,
whereas inter-block phase continuity is easily achieved
by the above-mentioned phase rotation over the source
symbols.

To conclude this section, it is important to highlight
that we have presented a set of time-invariant FBMC
transmitter architectures together with the necessary
steps for their derivation starting from the unified sig-
nal model introduced in Section 2. These architectures
are computationally efficient since they are based on
polyphase decompositions of the prototype filter. Addi-
tionally, they allow us to implement FBMC transmitters
for any configuration of signal parameters (i.e., for arbi-
trary subcarrier period P, symbol period N, pulse shape
length L,, and normalized subcarrier spacing Q) just
by using simple digital signal processing blocks such as
up/down-sampling converters, filters, and sample delays.
As already mentioned, no complicated circular shifts,
temporary buffers, or memory swapping operations are
required, which means a considerable simplification of
those FBMC implementations where Q is rational, which
have been commonly ignored by the research community.

5 Efficient FBMC receiver architectures

In this section, we will make use of an analogous method-
ology to the one presented in Section 4 but placing the
emphasis on the receiver side. Thus, our objective is to
derive a general receiver architecture for any quadruple
of FBMC signal parameters and the polyphase network
orders introduced in (9). Similarly to what happened for
the transmitter side, rational values of the normalized fre-
quency separation factor Q also lead to non-integer down-
sampling operations, thus complicating the derivation of
time-invariant architectures. Nevertheless, we will show
that a parallel reasoning to the one in Section 4 enables
polyphase layouts based upon time-invariant schemes
even for non-integer values of Q.

Another aspect to be accounted for is the so-called
reconstruction delay, which ensures the perfect recon-
struction of the transmitted symbols at the receiver end
[52]. This is a delay that needs to be incorporated as part
of the transmission channel and whose motivation is to
reflect the causality of the system. In particular, let us
assume that the prototype filter length can be expressed as

Ly =aB:— B, (35)

where both « and B are integer numbers and B; is the
order of the receiver polyphase layout. Then, it can be
proven that the term g turns into a delay that affects the
received signal x[ m] while « becomes a sampling delay
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Figure 11 lcm (P, Nss)™-order polyphase architecture for FBMC transmitters with rational normalized frequency separation factor Q.

at the reconstructed source symbol sequences $,[[], as  to integer values of Q so that the reconstructed symbols
indicated in Figure 12. can be expressed as

5.1 Efficient receiver architectures for integer values of Q o
Let us start from the reference reception signal model for 5,00 = Z x[ m] e /2T 2[IQP, — m]. (36)
a FBMC transmultiplexer introduced in (3) but restricted

m=—00
1x B, B, x B, B, x P, P.x N
™ ™ | —> 50 [l - OZ]
g . - L 5[0 —q
3
é . . . DFT N
:E[m o ] & | - |POLYPHASE| » | MATCHING | . .
o NETWORK NETWORK o
&| > > . SN—-1 [l - a]
|- .
w| . .
tn [ ] L]
— ]
Figure 12 General architecture for a flexible FBMC receiver where the concept of reconstruction delay is illustrated.
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As it has been previously done, it is convenient to decom-
pose the convolution index / into an integer term, multiple
of the order of the polyphase network, and a modulus
term of the same order. In this particular case, it is pos-
sible to obtain a receiver based on the simplest possible
polyphase structure of order P,. We can write m = m,P,+
m, = L%JPr + mod(m, P;) and apply a Pﬁh—order subfilter
decimation in (36). Then, we obtain

P—1 o0

y —jormy, Py

Salll= ) e ST Imy] g0 [1Q—my),
my=0 mp=—00

37)

where g(_P,’n)r[k] = g(Pr)Od(m'pr)[k] = g[kP; — mod(m, Py)]

and %y, [ mp] = x[ mpP; + m,]. Now, let us define

Y, L K] = X, [ K] *gip,;fr[/(] )

Then, we can store the samples y,,, [ k] in blocks of size P,
as follows:

(38)

YLK = [yol k], y1lKD, ..., yp—1[K]1T, (39)
so that (37) can be simplified to
$u[1]= DFTyp.(Dolyll ), (40)

where the operator DFT, p {-} denotes the nth output of
the P;-point DFT of a given sequence and the operator
Dof-} performs a downsampling operation by a factor Q
over each component of the input vector. The resulting
receiver architecture is depicted in Figure 13. Intuitively,
it is easy to see that the particular case where Q = 1 cor-
responds to an OFDM receiver with an arbitrary shaping
pulse and no cyclic prefix addition. The only difference
between both architectures would be the downsampling
operation following the subfiltering of the received sig-
nal samples, which is not needed in OFDM. It should be
noticed that filtering operations are carried out at a rate
which is P, times lower than the rate of the input signal,
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thus decreasing the computational cost of the receiver. As
expected, a time-invariant architecture has been obtained
with a minimum amount of hardware.

It is worthwhile mentioning that although the schemes
obtained in transmission and reception are symmetrical,
the methodology followed for their derivation has been
slightly different. For example, the DFT operation in the
reception schemes cannot be explicitly inferred from the
signal model in (3) because the exponential term cannot
be decoupled from the convolution operation as it was
done in (11). Additionally, the final receiver architectures
are obtained through the decomposition of the index of
the convolution operation rather than the index of the
output samples. These aspects add more complexity to
the receiver manipulations with respect to Section 4 even
though the final result may look similar.

5.2 Efficient receiver architectures for non-integer values
of Q

As in transmission, rate imbalance issues do appear
because of the mismatch between the symbol rate and
the polyphase network order. Therefore, for the set
of polyphase order values under consideration, B, =
{Py, Ngs, lcm(Py, Ngs) }, some modifications have to be per-
formed over the standard polyphase structure in order to
avoid a time-variant filtering.

5.2.1 Order of the polyphase network B, = P,

We apply the same convolution index decomposition over
the reference signal in (3) as in the case of integer Q.
Hence, assuming that m = mpP, + m, = L%JPr +
mod(m, P;), we are left with

P—1 00
S.00=)" ™ E Y x[mypP; + my]glINgs

my=0 my=—00
— (mpPy + m;)].
(41)

P.xN

yifm]

QL

(Pr)

yp,—1[m]

Q1

DFT

§N71[l — a]

T 97(}:,,1)["”’]

Figure 13 General architecture for a flexible FBMC receiver with an integer normalized frequency separation factor Q.
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Now, we can apply an identical index decomposition over
the output sample index so that [ = [P, + [, = LP%JPr +

mod(/, P;). Replacing in (41) and applying a Pﬁh—order
subfilter decimation we get:

gn[l] = En[lb: lr] is‘n[lbpr +lr]

Pr—1 o0
= Z e ]ZJTVlPr Z x[ mpPr + my + [N .
my=0 mp=—00

(42)

Note that we have conveniently moved the delay term
[N towards the input signal x[m] without any loss of
generality. So in order to assess the impact of this delay
term on the architecture, we further decompose the term
m, + 1N as follows: L%JH + mod(m, + [,Ngs, P),
yielding '

$ul 0] = 30l by, )]
Pi—1

—i2 my
= Z e /P Z Xmod(my+1yNss,Pr)
my=0 mp=—00
m, + [N,
« [mb+ Lrpr%ﬂ &%) [N — my) .
r

(43)

It follows from (43) that the delay term /Ny has a
twofold impact: a variation of the row index (subscript)
of the input signal x[ ] on the one hand and an inte-
ger number of samples shift over its sample index on the
other hand. However, these variations lead to a mismatch
between the subscripts of the signals involved in the con-
volution in (43), namely, downsampled versions of x[ m]
and g[ m] and the phase index of the DFT exponentials.
Again, we will make use of the phase rotation concept
introduced in (18) to balance out this mismatch. To that
end, we rewrite (43) as

IrNss

Sull] = Sully, L] = &2

Aol TUrN;
P m,
Z 67]27.”4 r P; ss )
my=0
00

my + [N
Z med(mr+erssvpr) myp + T
r

mp=—00
x g% [1yNgs — mp) .
(44)

It is clear from (44) that the row delay of /,Nss sam-
ples is compensated by the phase rotation applied over the
received source symbols (i.e., at the output of the DFT).
Hence, we can redefine the vector y[ k] in (39) to store
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blocks of P, samples resulting from the outputs of the
polyphase subfiltering:

Ymod(m,+1,Ngs,Pr) [ k’ lr] = Xmod(#m,+1,Ngs,Py)
N,
[k+{mr+ . ssﬂ &P 1A,
Py r
(45)
where
Yk B = Dol kb1, mlk b, o e[k 11T
(46)

Since [, = {0, ..., P, — 1}, we can conclude that a total
of P, versions of the received signal, each delayed by /N,
will be processed separately giving rise to P, polyphase
subnetworks of a basic PM-order polyphase structure.
That leads us to define a block-wise parallel-to-serial con-
verter of order P, that serially concatenates a total of P,
blocks of size P;. Therefore, replacing (45) in (44), we are
left with the following:

$ullpy ] = &% DFT,,p, (Dy,

==

(47)

As expected, the receiver architecture shown in
Figure 14 constitutes the dual scheme to the transmission
case in Figure 9.

5.2.2 Order of the polyphase network B,y

Again, we resort to a decomposition of the convolution
index according to B;. Thus, we can express m as m =
mpNgs + m,, where my= LNﬂSSJ and m,= mod(m, Ng).
However, such a decomposition complicates substantially
the derivation of a receiver architecture. The approach
followed so far would lead to the following equation:

o0

SS 1 m ss
Sulll= Z PRl 3 Z Ko, [mp] € et
my=0 mp=—00
x g1 — my), (48)
where gk = g\ 1K= g[kNi — mod(m,
Nss)] and x,,, [ mp] = x[ mpNgs + m,]. It can be observed in
/27'[r1mszS

(48) that there appears an exponential term, e
that modulates the input signal and also depends on the
subcarrier index #. Such a modulation term makes it diffi-
cult to turn the signal model into an efficient architecture.

Nonetheless, keeping in mind that lem(Py,Ng) =
NssPro = Ns5oPr (Where both Py, and N, are integers), we
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Figure 14 General PtM-order polyphase architecture for a FBMC with a non-integer normalized frequency separation factor Q.

will further decompose the convolution index into m;, =
My Pro + myy. Being my; = L%J and mpy= mod(mp, Pro).
Hence, we are left with three different convolution
subindexes:

m = mp1 ProNss + mppNss + my. (49)

Through this additional decomposition, we can circum-
vent the problem induced by the modulating term in (48)
and obtain an expression of the reconstructed symbol
sequence that allows a direct transition to the final archi-

tecture. As a result of introducing (49) in (3) we are left
with:

Nss—1 Pro—1 (mszss+mr)
sl =3 ) e (50)
my=0 mp;=0
00
Z x[ mp1ProNgs + mpaNgs + m;] g[ INgg
mp]=—00

—(mp1ProNgs + mpyNgs + my)] .

At this point, it is possible to apply now the N'-order
subfilter decimation that we have been pursuing:

Pm_l 2Nss
gn[ l] — Z —j2mn Z e—]2nnp (51)
mpy=0 my=0
[}
Z Xymyp+mpyNgs [ mblpro]
mp=—00

x N (1 — iy Pro — mps]

By means of the triple index decomposition in (49), the
exponential term in (48) has turned into a mere phase
rotation to be applied after the DFT operation in (51). The
subfilter convolution output is now defined as:

Yy L m12] = I {Dp Ny {%m,+mipNgs LK1 1)

(Nss)

kg [k —mps], (52)
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being

y[krme]i[yO[kﬁmlﬂ]ryl[k:me]: cee (53)

INgo—1Lk, mpa] 17
Again, we are dealing with polyphase networks that are
replicas of a basic polyphase structure of order Ny, where

my; can be interpreted as a subnetwork index. This takes
us to the following compact expression:

Pro—1
" DFTup, (1L mpal) e 2"

Mpy= =0

S0 = (54)

The resulting architecture is depicted in Figure 15. As in
the previous case, the obtained architecture corresponds
to the dual scheme to the transmission architecture in
Figure 10.

5.2.3 Order of the polyphase network B, = Icm(Py, Nss)
In this case, we apply the index decomposition m=| PN
ProNgs + mod(m, ProNss) = mpProNgs + my. Additionally,
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we are going to decompose the output sample index as
follows: [ = [P,y + 1y, being l,= Lpffo ] and /,= mod(/, Pyo).
Then, replacing in (41) we obtain:

gn[ l] = grl[ lb’ lr] = En[lbpro + lr] (55)
ProNgs—1 ] m 00
= Z e e Z x[ mpProNss + m,
my=0 mp=—00
+ [Ngs] gl lpProNss — mpProNss — my] .

Once again, we choose to split up the delay term into
my + LNy = Lmr+’rNss 1P, + mod(m, + [Ny, P;) to
reflect that it affects not only the convolution index (i.e.,
a delay of a certain number of samples) but also that it
entails a shift of a certain amount of rows. As a con-
sequence of that, it is necessary to compensate such
a delay with a phase rotation of the received symbols.

Polyphase Network of order Nss

Polyphase
Network of order

P.xN PN : N
zfm—f] | --SeRil N 0 ]
; PooNos LEH Pt : 6§+ ] P L Soll—a
= I : !
i voNaw LA ProT A0 H : SL‘[Z _ (Y}
i . | : I Nos — P — 1 D DFT . ‘
| . | . | :
0 [N NI PO
- ! ProNaw L ProT {05 Im 4 l—«
i i L 1) [ ]
i Do ! |
i S ! o B
i PN L ol =2
L. — | — 1
) PoxN

DFT 4 b

efjl‘lwniQ

E\j Nss
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- S
DFT ?
Polyphase —j2mn(Pro—1)Q
Network of order e
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o

Figure 15 General Nt"-order polyphase architecture for a FBMC with a non-integer normalized frequency separation factor Q.
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Therefore, after an PmNSt;‘-order subfilter decimation we
obtain

B 1-N. PIONSS_l . DN,
$u0] = Sully, 1] = 2 Z o 2mn s
my=0
o
Z ¥mod(m,+1rNss,ProNss) (56)
mp=—00
mr-l—erssﬂ (Iem)
X mb+{ 2™, — my),
|: ProNgs my

. ! I .
being g(_i,,n:) [k]= g(,irqr;ii(m,pm]\[ss) [k]= g[kProNss
mod(m, ProNis)]. The output of the subfilter convolution

is then given by

Ymod(my+1 Nes,Py) LK Ir] = Xmod(m, -+, Nuo, ProNis)

mr+erssJ:|

X | k+| ———| | xg_m [ k],

[ \‘ PyoN5s & m,[ !
(57)

and these samples are arranged in blocks of size Py, Nis:

YLk L= [yolk L1 il L), o e Lk BT
(58)

Thus, we can obtain the expression of the received signal:

$all) = $ullp 1] = &> % DET,up, (yL ko by])
(59)

k=zb=LiJ :

The resulting architecture is depicted in Figure 16.

The conclusion of this section is that similarly to
what happened for the transmitter, time-invariant effi-
cient architectures can also be derived for a generic
EBMC receiver with arbitrary signal parameters (i.e.,
either subcarrier period P, symbol period N, pulse shape
length L,, and normalized subcarrier spacing Q). In all
cases, the resulting architectures are just based on sim-
ple processing blocks and can be readily implemented in
practice. It must be remarked, though, that depending
on the selected transmit and receive filters, the recon-
structed symbols may differ from the transmitted ones.
This typically occurs when the composite end-to-end
pulse shape response does not ensure proper time and
frequency orthogonality, thus leading to inter-symbol and
inter-carrier interference. This problem, which is out of
the scope of the present work, requires an additional
equalization stage in order to eliminate these intrinsic
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interferences affecting the recovered symbols $,[/]. The
interested reader is referred to the works in [14,40] and the
references therein, where a similar equalization problem
has been addressed.

6 Complexity analysis

In order to perform a comparative analysis of the effi-
ciency of each architecture with respect to the conven-
tional transmultiplexer implementation, we have studied
the computational complexity of each scheme. Since all
the architectures presented in this work are equivalent
from a functional point of view, the computational com-
plexity becomes the main selection criteria for an actual
implementation. Following the example of other works
[53], we have taken the number of complex multipli-
cations per multi-carrier symbol, Ncy, as the primary
complexity performance metric.

6.1 Complexity analysis of the conventional
transmultiplexer

A closed-form expression of the computational complex-
ity for the classical filter bank transmitter and receiver
can be directly inferred by visual inspection of Figure 1.
In particular, the Ncy executed in the filtering process is
given by the length of the shortest sequence involved in
the convolution. We will assume that the input sequence
is very long as compared to the length of the prototype fil-
ter g[ m], as it happens for instance in data broadcasting
systems. Therefore, we can state that the number of coef-
ficients of g[ m] determines the number of multiplications
performed in each filtering operation. It is worth mention-
ing that following the reasoning in [54], we take the MC
symbol time as our unit time reference for both transmis-
sion and reception. Furthermore, we should keep in mind
that the up/down-sampling operations in Figure 1 would
act as scaling factors over Ncy only if we considered the
sampling interval of the bandpass transmit signal x[ 7] as
our reference unit time instead. Hence, we can conclude
that for a generic FBMC transmultiplexer, Ncy, is given

t Lg
Niy =NNg (| 5] +1 (60)
NSS
and
NEM = N (Lg + Nss), (61)

where L, is the length in samples of the prototype filter
(i.e., the shaping pulse g[ m]). N&M and N, are the num-
bers of complex multiplications (CMs) per symbol time
carried out by the transmitter and receiver, respectively.
Note that in the case of N{.,, the number of complex mul-
tiplications involved in the convolution with the prototype
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Figure 16 General Icm(P;, Nqs)th-order polyphase architecture for a FBMC with a non-integer normalized frequency separation factor Q.

filter becomes []%Sl rather than Ly, where the operator [x]
denotes the smallest integer greater or equal than x. The
reason for this is the upsampling operation by Ngs before
the filter that introduces Ngs — 1 zero-valued samples for
each sample of s,[ []. Similarly, the downsampling opera-
tion by N in the case of N, contributes to the second
term in (61). For each subcarrier, it requires Ngs samples
of the received signal x[ m] to reconstruct a multi-carrier
symbol s,[/]. That means that between two consecutive
samples of s,[[], there are N fresh samples of x[ m] that
have to be multiplied by the exponential term preceding
the filter.

6.2 Complexity analysis of the efficient architectures for
integer values of Q

The main difference between these architectures and the
transmultiplexer is the introduction of the FFT blocks.
For the analysis in this section, we have assumed that
the number of points of the FFTs is always a power of
2. According to that assumption, we consider a Cooley-
Tukey [55] implementation of the IDFT/DFT blocks for
the architectures presented in previous sections. Assum-
ing the worst case scenario, which implies using P out of P
available subcarriers, a total of P-log,P complex multipli-

cations are required for each FFT module. Thus, we can
obtain from Figures 8 and 13 the following expressions:

L,/P,
Ny = Piog, Py + QP ’T gé ﬂ—‘ (62)
and
T Lg
Ny =DPr o + Plog, ;. (63)
r

Here the length of the subfilters is given by [%]. The
architecture in Figure 8 reveals that there are mainly two

contributions to N§,,: the number of CMs performed by
the IDFT (Pilog,P;) and the number of CMs performed

due to the convolutions with the subfilters (P; ’7%-‘),

which is divided by Q due to the upsampling operation.
However, this architecture generates blocks of P; samples,
so in order to generate a multi-carrier symbol, it is nec-
essary to carry out the convolution operation Q times,
namely, multiplying the convolution term by a factor Q,
giving rise to Equation 62. An analogue reasoning has
been followed to obtain the expression for N, in (63).
Unlike the transmission case, the number of CMs exe-
cuted in reception does not depend on factor Q since the
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samples discarded by the downsampling operation do not
contribute to the reconstruction of the signal.

6.3 Complexity analysis of the efficient architectures for
non-integer values of Q

Following the same logic as the previous architectures, we

can conclude that

e For B; = P and B, = P, depicted in Figures 9 and
14, respectively, we have

[Lg/Pt]

Ss

Niy = N + Plog, Py + NP [ -‘ , (64)

and

Niy = ﬁﬂ P; + Plog,P; + N. (65)
r

Each polyphase subnetwork of order P; in
transmission generates blocks of P; samples, but
rather than the number of CMs per block, we are
interested in the number of CMs performed for each
multi-carrier symbol. It can be seen in Figure 9 that
on average, a total of P, subnetworks are involved in
the generation of Py MC symbols. Therefore, the
number of CMs for of each symbol depends on those
performed by each subnetwork in the polyphase
structure.

® For B; = N and By = Ng;, depicted in Figures 10
and 15, respectively, we have

CM to t 24t sS ]\[SS Pto
(66)
and

[Lg/Nssl

ro

—‘ + Prlog, P + N) .
(67)

NEM =Py (Nss ’V

Here, for the calculation of N, and N, we have
taken into account that unlike the previous case, all
polyphase subnetworks are simultaneously involved
in the generation/reconstruction of a single
multi-carrier symbol. That is why N&M is Py, times
the number of CMs performed by each subnetwork.
This means a difference with the rest of the presented
receiver architectures where the different
subnetworks process sequentially blocks of B,
samples that are then delivered to the DFT block.

® For By = lem(Py, Ng) and B, = lem(P;, Ng),
depicted in Figures 11 and 16, respectively, according
to the mentioned criteria, we can state that

L
NEy = N + Plogy Py + PioNss L) g W (68)
to
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and

L
NEM = ProNss ’71) 8

ro

—‘ + Plog,P, + N.  (69)

A comparative analysis of these equivalent schemes has
been performed based on the number of CMs carried
out to generate and reconstruct a paradigmatic exam-
ple of FBMC signal. In particular, we have addressed the
case of an FMT transceiver since it is one of the most
cumbersome FBMC modulations from an implementa-
tion point of view. As to digital broadcasting systems,
FMT can be seen like a sort of frequency division mul-
tiple access (FDMA) technique, which is commonly used
in satellite links [56]. FMT modulations give rise to non-
integer values of the parameter Q which lead to complex
architectures as we have seen before. We assumed a SRRC
shaping pulse with a roll-off factor of p = 1/2, a total of
Ngs = P(1 + p) samples per symbol, an observation inter-
val of 30 symbols, and a discrete time-domain length of
the shaping pulse L, = 10Ngs. The expressions of Ncy in
transmission and reception have slight differences so we
will analyze their complexity separately.

We have calculated the computational complexity of
all the architectures as a function of P, which is the
number of available subcarriers either in transmission or
reception. We have chosen this parameter for our analysis
because it is a magnitude directly related to the number
of active subcarriers N, which usually varies in MC stan-
dards that implement a certain signal model. For the sake
of simplicity, we have assumed that all available subcar-
riers will be used as active subcarriers (P, = N) and a
range of variation for P, from 16 to 128 subcarriers.

The values of Ncy for different transmitter and receiver
architectures are depicted in Figures 17 and 18, respec-
tively. At a first glance, it can be observed that polyphase-
based architectures improve significantly the performance
of the FBMC transmultiplexer in terms of computational
complexity. More specifically, we define the complexity
gain variable that will allow us to estimate the rela-
tive computational efficiency improvement achieved with
each polyphase architecture with respect to the conven-
tional transmultiplexer implementation:

t,r
N ]
- CM
Gt,r - Ntransmux’
CM

(70)

where NZ2P™ s the number of complex multiplications
per symbol time executed by the transmultiplexer and the
subscripts {t,r} denote transmission and reception, respec-
tively. The relative gain obtained by each architecture is
shown in Figures 19 and 20.

Among all presented receiver architectures, the case
B, = P, requires the minimum number of complex mul-
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Figure 17 Number of complex multiplication per unit time for different efficient FBMC transmitter architectures.
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tiplications, as it can be observed in Figure 20. On the
other hand, its reciprocal architecture in transmission
entails the highest computational complexity whereas the
case of By = lcm(P;, Ngs) provides the best performance
among all transmitters. Therefore, although the higher
the order of the polyphase structure, the shorter the
polyphase subfilters, it does not necessarily translates into
a lower number of CMs. This uneven behavior suggests
that an asymmetric layout may be the optimum approach
from a computational efficiency’s point of view. However,

other applications that do not prioritize the computa-
tional speed of the system might be subject to different
selection criteria for the most suitable polyphase layout.
For example, if the goal is to minimize the amount of
memory resources required to process the FBMC signal,
polyphase structures with the shortest subfilters and a
minimum amount of subnetworks should be sought both
in transmission and reception. Hence, although the reduc-
tion of the computational complexity is the most common
architecture selection criterion, other properties of the

T T
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Figure 18 Number of complex multiplication per unit time for different efficient FBMC receiver architectures.
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Figure 19 Complexity gain G; with respect to the transmultiplexer for different FBMC transmitter architectures.

presented layouts could be easily assessed to find the one
that better fits the application at hand.

7 Conclusions

In this paper, we have explored the potential of flexible
FBMC schemes in providing a new design paradigm for
digital communications architectures, as an alternative to
conventional OFDM schemes. We have presented a uni-
fied framework to characterize any possible multi-carrier

modulation, including those relying on band-limited
shaping pulses. We have defined a general signal model
and identified a set of four signal parameters whose val-
ues characterize the transmitted signal. Moreover, we
have clearly exposed the main implementation obstacles
prompted by certain combinations of such parameters,
which have been systematically avoided or only partially
addressed in the literature. Through the extensive use
of the polyphase decomposition of the prototype filter
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and standard multi-rate techniques, we have been able to
derive efficient transmission and reception architectures
starting from the introduced signal model. Our contri-
bution covers the gap existing in the literature between
the signal model definition and the generation of the final
architecture. Besides we also provide time-invariant archi-
tectures for all cases presented, thus avoiding the com-
plexity of time-varying schemes that usually involve the
dynamic operation of memory buffers and circular sam-
ple shifts. Finally, we perform a comparative assessment
of the computational efficiency improvement obtained for
each polyphase-based architecture with respect to con-
ventional FBMC implementations.
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