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Abstract

In this paper, we have considered the utility of multi-normalization and ancillary measures, for the optimal score level
fusion of fingerprint and voice biometrics. An efficient matching score preprocessing technique based on
multi-normalization is employed for improving the performance of the multimodal system, under various noise
conditions. Ancillary measures derived from the feature space and the score space are used in addition to the
matching score vectors, for weighing the modalities, based on their relative degradation. Reliability (dispersion) and
the separability (inter-/intra-class distance and d-prime statistics) measures under various noise conditions are
estimated from the individual modalities, during the training/validation stage. The ‘best integration weights’ are then
computed by algebraically combining these measures using the weighted sum rule. The computed integration
weights are then optimized against the recognition accuracy using techniques such as grid search, genetic algorithm
and particle swarm optimization. The experimental results show that, the proposed biometric solution leads to
considerable improvement in the recognition performance even under low signal-to-noise ratio (SNR) conditions and
reduces the false acceptance rate (FAR) and false rejection rate (FRR), making the system useful for security as well as
forensic applications.

Keywords: Ancillary measures; Dispersion measures; Separability measures; Multi-normalization; Integration weights;
Noise robustness

1 Introduction
The recognition accuracy of a biometric system is highly
sensitive to the quality of the biometric input. The noisy
data can result in a significant reduction in the perfor-
mance of the system. One of the main problems associ-
ated with biometric systems is the undesired variations
in the biometric data. These variations can arise due
to a variety of factors such as sensors used in captur-
ing the biometric data and various non-ideal operating
conditions such as background noise and non-uniform
illumination [1-9]. Multimodal systems are more robust
to environmental and sample quality variations due to
the presence of multiple sources of evidences [10-12].
This is an added advantage of the multibiometric systems.
Compared to the fingerprint systems, voice recognition
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systems are severely degraded by the presence of noise
and intra-class variations. Also, they are strongly affected
by the behavioural and physiological factors. These vari-
ations are often reflected in the matching scores, which
in turn influence the overall efficiency of the biomet-
ric system [13]. All these factors make the reduction
in error rates of the biometric system a challenging
enterprise.
The score outputs of the classifier often show tremen-

dous variations when presented with feature vectors
corrupted by noise. In this scenario, some impostors
will be able to obtain higher scores and the genuines
will obtain lower scores, compared to the clean condi-
tions, thereby increasing the FAR and FRR [11]. Most
matchers have to deal with such situations in real time
in spite of the enhancement algorithms and the fea-
ture sets they use. In order to reduce the classification
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errors, this paper aims at quantifying the amount of
trust that can be given to the individual classifier’s deci-
sion, taking into consideration the effect of environmental
noise conditions and the behaviour of the classifiers on
evaluation data. Here, we present a new combinational
approach for fusing the scores derived from fingerprint
and voice biometric matchers, with multi-normalization
and the weighting measures derived from ancillary infor-
mation. As the matching score values from the fingerprint
and the voice matchers follow nonhomogeneous statisti-
cal distributions, we have employed tanh and min-max
normalization techniques, respectively, for the comple-
mentary modalities [14]. Ancillary information includes
measures indicating the quality of the acquired bio-
metric samples or certain additional information about
the user [11]. Here, the relative quality information
from the individual classifiers are used in the fusion
process.
In multimodal systems, confidence measures [15] are

widely used as integration weights for biometric fusion.
The weight vector represents the weight assigned to
the matching score vectors. In a multibiometric system,
the weight vector represents the relative importance of
the different biometric matchers, provided that the scores
of the matchers have been normalized [6]. The proposed
technique involves emphasizing or de-emphasizing the
matching scores of the individual modalities, depend-
ing on the estimate of their relative degradation. Let
us assume that during a particular access attempt by
the user, the fingerprint image is of poor quality but
the voice samples are sufficiently good. In this case, we
can assign a higher weight to the voice matching result
and a lower weight to the fingerprint matching result.
Even for the same biometric modality, different repre-
sentations and matching algorithms may exhibit different
levels of sensitivity to the quality of the biometric data
[6]. The aim of this fusion technique is to combine the
information from fingerprint and voice classifiers, such
that, the resulting performance is greater than or equal
to the performance of the best individual sources. Any-
thing less than this is termed as ‘catastrophic fusion’
[16], and it is of course undesirable. The inter-/intra-
class separability measures derived from the feature space
and the reliability (dispersion) as well as the d-prime
separability measures from the match score space are
estimated separately for each noise condition in the train-
ing/validation phase using ‘leave-one-out’ cross validation
technique. These measures are then algebraically com-
bined to differentially weigh each subsystems to improve
the performance of fusion. The basic assumption fol-
lowed in this experiment is that, the fingerprint bio-
metric trait has higher permanence than voice; hence,
its performance under various noise conditions is not
explored. As the quality of voice biometric degrades with

noise, its performance under varying noise conditions is
demonstrated by artificially degrading the training/testing
samples with additive white Gaussian noise (AWGN). We
have considered voice samples with noise contents vary-
ing from –10- to 20-dB SNR. We have compared the
performance of the proposed method with the baseline
techniques on score level fusion. The experimental results
show that optimal integration weights estimated using
multi-normalization and ancillary measures improves the
performance of the multibiometric systems even under
low SNR conditions.

1.1 Previous work
Though a lot of work has been done in biometric fusion,
little has been done to improve the efficiency of the mul-
timodal systems under various noise conditions. Lewis
et al. shed some light on audio-visual speech recogni-
tion systems using dispersion measures as the integration
weights [16]. These measures are based upon the values
assigned to the individual classes by the matcher module.
Poh et al. proposed a margin-derived confidence mea-
sure while fusing two system opinions [15]. Jain et al.
examined the effect of different score normalization tech-
niques on the performance of the multimodal biometric
system [13]. Kryszczuk et al. proposed a method of per-
forming multimodal fusion using face and speech data,
combining signal quality measures and reliability esti-
mates [17]. Bendris et al. introduced quality measures
in audio-visual identity verification [18]. Alsaade et al.
showed that score normalization and quality-based fusion
improve the accuracy of multimodal biometrics [2]. Opti-
mal integration weight estimation using least squares
technique was reported in [19]. Reliability-based opti-
mal integration weight estimation for audio-visual deci-
sion fusion was reported in [20]. In our earlier work,
we presented an optimal integration weight estimation
scheme for fingerprint and voice biometric under vari-
ous noise conditions, without using ancillary information
[21]. We also presented a reliability-based optimal inte-
gration weight estimation scheme for the fingerprint and
voice modalities in [22]. In this paper, we propose an
efficient integration weight optimization strategy incor-
porating both the reliability measures from the score
space (dispersion measure) and the separability mea-
sures from the feature space (inter-/intra-class distance)
and score space (d-prime statistic). The optimal integra-
tion weights are estimated using a multi-normalization
framework [14].

1.2 Major contributions
The major contributions of this work are as follows:

1. We have proposed an efficient
multi-normalization-based matching score
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preprocessing technique to transform the scores
obtained from the individual modalities, for reducing
the classification errors (the overlap between the
genuine and the impostor score distribution).

2. Ancillary information such as reliability (from the
score space) and separability (from the feature space
and score space) measures are combined algebraically
to find the ‘best integration weights’, (γ ) for fusion.
Thus we have utilized the rate of relative degradation
of the samples from the feature space and the expert
score space for finding the ‘best integration weights’.

3. The ‘optimal integration weights’ (β) are estimated in
the training/validation stage. Standard optimization
techniques such as grid search and random search
techniques like genetic algorithm and particle swarm
optimization algorithms are used to find the ‘optimal
integration weights’. The ‘optimal integration
weights’ thus obtained in the training stage are used
as the integration weights for fusion in the testing
stage.

To the best of our knowledge, the proposed optimal fusion
strategy using multi-normalization, ancillary measures,
and optimization techniques has not been attempted until
now.

1.3 Organization of the paper
The rest of this paper is structured as follows: First, in
section 2, themodelling and pattern-matching approaches
used with the fingerprint and voice modality are briefly
discussed. The proposed method is discussed in section 3.
The optimal fusion using ancillary measures is detailed in
section 4. Experimental results are described in section 5.
Finally, a brief summary is presented.

2 Individual classifiers
2.1 Fingerprint classifier
We have used the minutiae-based fingerprint matching
technique [23] using ridge counting. Given two sets of
minutiae from the template (T) and the input fingerprint
(I) images, the matching algorithm compares the minutiae
points in the two images and returns a degree of similar-
ity. Each minutiae is represented as a triplet m = {

x, y, θ
}

that indicates the x, y minutiae location coordinates and
the minutiae angle θ . A minutiae mi in T and a minutiae
m′

j in I are considered matching if the spatial distance (sd)
between them is lesser than a given tolerance r0 and the
direction difference (dd) between them is lesser than an
angular tolerance θ0 [24].

sd(m′
j,mi) =

√
(x′

j − xi)2 + (y′
j − yi)2 ≤ r0 (1)

dd(m′
j,mi) = min(|θ ′

j − θi|, 3600 − |θ ′
j − θi|) ≤ θ0 (2)

Elastic matching algorithm is used to perform matching
between the two fingerprints. Match score formula for the
reference and the test print is given by [24]

Matching score = 100Npair
max{M,N} (3)

where Npair is the number of matched minutiae, M is the
number of minutiae in the template set, and N is the
number of minutiae in the test set. Maximum similarity
criterion is used for fingerprint pattern classification.

2.2 Voice classifier
Short-time spectral analysis is used to characterize the
quasi-stationary voice samples. To represent the voice
samples in a parametric way, we have considered the cep-
stral representation as this has been found to be a more
robust and reliable feature set for voice recognition than
other forms of representation [16,20]. The number ofMel-
frequency cepstral coefficients (MFCCs) are taken as 16 in
this study. Gaussian mixture model (GMM) is considered
for representing the acoustic feature vectors. The mean
vectors, covariance, and the mixture weights parametrize
the complete GMM. These parameters are collectively
represented by [25]

λ = {ai,μi,�i} , i = 1.....,M (4)

Thus, by using the MFCC feature vectors and the statisti-
cal GMM, each enrolled speaker is uniquely represented
by a specific λ. In the training stage itself, each enrolled
speaker in g, where g = {

ĝ1, ĝ2, . . . , ĝG
}
, is represented by

a unique GMM (λ). In the testing stage, the features from
the unknown speaker’s utterances are compared with sta-
tistical models of the voices of speakers known to the
system. GMMapproach uses the Bayes classification strat-
egy. According to this rule, the test samples are allocated
to the class ĝk , having the highest posterior probability,
that is [25],

ĝk = arg max
1≤k≤G

p (X|λk) , (5)

where p (X|λk), is the a posteriori probability for a given
observation sequence.

3 Proposedmethod
Various approaches are reported in the literature for
improving the performance of biometric fusion at the
matching score level. Most of them are based on either of
the two following strategies [2,15,17,18,26]:

1. Maximizing the separation between the genuine and
impostor scores.

2. Finding the best weighting factor for fusion.
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In the proposed method, we have combined both the
above-mentioned strategies on a unified framework. As
mentioned earlier, classification errors are often inevitable
in biometric systems [11]. Two types of such errors are
the FAR and the FRR. The decision threshold determines
the FAR and FRR of the system. The FAR is the frac-
tion of impostors exceeding the threshold and FRR is the
fraction of genuine falling below the threshold. Figure 1
shows the genuine and impostor distributions for a typi-
cal biometric matcher. Note that, given two distributions,
the FAR and the FRR cannot be reduced simultaneously
by adjusting the decision threshold (t). However, the clas-
sification errors can be minimized if we minimize the
overlap between the genuine and the impostor score dis-
tributions. Hence, in this paper, an efficient matching
score preprocessing technique using multi-normalization
is proposed to improve the separation between the loca-
tions of the genuine and impostor score distributions.
Here, we also present a technique for incorporating the
quality measures into the matching score fusion scheme.
In this approach, we have combined the ancillary infor-
mation such as reliability (dispersion) and separability
(inter-/intra-class distance ratio and d-prime statistic)
measures in addition to the matching score vectors to find
the ‘optimal integration weight’ for fusion, under vary-
ing noise conditions. The performance of the proposed
method is compared with the baseline techniques on score
level fusion. Experimental studies reveal that the proposed
weighting scheme gives improved recognition accuracy
even under low SNR conditions and reduces the FAR and
FRR considerably compared to the baseline systems.

3.1 Multi-normalization
Score normalization is essentially a transformation tech-
nique that effectively normalizes any unwanted pecu-
liarities involved in the raw similarity computations

Matching score (s)
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Figure 1 The genuine and impostor score distributions for a
typical biometric matcher.

[13]. As the matching score values from the unimodal
matchers follow nonhomogeneous statistical distribu-
tions, we propose different score normalization tech-
niques for the complementary modalities employed
(multi-normalization) [14]. Various score normalization
techniques have been employed in the literature. For a
good normalization scheme, the estimates of the location
and scale parameters of the matching score distribution
must be robust and efficient. Not all the normalization
techniques are equally suited for the different match score
distributions. Here, we use min-max and tanh normal-
ization techniques for the voice and fingerprint similarity
scores to enhance the efficiency and robustness of the sys-
tem, under varying noise conditions. Min-max (MM) [27]
transforms all the raw scores to [0, 1] range while retaining
the original score distribution except for a scaling factor.
Given a set of matching scores, s = {si}, i = 1, 2, . . . , n, the
normalized score s′i is obtained by [13],

s′i = si − min(s)
max(s) − min(s)

, (6)

where max(s) and min(s) are the maximum and the min-
imum values of the score range estimated. Tanh (TH)
normalization is one of the robust and efficient normal-
ization methods. The transformed scores can be obtained
using

s′i = 1
2

[
tanh

(
0.01

(si − μ(s))
σ (s)

)
+ 1

]
, (7)

where μ(s) and σ(s) denote the mean and standard devia-
tion of the genuine scores, respectively. There are several
versions in the literature regarding Equation 7. We have
adopted the version in [13]. Instead of using Hampel
estimators, the mean and the standard deviation are esti-
mated from the matching scores itself. This is because for
a training set not containing artificially introduced out-
liers, the use of Hampel estimators gives a nearly identical
multimodal system performance as when using the real
values of μ(s) and σ(s) [28]. The constant 0.01 in the
expression for tanh normalization determines the spread
of normalized genuine scores.

3.2 Estimation of ancillary measures
In a biometric system, the smaller the overlap between
the genuine and the impostor scores, the better is the
recognition rate. Thus, the class separability and the score
reliability (dispersion) or separability measures give an
indication of the quality of the biometric samples and the
matcher [22]. The global recognition rate of the multi-
biometric system can be improved by incorporating the
reliability and separabilitymeasures as integration weights
in the fusion module. Here, we have considered inter-/
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intra-class distance measure from the feature space and
the reliability as well as the d-prime separability measure
from the matching score space.

3.3 Estimation of separability measures
In a biometric system, the smaller the overlap between the
genuine and the impostor scores, the better is the recog-
nition rate. Thus, the class separability and the score sep-
arability measures give an indication of the quality of the
biometric samples and the matcher. The global recogni-
tion rate of the multibiometric system can be improved by
incorporating these separability measures as integration
weights in the fusion module. Here, we have considered
inter-/intra-class distance measure from the feature space
and the d-prime separability measure from the matching
score space.

3.3.1 Estimation of inter-/intra-class distance
Inter-/intra-class separability measures are derived from
the feature space of the twomodalities. This distancemea-
sure is based on the Euclidean distance between pairs of
feature vectors in the training set. Here, the basic assump-
tion is that the class-dependent distributions are in such
a way that the expectation vectors of different classes are
discriminating [29]. Let ST be a labelled training set with
SN feature vectors. The classes�k are represented by sub-
sets Sk ⊂ ST , each class having Sk features (

∑
Sk = SN ).

Feature vectors in ST without reference to their classes are
denoted by ζn. Feature vectors in Sk (i.e. vectors coming
from the class �k) are denoted by ζk,n. The sample mean
of class �k is given by

μ̂k = 1
Sk

Sk∑
n=1

ζk,n (8)

The sample mean of the entire training set is given by

μ̂ = 1
SN

SN∑
n=1

ζn (9)

In order to quantify the scattering of feature vectors in the
space, we consider the scatter matrices [29]. Scatter matri-
ces are among the most popular measures for quantifying
the way feature vectors ‘scatter’ in the respective space.
The scatter matrix gives some information about the dis-
persion of the feature vectors around their mean. Matrix
that describes the scattering of vectors from class �k is

SMk = 1
Sk

Sk∑
n=1

(
ζk,n − μ̂k

) (
ζk,n − μ̂k

)T (10)

SMk is the estimate of the class-dependent covariance
matrix. SMk not only provides information about the

average distance of the scattering, but also gives informa-
tion about the eccentricity and orientation of the scat-
tering. The scatter matrix representing the noise, when
averaged over all the class, is given by

SMw = 1
SN

K∑
k=1

SkSMk (11)

SMw = 1
SN

K∑
k=1

Sk∑
n=1

(
ζk,n − μ̂k

) (
ζk,n − μ̂k

)T (12)

SMb = 1
SN

K∑
k=1

Sk
(
μ̂k − μ̂

) (
μ̂k − μ̂

)T (13)

SMw and SMb are the within-class scatter matrix and
between-class scatter matrix, respectively. SMw describes
the average scattering within the classes while SMb
gives the scattering of the class-dependent sample means
around the overall average.
With the above definitions, the average squared distance

is proportional to the trace of the matrix SMw + SMb.

ρ̄2 = 2 × trace(SMw + SMb) (14)

This expression indeed shows that the average distance
has a contribution due to differences in expectation and a
contribution due to noise. This average distance is not an
adequate performance measure since a large value of ρ̄2

does not imply that the classes are well separated. The per-
formance measure well suited to express the separability
of classes is the ratio between inter-class and intra-class
distance [29].

JINTER
JINTRA

= trace(SMb)

trace(SMw)
(15)

The term JINTER = trace(SMb) gives the inter-class dis-
tance and the term JINTRA = trace(SMw) gives the
intra-class distance. JINTER denotes the fluctuations of
the conditional expectations around the overall expec-
tation, i.e. the fluctuations of the signal, while JINTRA
measures the fluctuations due to noise. Hence JINTER

JINTRA
can be considered as ‘signal-to-noise ratio’ [29]. These Js
are measurements of the separability among all classes.
The inter-/intra-separability measures are estimated from
the feature space of both the fingerprints and voice
modalities.

3.3.2 Estimation of reliabilitymeasures
Reliability estimates have been demonstrated to be an
elegant tool for incorporating quality measures into the
process of estimating the probability of correctness of
the decisions [16,17,20,30]. They can be used as auxiliary
quality information for the score level fusion. The relia-
bility gives the degree of trust in the recognition results
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drawn from the individual information sources [16]. In
this approach, the integration weight is determined from
the relative reliability of the two modalities. The reliability
parameters can be measured at either the signal level or
at the expert score level. The score-based reliability mea-
sures are mainly categorized as score entropy, dispersion,
variance, cross classifier coherence, and score difference
[31].
We have proposed a dynamic reliability measure by

considering the dispersion of the scores from the fin-
gerprint and voice matchers. When the voice samples
do not contain any noise, there are large differences in
the matching score values. As the voice samples become
noisy, these differences tend to become small. Given that
a very high level of noise in a signal is likely to pro-
duce very similar scores across all the models, we would
expect the estimate of the error variance to be very
small. Considering this observation, the reliability of a
modality is defined in several ways as mentioned in [16].
The modalities’ reliability parameters are estimated based
upon the variances of the matching scores. The usual
measure is to calculate the variance around the best or
the least score rather than the mean or median [20,30].
Here, the reliability of each modality is calculated as
follows:

λm = 1
N

N∑
n=1

(smn − min(smn ))2, (16)

where ‘N’ is the number of test samples considered from
all the classes and ‘m’ stands for the reliability of either
fingerprint (F) or voice (V ) modality. This quantity mea-
sures the dispersion of the score values to the least score
rather than themean. The reliability of each stream should
satisfy the following conditions:

0 ≤ λF , λV ≤ 1 and λF + λV = 1 (17)

The reliability measures are estimated from the score
space of both the fingerprint and voice modality during
the training/validating stage.

3.3.3 Estimation of d-prime separabilitymeasures
The d-prime gives a measure of how well the non-match
score probability density and the match score probability
density are separated. We calculate the d-prime separa-
bility measure from the matching score matrix of both
the modalities. The d-prime statistic provides the separa-
tion between the means of the genuine and the impostor
score distributions, in units of the standard deviation of
the score distributions [32].

d′ = μm − μn√
(σ 2

m + σ 2
n )

, (18)

where μm = mean of genuine scores, σ 2
m = variance of

genuine scores, μn = mean of impostor scores, and σ 2
n =

variance of impostor scores. A higher d-prime indicates
that the genuine scores can be more readily detected. This
sensitivity index measured from the score space captures
both the separation and the spread of the genuine and
impostor score distributions.

4 Optimal fusion with ancillary measures
We have combined the reliability and the separability
measures using the mean (average) rule. Let ρF and ρV
denote the inter-/intra-class distance measures obtained
from the fingerprint and voice modality, respectively. The
reliability measures obtained from the two modalities are
λF and λV . d′

F and d′
V denote the d-prime separabil-

ity measures obtained from preprocessed scores of fin-
gerprints and voice modality, respectively. The ancillary
information estimated in the training stage are shown in
Table 1, and it is evident from the table that the reliability
and the separability measures decrease with the increase
in noise. The following parameters are defined to obtain
the fused scores, and Table 1 presents their numerical
values.

ρ = ρV
ρF + ρV

(
inter-class
intra-class

distance ratio
)

(19)

d′ = d′
V

d′
F + d′

V
(d-prime ratio) (20)

λ = λV
λF + λV

(reliability ratio) (21)

γ = 1
3

(
ρV

ρF + ρV
+ d′

V
d′
F + d′

V
+ λV

λF + λV

)
(22)

The multi-normalized match scores from the two
modalities are combined by the weighted sum rule to pro-
duce the final decision scores. Given the speaker scores
S(vc) and the finger scores S(fc), the fused scores can be
obtained by linearly combining the two scores.

S(fus) = γ S(vc) + (1 − γ ) S(fc) (23)

The weighting factor γ (0 ≤ γ ≤ 1) determines
the amount of contribution of each modality to the
final decision. Even though the integration weight using
Equation 22 can improve noise robustness under certain
noise conditions, it is not always the optimal. Hence, a
modified integration weight β given by Equation 24 is
employed to obtain better performance under low SNR
conditions [20].

β = xopt × γ , (24)
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Table 1 Estimation of ancillary measures and the optimal integration weights

No. SNR Integration weight estimation with ancillary measures

(dB) ρ λ d′ γ GS xopt GA xopt PSO xopt GS β GA β PSO β

1 20 0.6358 0.7421 0.7059 0.6946 1.0000 0.9872 0.9822 0.6946 0.6857 0.6822

2 15 0.6479 0.7086 0.6786 0.6784 1.0000 0.9613 0.9043 0.6784 0.6521 0.6134

3 10 0.6128 0.7035 0.6386 0.6516 0.8200 0.8848 0.8841 0.5343 0.5766 0.5761

4 5 0.6033 0.6875 0.5899 0.6269 0.6500 0.7596 0.8649 0.4075 0.4762 0.5422

5 0 0.4886 0.6720 0.5159 0.5588 0.5000 0.6670 0.8052 0.2794 0.3727 0.4500

6 −5 0.3236 0.6518 0.4136 0.4630 0.5000 0.6632 0.7712 0.2315 0.3071 0.3571

7 −10 0.1855 0.6365 0.2210 0.3477 0.5000 0.4487 0.7163 0.1738 0.1560 0.2490

where xopt is the scaling factor which needs to be opti-
mized. In order to emphasize or de-emphasize the scores
obtained from the unimodal systems, the integration
weight factor must be adaptive and optimal. That is, the
weights must be most appropriate and self adaptive to
the fluctuating inputs. So, we propose optimization tech-
niques for estimating the optimal integration weights for
fusion. The optimal integration weights are obtained in
the training/validation stage using ‘leave-one-out’ cross
validation. The proposed method systematically chooses
the best scaling factor xopt from a defined domain (0 ≤
xopt ≤ 1) so as to maximize the objective function
(recognition accuracy) [20,30]. The objective function is
given by

Recognition Accuracy = −
∑

diag(CMat)∑∑
(CMat)

× 100 (25)

where CMat is the confusion matrix. We have employed a
direct search optimization method (grid search) and ran-
dom search optimization methods (genetic algorithm and
particle swarm optimization) for finding the optimal inte-
gration weight β . The following subsections give a brief
overview of the methods employed.

4.1 Grid search
The directed one-dimensional grid search (GS) method
determines the minimum of a real valued function based
on the initial estimate of the location of the minimum
point from the lower (L) and upper (U) bounds of the
decision variable xopt. This method involves setting up of
grids in the decision space and evaluating the values of the
objective function at each grid point. The point which cor-
responds to the best value of the objective function is con-
sidered to be the optimum solution. The one-dimensional
grid search method can be formulated as the mapping
f : R1 −→ R1 such that L ≤ xopt1 ≤, · · · ,≤ xoptn ≤ U ,
where xopt1 , · · · , xoptn are the ‘n’ test points [33]. The num-
ber of test points ‘n’, in each iteration step, determines the
rate of convergence of the algorithm.

4.2 Genetic algorithm
Genetic algorithm (GA) is a directed random search tech-
nique that is modelled on the natural evolution/selection
process towards the survival of the fittest. It efficiently uti-
lizes historical information to obtain new search points
with expected enhanced performance. In every genera-
tion, a new set of artificial individuals is created using the
information from the best of the old generation. Genetic
algorithm combines the survival of the fittest from the
old population with a randomized information exchange
that helps to form new individuals with higher fitness. The
algorithm consists of initialization, evaluation, reproduc-
tion (selection), cross over and mutation. GA is expected
to find the global minimum solution even in the case
where the objective function has several extrema, includ-
ing local extrema and saddle points. The final solution
gives the integration weight scale factor for the score level
fusion [34].

4.3 Particle swam optimization
The particle swam optimization (PSO) algorithm is a
stochastic optimization strategy, inspired by the social
behaviour of the flock of swarms. Here, the underlying
concept is that, for every time instant, the velocity of each
particle (potential solution), changes between its pbest
and lbest locations [35]. The particle associated with the
best solution (fitness value) seems to be the leader and
each particle keeps track of its coordinates in the solution
space. This fitness value is stored which is referred to as
pbest. Another ‘best’ value that is tracked by the particle
swarm optimizer is the best value, obtained so far by any
particle in the neighbours of the particle. This location is
called lbest. When a particle takes all the population as its
topological neighbours, the best value is a global best and
is called gbest. The algorithm is as follows:

1. Randomly generate initial candidate solutions.
2. Assign the position and velocity of the associated

particles randomly.
3. Evaluate the fitness (objective function) of each

particles.
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4. Compare each particle objective function value with
this particle’s personal best value. If better, update
pbest and record current position as the particle’s
personal best position.

5. Find the lowest objective function value of the whole
particles. If the value is better than gbest, replace
gbest with this objective function value, and record
the global best position.

6. Change velocities and positions [35]. The velocity
and position updates are given by

v[new]= w ∗ v[old]+
c1 ∗ rand1 ∗ (pbest[old]−present[old]) +

c2 ∗ rand2 ∗ (gbest[old]−present[old]) (26)

present[new] = present[old] + v[new] (27)

w is the inertia weight, v[] is the particle velocity,
present[] is the current particle (solution). rand1 and
rand2 are the random numbers between [0,1]. c1, c2
are learning factors. Usually c1 = c2 = 2.

7. Repeat 3 to 7 until stop criteria are satisfied.

5 Results and discussions
Finger images from the FVC2002 fingerprint database
[24] and voice samples from ELSDSR database [36]
have been employed for the experimentation. ELSDSR
database contains nine text-independent speech samples
of twenty three persons. So, finger images of twenty three
different persons with nine impressions per finger is con-
sidered. Out of the nine impressions per finger and speech
samples for each individual, seven samples are used for
training the individual classifiers and two samples are used
for testing. This choice is considered for improving the
recognition accuracy even under the adverse conditions.
Since the number of available biometric samples is lim-
ited, ‘leave-one-out’ cross validation is employed to fine
tune the training/ validation phase and estimate the best
optimal weights under various noise conditions. As the
fingerprint biometric is more robust, the performance

of the fingerprint classifier under varying noise condi-
tions is not considered. We define noise as ‘any unwanted
change in the signal’. The influence of noise on the clean
voice samples are modelled by adding AWGN to the voice
samples.
The performance of the systemwith varying SNR condi-

tions is considered systematically from the feature extrac-
tion and model building stage to the testing stage. MFCC
feature vectors of the order 12, 16 and 20 and the GMM
with 12 and 16 mixtures are considered for the simu-
lation studies, as they are widely used. Different model
combinations are considered to select the best model that
gives better recognition accuracy. The voice model with
16 MFCC feature vectors with 12 Gaussian mixtures give
improved recognition accuracy under normal operating
conditions (−10- to 20-dB SNR). So, this model combina-
tion is considered for the experimental study. The outputs
of the two classifiers are consolidated into a single vec-
tor of scores using the weighted sum rule of fusion. We
have compared the performance of the proposed method
with the baseline techniques such as bimodal systems with
equal weighting, optimal integration weight estimation
scheme without ancillary measures [21] and integration
weight estimation using reliability measures [20,22].

5.1 Baseline and state-of-the-art techniques
5.1.1 Equal prior weights
This method equally weighs the classifiers, without mak-
ing any prior assumptions about the quality of each data
source. We have weighted the contribution of both the
fingerprint and voice data equally for the identification
problem. A constant value of γ = 0.5 is assigned as
an integration weight at all SNR conditions. The score
transformation is achieved by the following equation:

S(fus) = 1
2

[
S(vc) + S(fc)

]
, (28)

where S(fc) = finger scores; S(vc) = voice scores. The test-
ing accuracy of this technique is presented in Table 2. This
technique will not favour one modality over another. At

Table 2 Testing accuracy with baselinemethods

No. SNR Accuracy of classifiers Equal IWWAM Reliability-basedmethod Separability method

(dB) Fingerprint Voice weighting GS GA GS GA PSO cohort normalization

1 20 95.6522 98.6956 97.8261 100.0000 100.0000 100.0000 100.0000 100.0000 100.000

2 15 95.6522 91.4493 97.6812 97.8261 97.8261 100.0000 100.0000 100.0000 100.000

3 10 95.6522 69.4203 95.6522 97.2464 97.1015 97.8261 97.8261 98.0507 100.000

4 5 97.8261 33.1884 95.6522 95.6522 95.6522 96.8116 96.8116 96.5290 100.000

5 0 95.6522 23.1884 85.6522 95.6522 95.6522 93.4783 93.4783 93.2826 100.000

6 −5 95.6522 9.1304 68.6956 95.6522 95.6522 93.4783 93.4783 92.2464 100.000

7 −10 95.6522 5.6521 57.3913 95.6522 95.6522 93.4783 93.4783 92.0942 100.000
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low SNR, the fusion system starts to exhibit catastrophic
fusion. From the score density plot (Figure 2), it is evident
that with the increase in noise, the overlap between the
genuine and the impostor distribution curves increases.
The detection error tradeoff (DET) curves in Figure 3
show the FAR and FRR performances.

5.1.2 Fusionwith optimal integration weight without
ancillary information

The performance of the proposed method is compared
with the optimal integration weight estimation techniques
reported in [21]. In [21], a blind optimization of the
parameter β , (0 ≤ β ≤ 1) was performed to maximize
the recognition accuracy of the multimodal system. The
recognition accuracy (testing) of this method is shown
in Table 2. The abbreviation IWWAM in the Table 2
denotes ‘integration weight without ancillary measures’.
This method does show better performance than the sum
rule of fusion method with equal weighing. Moreover,
it shows improved accuracy than any of the unimodal
systems under the normal operating conditions andmain-
tains the accuracy of the better unimodal ones under all
the adverse conditions. Further insight could be obtained
from the DET plots in Figure 4. The disadvantage of the
method is that at the extreme noise conditions, the fusion
module contributes zero weighing to the voice modality
and there is no substantial reduction in the FAR and FRR.
The score density plots of the said method has been pre-
sented in [21]. It is evident from the plots that with the
increase in noise, the overlap between the genuine and the
impostor score distributions also increases, and under low
SNRs, it shows the worst case performance.

5.1.3 Optimal fusionwith reliabilitymeasures
We have also compared the proposed method with the
reliability-based optimal integration weights estimation
scheme presented in [20]. A direct implementation of
the techniques reported in [20] was presented in [22] for
fusing fingerprint and voice biometric. Even though the
method shows better performance in terms of recogni-
tion accuracy and the FAR than the sum rule of fusion
method with equal weighting, and the method discussed
in subsection 5.1.2, it shows attenuation fusion under
extreme noise conditions [22]. This is evident from the
testing accuracy depicted in the Table 2. The DET plots
from Figure 5 reveals that the FAR shows a more pro-
nounced reduction when we use the quality measures for
finding the optimal integration weight. A noted disad-
vantage with this method is that, considerable reduction
in the FRR is not attained with this method. Figure 6
shows the score density performance with the said
method.

5.1.4 Fusionwith separabilitymeasures
For improving the recognition performance of the
multibiometric system, we have presented a multi-
normalization-based integration weight estimation
scheme using separability measures in [22,37]. This is a
non-optimization technique. For improving the perfor-
mance of the system, fingerprint and speech similarity
scores are pre-processed with cohort and tanh nor-
malization methods, respectively. Table 2 and Figure 7
show the result. This method gives improved perfor-
mance in recognition accuracy [22,37] and reduces
the FAR and FRR (Figure 7) compared to the baseline
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Figure 2 Score density plots with equal weighting (Baseline).
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Figure 3 Fusion with equal weighting (Baseline).

Figure 4 GA-based optimization (Baseline).
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Figure 5 Reliability-based GA (Baseline).

techniques, optimization technique and the reliability-
based integration weight estimation techniques. One of
the limitations of this method is with the cohort selection
for normalization. Additionally, the FAR needs further
reduction.

5.2 Fusion with the proposedmethod
From the training/validation stage, we have obtained the
optimal integration weights β = xopt × γ for different
noise conditions (−10- to 20-dB SNR). The integration
weights are estimated in such a way that it maximizes

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for 20 dB (y)→

Genuine Scores
Impostor Scores

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for 10 dB (y)→

p(
y)

→

Genuine Scores
Impostor Scores

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for 5 dB (y)→

p(
y)

→

Genuine Scores
Impostor Scores

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for 0 dB (y)→

p(
y)

→

Genuine Scores
Impostor Scores

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for −5 dB (y)→

p(
y)

→

Genuine Scores
Impostor Scores

0 0.5 1
0

0.1

0.2

0.3

0.4

Fused Score for −10 dB (y)→

p(
y)

→

Genuine Scores
Impostor Scores

Figure 6 Score density plot: reliability GA (Baseline).
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Figure 7 Fusion with a separability measure.

the recognition accuracy. We have applied the GS, GA
and PSO techniques for optimizing the integration weight
factor. The relative ancillary ratio estimates of the two
modalities and the optimal integration weight β estimated
under various noise conditions are presented in Table 1.
The β values thus estimated during the training/validation
stage are used for testing. We have employed the maxi-
mum similarity classifier, and it allocates the test samples
to the class that is having the highest matching score val-
ues. The overall testing accuracy of the proposed method
is depicted in Table 3. It is evident from Table 3 that the
recognition accuracy of the proposed method eliminates
catastrophic fusion under extreme noise conditions (0,−5
and −10 dB). The ancillary information provided by the
reliability and the separability ratios effectively captures
the relative noise degradation of the individual modali-
ties employed. This helps to weight the complementary
modalities based on their relative degradation which fur-
ther improves the overall efficiency of the system. Even
though the method discussed in subsection 5.1.4 shows
similar performance in terms of recognition accuracy, the
FRR of the said method needs further reduction. This is
achieved with the proposedmethod. The added advantage
of the proposed technique is that the classification errors,
both the FAR and FRR, are reduced considerably even
under low SNR conditions. The DET performance plots
(Figures 8, 9 and 10) and the score density plot (Figure 11)
highlight this observation.

This performance improvement is mainly due to the
combined effects of the multi-normalization-based score
preprocessing technique and the optimal weighting strat-
egy using ancillary information. Here, the genuine scores
from the fingerprint matcher are transformed with tanh
and the voice matching scores are transformed with min-
max normalization techniques. The use of tanh normal-
ization technique plays a vital role in reducing the overlap
between the score density plots. It is noticed that, this
transformation, improves the separation between the gen-
uine and impostor score distribution curves (It clamps the
genuine score values as the mean and standard deviation
of the genuine scores are used for tanh normalization [13].
In our experiment, the standard deviation of the genuine

Table 3 Testing accuracy with proposedmethods

No. SNR Accuracy of classifiers Proposedmethod

(dB) Fingerprint Voice GS GA PSO

1 20 95.6522 98.6956 100.0000 100.0000 100.0000

2 15 95.6522 91.4493 100.0000 100.0000 100.0000

3 10 95.6522 69.4203 100.0000 100.0000 100.0000

4 5 97.8261 33.1884 100.0000 100.0000 100.0000

5 0 95.6522 23.1884 100.0000 100.0000 100.0000

6 −5 95.6522 9.1304 100.0000 100.0000 100.0000

7 −10 95.6522 5.6521 100.0000 100.0000 100.0000
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Figure 8 GS-based optimization (Proposed).
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Figure 10 PSO-based optimization (Proposed).

scores for fingerprint are 0.1646 while for speaker scores,
it is 0.0598 (20 dB), 0.0621 (15 dB), 0.0654 (10 dB), 0.0730
(5 dB), 0.0937 (0 dB), 0.1262 (-5 dB), 0.1395 (-10 dB)
for various noise conditions. We observe that the gen-
uine fingerprint scores have a standard deviation that is

approximately 10 times the standard deviation of the gen-
uine voice scores. Hence, the constant factor in the tanh
normalization was set to 0.1 [13,38]). The 100% value in
the recognition accuracy does not always indicate the clas-
sification errors FAR and FRR to be zero. The operating
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Figure 11 Score density plots for GA-based optimization (Proposed).
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point used for calculating the FAR and FRR from the DET
would determine its values. This is quite obvious because,
if any of the genuine score are comparable to the impos-
tor score values (or its value is less than the decision
threshold) even after score normalization, cross over may
occur in the score density plots and the FAR and FRR
exhibit non-zero values. Therefore, the experimental stud-
ies reveal that the overall performance of themultibiomet-
ric system is improved, when multi-normalization-based
score preprocessing technique and ancillary quality mea-
sures are employed on a unified framework for finding
the optimal integration weights. This method could suc-
cessfully overcome the attenuating fusion (‘catastrophic
fusion’) under various noise conditions. The score density
plots (Figure 11) indicate the proposed method effectively
reduces the overlap between the genuine and the impostor
score distributions, which also reduces the classification
errors.

5.3 Statistical significance test
To compare the performance of different fusion meth-
ods, we have considered the Friedman test [39]. This
test is best suited for multi-class data with any sample
distribution. We have considered n = 7 data sets (dif-
ferent noise conditions) and k = 5 fusion methods, to
test whether the proposed fusion method performs bet-
ter than other methods. The null hypothesis is that the
mean accuracy of the proposed method is equal to the
mean accuracies of the other fusionmethods. The hypoth-
esis is rejected when the P value is small (usually < 0.05).
Using k-1 degrees of freedom (4), we obtain the P value as
9.173 × 10−5. The P value obtained is much smaller than
the level of significance 0.05, so we accept the alterna-
tive hypothesis that the mean accuracies of the weighted
mean fusion method differ from the other methods. Using
the mean ranks and the standard deviation obtained from
the Friedman test, a multiple comparison test has been
done using one-way ANOVA to show the performance
of the different fusion methods. Figure 12 shows which

means (and the comparison intervals around them) are
significantly different and which are not. It can be seen
that the mean rank obtained by the proposed methods
outperform all other methods except the one discussed
in subsection 5.1.4 (separability method with cohort
normalization).

6 Conclusions
Integration weight optimization techniques based on
multi-normalization and ancillary measures are proposed
here for improving the performance of the fingerprint and
voice biometrics system. Experimental studies have been
carried out under various noise conditions from −10-
to 20-dB SNR. The matching score preprocessing tech-
nique based onmulti-normalization effectively suppresses
any unwanted peculiarities involved in the raw similarity
computation of the individual matchers. The use of tanh
andmin-max normalization schemes with fingerprint and
voice-matching score vector helps in reducing the over-
lap between the genuine and the impostor score distri-
butions, which in turn reduces the classification errors.
Moreover, by estimating the best integration weight (γ )
using ancillary measures derived from the feature space
and the score space, we could weigh the two modalities
based on their relative degradation. The optimal integra-
tion weights (β) are estimated in the training/validation
stage using optimization techniques such as grid search,
genetic algorithm and particle swarm optimization.
Hence, by incorporating ancillary measures using the
multi-normalization framework, we could achieve bet-
ter recognition performance even at low SNR conditions.
The proposed method outperforms the baseline systems
in terms of recognition accuracy, FAR and FRR. The
proposed system performs more reliably in controlled
environments, such as offices and laboratories, than in
uncontrolled environments, such as outdoors. This work
can be extended with databases having more number of
subjects, and the fusion study can be conducted in the
two recognition modes of identification and verification.
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Thus, the benefits of this work scan a wide range of areas
that are capable of improving the quality of life of peo-
ple. As this method can reduce the FAR and FRR, it may
be highly suitable for applications like sharing networked
computer resources, granting access to nuclear facili-
ties, performing remote financial transactions, and foren-
sic applications like criminal investigation, parenthood
determination, etc.
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