
Zhang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:110
http://asp.eurasipjournals.com/content/2014/1/110

RESEARCH Open Access

A sparse sampling strategy for angular
superresolution of real beam scanning radar
Yin Zhang*†, Junjie Wu† and Jianyu Yang†

Abstract

This paper investigates techniques for angular superresolution using limited data of real beam scanning radar (RBSR).
In order to improve the angular resolution of RBSR, many algorithms have been proposed. However, for most
algorithms, large amounts of sampling data is necessary. The requirement of data increases the burden of the radar
system. Fortunately, the sparse signal reconstruction techniques provide a new train of thought for us. It has been
proved in array signal processing and image processing that the techniques only need limited sampling data to
realize DOA estimation and image superresolution. This paper describes the sparse sampling model of RBSR as an
underdetermined equation-solving problem, the received signals are sparsely recovered in target domain. Two
algorithms, including smooth approximation algorithm and focal underdetermined system solver (FOCUSS), based on
different optimization ideas, are adopted to solve the problem. Simulation results show that compressive sampling
methods can recover the target domain accurately, especially under the condition of high signal-to-noise ratio (SNR).
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Introduction
Real beam scanning radar (RBSR) has been widely used in
both civilian and military fields, owing to its all weather
and day/night ability. However, it is hard to realize the
high azimuth resolution of stationary platform or irreg-
ular motion platform by traditional signal processing
algorithms, such as matched filtering or Doppler beam-
forming (DBF) [1,2]. Although, we can obtain a high-range
resolution by transmitting high bandwidth linear FM sig-
nal and using the matched filtering technique [3], the
limited azimuth angular resolution and unmatched two-
dimensional radar image greatly restrict the application of
the RBSR system. In order to obtain a high azimuth resolu-
tion, angular superresolution methods, including decon-
volution and shift-and-convolution were proposed [4,5].
However, the deconvolution method is sensitive to noise
and a large number of azimuth sampling points are needed
to guarantee the superresolution performance. The shift-
and-convolution technique, which is based on specific
assumptions, also needs very large number of sampling
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data. Both of the above techniques greatly increase the
computational efficiency of processing module.
In recent years, sparsity-based techniques were pro-

posed and have been used in spectral estimation, image
processing, and radar imaging [6-17]. In [6-9], a kind of
novel DOA estimation methods based on the sparse sig-
nal recovery were proposed, which took advantage of the
sparse distribution of azimuth target when the number
of sampling data is limited. Compared with traditional
DOA estimation algorithms, these algorithms are less sen-
sitive to initialization and SNR, with less snapshots. M
Elad et al. also introduced sparse and redundant repre-
sentations to signal and image processing [10-12], such as
wavelet denoising, image reconstruction and restoration
and feature selection in machine learning. In addition, Q
Liang et al. applied the compressive sensing technique to
synthetic aperture radar (SAR) and radar sensor networks
to tremendously reduce the sampling rate [13-17].
However, little work was reported on sparse signal

recovery for the real beam system. Most of the previous
studies concentrate on the improvement of performance
and robustness of traditional superresolution algorithms.
Recently, according to the similar signal properties of real
beam scanning model and array signal model, several
spectrum estimation methods are used to realize angular
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superresolution [18,19]. Sparse signal recovery theory of
array signal processing is a mature mathematics theory. So
it is possible to establish the real beam sparse signal model
by greatly increasing the sampling interval, and realize
angular superresolution imaging by utilizing sparse signal
recovery algorithms.
In the references of sparse signal reconstruction for

array signal processing, L1 norm is often used to express
the sparsity. The smooth approximation algorithm is a
classic sparse signal recovery algorithm which is based
on the constraint of L1 norm [20]. Other efficient sig-
nal recovery algorithms based on different constraints are
also proposed, such as the focal underdetermined system
solver (FOCUSS) algorithm [21,22]. In this paper, a real
beam signal model is built first by sparsely sampling in the
azimuth dimension, introduce the smooth approximation
algorithm and the FOCUSS algorithm are introduced to
deal with the underdetermined system as a comparison to
verify the feasibility of angular superresolution for sparse
samplingmodel of the real beam radar. The distribution of
target and noise is not needed, and the range resolution is
not restricted in these methods. Furthermore, the burden
and cost of the radar system can be significantly reduced.
This paper is outlined as follows: The sparse sampling

model of RBSR is given in the next section. The objec-
tive functions based on sparse constrains are built and
solved by smooth approximation technique and FOCUSS
algorithm in section ‘Real beam smooth approximation
algorithm’ and section ‘Real beam FOCUSS algorithm’,

respectively. The simulation results are provided to illus-
trate the performances of the two algorithms in the
section that follows. The last section concludes this paper.

Sparse representation of signal model
Figure 1 shows the sampling model of RBSR. In this
model, the antenna illuminates the detection region step
by step with velocity ω. The antenna transmits signal with
uniform pulse repetition interval (PRI). The beamwidth of
antenna is θbeta. Suppose that the azimuth scanning region
is fixed, the scanning region of azimuth dimension can be
discretized as aM× 1 target amplitude vector of x. In real
beam radar imaging, large dimension of x implies more
available angles and azimuth amplitude information, so
large dimension of x is needed.
Because the imaging process of RBSR can be regarded

as the convolution of antenna pattern function and dis-
cretized target vector, the signal model can be written as
the following matrix form

y = Ax + n (1)

In conventional convolution model, the received sam-
pling signal ymust have the same dimension as x to ensure
that (1) is resolvable by traditional deconvolution meth-
ods. So y is anM × 1 received signal vector, x is anM × 1
target amplitude vector, n is an M × 1 noise vector, con-
volution matrix A = [a1, a2, · · · , aM] is anM × M matrix.
For stationary platform, the offset of antenna and target in

Figure 1 Sampling model of real beam scanning radar.
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the same range unit are all the same. It is not needed to
consider the influence of phase. For irregular motion plat-
form, the offset of antenna and target can be eliminated
by motion compensation. So vector am in matrixA can be
written as the real value

am =
⎡
⎣ 0, · · · , 0︸ ︷︷ ︸

m−1

, a1, · · · , aN , 0, · · · , 0
⎤
⎦T

(2)

where a1, · · · , aN is the normalized antenna pattern
sequence and an is the normalized weighting of antenna
pattern at corresponding position, N = θbeta/ (ω · PRI).
In RBSR imaging, in order to realize the high azimuth

resolution, a large number of sampling signal are required
in traditional superresolution methods; even x is sparse.
But if x is K sparse, K � M, and most of the element
in x are zero, we can establish the sparse sampling signal
model of RBSR. The requirement of sampling signal num-
ber will be significantly reduced when sparse signal recov-
ery methods are used to solve this angular superresolution
problem.
In the sparse sampling signal model of RBSR, the

dimension of vector x is still M × 1. The received sig-
nal is obtained by sparse sampling the imaging region.
The number of received signal y can be calculated by
�φ/ (ω · PRI), where �φ = φ2 −φ1 is the scanning range,
φ1 and φ2 express the initial and termination incidence
angles of scanning region, respectively. For fixed scene,
the number of sampling received signal is determined by
ω and PRI. So the form of Equation 1 is equivalent to
the basic version of sparse representation problem with
noise when we significant increase ω or PRI to make the
dimension of vector y much less than M × 1. Further-
more, all the following discussion in this paper are based
on the assumption that x is sparse, and the dimension
of y is much less than x in (1). Therefore, the angular
superresolution problem is to find a sparse x ∈ CM of
Equation 1.
The problem of Equation 1 is ill-posed and has infinitely

many solutions. The best choice to express the sparsity of
nonzero entries in x is L0 norm, which makes the prob-
lem a NP-hard combinatory optimization problem and
very difficult to solve. One of the most commonmethod is
replace L0 norm with L1 norm [23,24]. It denoted by ‖x‖11
at mathematical. So the form for L1 norm approximation
problem is

min
∥∥y − Ax

∥∥2
2 + λ ‖x‖1 (3)

The first term of (3) forces the residual error to be small,
and the L1-term enforces the sparsity of target domain. λ
is the parameter which controls the tradeoff between the
residual error and sparsity of target domain. Some well-
known ideas, such as the discrepancy principle and the
L-curve have been proposed to select λ [25,26]. So the

problem of how to choose appropriate λ is not discussed
in this paper. In addition, to guarantee the sparse char-
acteristic of x, the L1 norm also makes the problem as
a convex optimization problem. In this case, the global
optimum can be found. This objective function has been
used in many real-valued and complex-valued data sparse
signal representation works.
In the RBSR signal model, the convolution matrix has

lots of zero elements which is different from the steering
matrix in array signal model. So, we introduce the smooth
approximation technique to solve Equation 3 and demon-
strate the feasibility of sparse angular superresolution of
RBSR. Furthermore, Equation 4 is not the only formed to
express the sparsity of x, FOCUSS algorithm is another
typical sparse signal recovery method based on the min-
imum norm least square frame. The re-weighted matrix
is used to alter the weight of different targets in objective
function, which makes true targets more prominent. We
also introduce this algorithm in the sparse signal recovery
problem of RBSR.

Superresolution by sparse signal reconstruction
In this section, the smooth approximation technique and
FOCUSS algorithm are introduced to the sparse sampling
model of RBSR and realized sparse signal reconstruction.

Real beam smooth approximation algorithm
In this subsection, we develop the smooth approximation
algorithm for the underdetermined formation based on a
regularized target reconstruction framework. The smooth
approximation technique is an effective method which
makes objective function solvable by smooth approxi-
mation of L1 norm [20,27]. The method provides an
extension of real-valued feature-preserving image recon-
struction methods, to the angular superresolution prob-
lem. By applying this algorithm to real beam scanning
imaging, only a few sampling data is needed to improve
the resolution of point target and the interference of noise
and clutter is reduced.
Because of L1 norm is non-differentiable at original

point, it is difficult to directly calculate the derivative of
Equation 3. This algorithm utilizes the smooth approx-
imation technique, solving the derivative problem of L1
norm. The following slightly modified cost function was
used to replace Equation 3

J (x) = ∥∥y − Ax
∥∥2
2 + λ

K∑
k=1

((
fk

)2 + ε
)1/2

(4)

where ε is a small constant which is larger than zero.
Note that this equation is closed to Equation 4 when
ε is infinitely small. Then we calculate the gradient of
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Equation 4 with respect to x. We can obtain the following
expression

∇J (x) = AHAx − AHy + λ� (x) x (5)

where � (x) = diag
{(|xk|2 + ε

)− 1
2

}
. Then we build a

new Hessian update scheme by extending ideas from half-
quadratic regularization to the signal recovery problem of
RBSR. The gradient expression of (5) can be rewritten as

∇J (x) = (
AHA + λ� (x)

)
x − AHy = Q (x) x − AHy

(6)

In expression (6), we can use Q (x) as an approximation
to the Hessian. So we use this approximate Hessian Q (x)
in the quasi-Newton iteration

x̂(i+1) = x̂(i) − γ
[(

AHA + λ�
(
x̂(i)

))]−1∇J
(
x̂(i)

)
(7)

where γ is the step size. After substituting (6) into (7), we
obtain the iterative expression(
AHA + λ�

(
x̂(i)

))
x̂(i+1) = (1 − γ )

(
AHA

+λ�
(
x̂(i)

))
x̂(i) + γAHy

(8)

In addition, another small constant value δ which is
also larger than zero was taken to determine the ter-
minating condition of iteration. The iteration will stop
when

∥∥x̂(i+1) − x̂(i)∥∥2
2 /

∥∥x̂(i)∥∥2
2 ≤ δ. We can select appro-

priate δ according to the requirement of superresolution
performance or efficiency.

Real beam FOCUSS algorithm
The FOCUSS algorithm is introduced to solve the angular
superresolution problem in this subsection. The essence
of FOCUSS algorithm is the weighted minimum norm
least square method (MNLS). The iterations are based on
weighted norm minimization of the dependent variable
with the weights being a function of the preceding iter-
ative solutions [21,22]. The algorithm obtains the unique
and sparse solution from underdetermined equations,
which has been already used for DOA estimation and neu-
romagnetic imaging problem. By applying this algorithm
to the superresolution problem of RBSR from sparse sam-
pling data, we can obtain the high-resolution results in
theory. The basic weighted least square form is

min
∥∥y − Ax

∥∥2
2 + ∥∥W−1x

∥∥2
2 (9)

where W is the K×K weighted diagonal matrix which
controls the choice of estimation vector. We can obtain
the weighted least square solution by solving Equation 9

x̂ = WWHAH(
AWWHAH)−1y (10)

where the weighted diagonal matrix is W = diag
(x (1) , . . . , x (K)). Because the diagonal matrix can be
reconstructed by the calculation results of Equation 10, we
can build the iterative expression

x̂k = WkWH
k A

H(
AWkWH

k A
H)−1y (11)

where Wk = diag
(
xk−1 (1) , . . . , xk−1 (K)

)
. From the iter-

ative expression, we can find that the diagonal matrix is a
posteriori weight in iterations. In each iterative step, the
term of

∥∥W−1x
∥∥2
2 reduces the weight of strong scatter tar-

gets, which make them stronger than weak scatter points
and noise in each steps of iterations. It is easily proven that
the nonzero term in estimation result x̂ is smaller than
vector dimension K , so the solution is sparse.
Besides, because the computed results are affected by

the iterative initialization, it is necessary to select an
appropriate one. In the references, the Moore-Penrose
pseudo-inverse matrix is used to calculate the iterative
initialization. The calculation method of pseudo-inverse
matrix is based on the least square frame, min

∥∥y − Hx
∥∥2
2.

The solution can be written as

x̂ = AH(
AAH)−1y = A#y (12)

where A# = AH(
AAH)−1 is the Moore-Penrose pseudo-

inverse matrix. However, in low signal-to-noise ratio
(SNR) condition, the coarse estimation results by Moore-
Penrose pseudo-inverse matrix have huge estimation
errors to the true target distribution, which will introduce
the large estimate deviations of target location and ampli-
tude. So this paper utilizes the simple method to obtain a
rather coarse, but little estimate deviation of x̂. The esti-
mation result is obtained by employing a matched filter
bank strategy which can be written as

x̂ = AHy (13)

Otherwise, this algorithm uses the same method to
select iterations as in section ‘Real beam smooth approxi-
mation algorithm’.

Simulations and discussions
In this section, angular superresolution is performed by
the two algorithms that have been presented in section
‘Superresolution by sparse signal reconstruction’. Several
simulation using sparse sampling data were taken to illus-
trate the potential of sparse signal recovery for the issue
of high angular resolution of RBSR. Consider three targets
with the same amplitude which were located at −4◦, 2◦
and 3.5◦, respectively. The scanning region of single real
beam antenna is from −8◦ to 8◦, and the dimension of the
underdetermined systemA is 25×500. Simulation results
are shown in the following figures.
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Figure 2 Simulation results of the two algorithms in ideal environment. (a) Real beam sparse sampling echo; (b) Simulation result of smooth
approximation technique; (c) Simulation result of FOCUSS algorithm.

In Figure 2, the received echo is noiseless. The recovery
results of the two algorithms are obtained with opti-
mal iterations 8 and 50, respectively. In this case, both
of the algorithms recovered the target domain success-
fully. The feasibility of the sparse signal recovery methods
of the sparse sampling model of RBSR were demon-
strated in these results. However, the FOCUSS algorithm
is more efficient than the smooth approximation tech-
nique in ideal condition in consideration of the iterations.
To determine the robustness of the two algorithms, the
recovery results of the received echo with noise are given

in Figures 3 and 4. The additional white noise obeys the
Gaussian distribution with variance σ 2 which is deter-
mined from the specified SNR level as

σ 2 = 1
M

‖Ax‖210−SNR/10 (14)

Figures 3 and 4 show the signal recovery results of
smooth approximation technique and FOUCSS algo-
rithm. The SNR of Figures 3 and 4 are 20 and 10 dB,
respectively. In simulation, the value ofAxwhich was used
to calculate variance σ 2 of additional noise is the actual
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Figure 3 Simulation results of the two algorithms with a 20 dB SNR. The dotted line is the real beam sparse sampling echo, the red and blue
lines express the simulation results of smooth approximation technique and FOCUSS algorithm, respectively.
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Figure 4 Simulation results of the two algorithms with a 10 dB SNR. The dotted line is the real beam sparse sampling echo, the red and blue
lines express the simulation results of smooth approximation technique and FOCUSS algorithm, respectively.
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Figure 5MSE curves of smooth approximation technique in different SNR conditions. Horizontal and vertical coordinates express iterations
and MSE, respectively. The curves express the regularity of MSE in different SNR conditions.
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Figure 6MSE curves of FOCUSS in different SNR condition. Horizontal and vertical coordinates express iterations and MSE, respectively. The
curves express the regularity of MSE in different SNR condition.

value. Then we used the absolute value of vector y to
recover the target amplitude vector. Simulation results in
Figures 3 and 4 are normalized to clearly show the per-
formance of two algorithms. From the two figures, we can
see that the smooth approximation technique has better
performance in low SNR condition. Little spurious peaks
and small changes of amplitude and location of target
appeared in the simulation results of the smooth approx-
imation technique. However, more spurious peaks appear
in the results of the FOCUSS algorithm. The amount and
amplitude of spurious peaks increased with the increase
of noise intensity. The processing result of FOCUSS algo-
rithm has reached an unacceptable level when the SNR is
10 dB.
Figures 5 and 6 show the superresolution performance

of the two algorithms for various choices of SNR in terms
of mean squared error (MSE). In this paper, MSE is calcu-
lated as

MSE = E
(∥∥x̂ − x

∥∥2
2

‖x‖22

)
(15)

where x̂ and x are the estimated and true solution. A
comparison of the performance curves indicates that
the FOCUSS algorithm has better convergence speed.
But compared with smooth approximation technique, the
MSE of FOCUSS algorithm is not only larger and but also
increased more rapidly with the increase of noise inten-
sity under the same SNR. It is shown in Figure 6 that low
SNR leads to degradation of the estimated performance of

the FOCUSS algorithm. The smooth approximation tech-
nique has a better property of convergence, it still works
well when the SNR is 10 dB.

Conclusion
In traditional angular superresolution algorithms of real
beam scanning radar, large amounts of received data is
necessary. However, the requirement of data increase
the complex of hardware platform. Compressive sensing
theory can reduce the requirement of sample rate and
length of received data while guarantee the superresolu-
tion performance. The sparse signal recovery technique
could exactly reconstruct the target domain from sparse
sampling signal of RBSR.
This paper studies real beam angular superresolution

problem based on the sparse signal reconstruction tech-
nique. Firstly, the sparse sampling signal model of the
RBSR system is built as a sparse representation form.
Then, two sparse signal recovery techniques are chosen to
realize signal reconstruction in the target domain. Finally,
simulations are given to show that both of the two meth-
ods can effectively improve the angular resolution, and
the superresolution effectiveness are affected by SNR of
received signal somewhat. The next step in our research
work will consist in improving algorithm that reduces the
effect of noise.
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