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Abstract

This paper presents an extension to the theoretical lower bounds for the number of adders and for the adder
depth in multiplierless single constant multiplications (SCM). It is shown that the number of prime factors of the
constants is key information to extend the current lower bounds in certain cases that have not yet been exposed.
Additionally, the hidden theoretical lower bound for the number of adders required to preserve the minimum
adder depth is revealed.
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1 Introduction
Abundant research has been realized since the past two
decades to solve single constant and multiple constant
multiplication problems (SCM and MCM, respectively),
where the hardware requirements can be reduced by
exploiting the constant coefficient characteristics known
a priori [1-18]. In these cases, multiplications are per-
formed without using general multipliers and the unique
arithmetic operations are additions and subtractions. In
addition to these operations, only scaling by powers of
two is allowed. These powers of two are implemented
using hardwired shifts and therefore are considered with
no cost.
Even though MCM and SCM problems are considered

closely related, the latter constitutes the fundamental basis
for all the constant multiplication problems and is usually
solved by specialized, fine-tuned algorithms [1,3-5,9-11,14].
The usual metric to minimize in the SCM algorithms has
been the number of arithmetic operations needed to im-
plement the constant multiplier. However, it has been
reported that the number of sequentially connected arith-
metic operations forming a critical path has the main
negative impact in performance and power consumption
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[3,7-9,15-18]. This, currently, has led to substantial re-
search activity targeting both, application-specific inte-
grated circuits (ASICs) [15,16] and field-programmable
gate arrays (FPGAs) [17,18], where the minimization of
the number of arithmetic operations subject to a mini-
mum critical path is the ultimate goal.
Theoretical lower bounds for these two metrics in

SCM, MCM, and other related problems have been de-
rived in [12] based on a simple number that can be calcu-
lated in advance from the involved constants, namely,
their minimum number of signed digits (MNSD). In [12],
the theoretical lower bounds were first obtained for the
simplest case of constant multiplications, namely, SCM,
and then deduced for cases involving multiple constants.
Nevertheless, the compromise between the number of
arithmetic operations and the critical path was only men-
tioned and the theoretical lower bound for such com-
promise still remained hidden. It has been pointed out in
literature that using the lowest critical path often results
in higher performance and lower power consumption at
expenses of increasing the number of arithmetic opera-
tions. Similarly, the minimization of the number of arith-
metic operations may result in higher area saving at
expenses of an increased critical path [3,7-9,15,16].
This paper introduces the extension to the theoretical

lower bounds given in [12] for the SCM case. This ex-
tension shows that these bounds can be increased in
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certain cases which have not been exposed in [12] by in-
cluding the number of prime factors of the constants.
Moreover, the theoretical lower bound for the number
of arithmetic operations subject to the minimum critical
path is revealed. With this, the preliminary estimation of
how many extra arithmetic operations are needed to pre-
serve the lowest critical path in a SCM block becomes
possible.
This paper is organized as follows: Section 2 presents

the key observations from [5] used in [12] as a starting
point to develop the current theoretical lower bounds.
Section 3 develops an analysis of these SCM lower bounds.
From that analysis, in Section 4, we present a detailed de-
velopment of new theorems that allow the extension of
these lower bounds. Section 5 presents the comparison be-
tween the proposed lower bounds and the lower bounds
from [12]. Finally, concluding remarks and future works
are highlighted in Section 6.

2 Key observations for the current lower bounds
The main operation in SCM blocks, called A-operation
in [6], is defined as

w ¼ Ax u; vð Þ ¼ 2e1uþ −1ð Þe42e2vj j2−e3 ð1Þ
where e1 ≥ 0, e2 ≥ 0 are integers denoting left shifts, e3 ≥ 0
is an integer indicating right shift, e4∈{0, 1} chooses the
addition or subtraction operation to be performed, x = {e1,
e2, e3, e4} is the parameter set or A-configuration of Ax(u,v)
and u, v, and w are positive and odd constants. As addi-
tions and subtractions have a similar complexity when it
comes to hardware implementation, they are usually re-
ferred without distinction as A-operations. An SCM block
is designed as a network of A-operations represented
using directed acyclic graphs (DAGs) with the following
characteristics [5,12,13]:

� Shifts are assumed to be free. Additionally, the sign
of the constants formed in the DAG is assumed to
be adjusted at some part of the design. Therefore,
only positive and odd integers are considered.
These constants are known as fundamentals.

� For a graph with n A-operations, there are n + 1
vertices and n fundamentals. Every fundamental is
obtained as a result of an A-operation.

� Each vertex has an in-degree two except for the
input vertex which has in-degree zero.

� A vertex with in-degree two corresponds to an
A-operation.

� Each vertex has out-degree larger than or equal
to one except for the output vertex which has
out-degree zero.

� The constant resulting from the last A-operation is
known as output fundamental (OF), whereas the
constants resulting from previous A-operations are
non-output fundamentals (NOFs). In a DAG
that does not have the minimum number of
A-operations, the constants resulting from the
extra A-operations are referred as non-essential
fundamentals (NEFs).

The number of A-operations, NA, is frequently called
adder cost. However, this value will be referred here as
A-cost for consistency. The number of cascaded A-oper-
ations, Nd, where the output of an A-operation is at least
one input of another A-operation, is frequently called
logic depth or adder depth and it will be referred here as
A-depth.
The following observations from [5] relate the number

of nonzero digits of a constant with its A-depth:

� Observation A: The sum of two coefficients with k1
and k2 nonzero digits respectively, has at most k1+ k2
nonzero digits.

� Observation B: A multiplier graph with A-depth
equal to Nd can generate coefficients with at most
2Nd nonzero digits.

On the other hand, a multiplicative graph is the graph
obtained by cascading two subgraphs such that the
resulting OF is a product of the OFs of the two sub-
graphs (classification of graph structures is detailed in
[5] and extended in [13]). An articulation point is the
point where the output of the first subgraph is joined
with the input of the second subgraph. Since in DAGs
the A-operations become nodes, the A-operation whose
output is an articulation point can be also referred as an
articulation point.

� Observation C: If a graph has an articulation point,
the graph is multiplicative.

Proofs and more details of these observations can be
found in [5].

3 Analysis of the current lower bounds
Consider a given constant c whose MNSD, i.e., the num-
ber of digits obtained by representing c in canonic signed
digit (CSD), is S(c). The lower bounds LA and Ld for the
A-cost and the A-depth of the graph for c, respectively,
are given in [12] as

LA ¼ Ld ¼ ⌈ log2S cð Þ⌉ ð2Þ

where ⌈x⌉ is the nearest integer greater than or equal
to x. Taking into account that the MNSD can be expressed
as 2p – 1 < S(c) ≤ 2p for all p ≥ 1 and p integer, we can note
that all values S(c) in the range (2p – 1, 2p] yield the same
LA and Ld according to (2), with



Figure 2 CM-based graph with p A-operations.
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p ¼ ⌈ log2S cð Þ⌉ ð3Þ

We will refer to the range (2p – 1, 2p] as MNSD-range.
Note that the function S(c) is the unique information taken
from the constants and used in [12] to derive the current
lower bounds for constant multiplication problems.
An important characteristic given in [12] and related to

the graph structure presented in Figure 1, which will be
called here the completely multiplicative (CM) graph, is that
if S(c) = 2p (the highest MNSD in the MNSD-range), the
lower bound LA = p will be obtained only with a CM graph.
Is always possible to find a solution with the lower bound

Ld because the coefficient c can be implemented by summing
all its non-zero terms using A-operations arranged in binary
tree [12]. Nevertheless, the lower bounds given in (2) do not
make any distinction among the constants that have their
MNSD included into the MNSD-range.

4 Extension of the current lower bounds
Let us start with the CM-based graph of Figure 2, which
consists of the cascade of a subgraph H with p − l A-op-
erations and a CM subgraph with l A-operations. This
graph is exploited in [14] to obtain optimal multiplica-
tions by rational constants with periodic binary repre-
sentations, and it has the following characteristics:

1) At the output of every A-operation of the CM
subgraph, the MNSD of the resulting constant is at
most twice the MNSD of the constant at its inputs,
according to Observation A. If the MNSD at the
output of the subgraph H, denoted by nH, is the
highest possible in H, the maximum resulting
MNSD at the overall graph is 2l × nH.

2) If H has the minimum A-depth, the overall graph
has the minimum A-depth because the CM
subgraph has also the minimum A-depth. The same
holds for the A-cost.

3) If H is non-multiplicative, the CM-based graph has l
articulation points formed with the minimum A-cost
and A-depth and clustered in the higher depth
levels. Thus, this graph has the highest MNSD in its
first articulation point in comparison to any other
graph with l articulation points. Moreover, it can
have the maximum MNSD with respect to other
graphs with l articulation points.

Due to their aforementioned characteristics, CM-based
graphs will be analyzed in the following to show that the
graph of a constant whose MNSD is given in specific
Figure 1 Completely multiplicative (CM) graph.
intervals into the MNSD-range requires certain multi-
plicative characteristics to preserve the lower bound LA.
It shall be considered henceforth that the MNSD is
given in the MNSD-range (2p − 1, 2p] with p > 1, since
LA = Ld = 1 for S(c) = 2 (i.e., when p = 1).

Theorem 1 A constant c whose MNSD is S(c) > 2p − 1 +
1 cannot be obtained with a non-multiplicative graph with
p A-operations.

Proof Let us review the simplest case p = 2. There are
two possible graphs, one of them additive and the other
one multiplicative, as shown in Figure 3 (see also Cost-2
Graphs No. 1 and 2 of Appendix A of [13]). The highest
MNSD of any NOF in both graphs is equal to 2. The last
A-operation of the non-multiplicative graph only can
add one nonzero digit to a constant, thus yielding OFs
whose highest MNSD is 2p − 1 + 1 = 3 according to Ob-
servation A. The highest MNSD of any OF in the multi-
plicative graph is equal to 4 because both inputs to the
last A-operation can have up to 2 nonzero digits each.
Thus, the case p = 2 is a base for the following inductive
hypothesis: the highest MNSD of any OF in a non-
multiplicative graph with p A-operations is equal to 2p − 1 +
1 for all p > 1. Assuming it as a true statement, let us con-
struct a non-multiplicative graph with p + 1 A-operations,
with the aim of obtaining an OF whose MNSD is n = 2p + 2,
i.e., the lowest MNSD that contradicts the hypothesis.
A non-multiplicative graph with p operations cannot

have the inputs of its last A-operation (the A-operation
placed at the p-th depth level) coming from the same
position because an articulation point is generated and
the graph becomes multiplicative (see Observation C).
For the sake of clarity, let us identify the two inputs of
the last A-operation as a1 and a2. Let us assume, without
loss of generality, that a1 comes from the output of a
subgraph G1, as shown in Figure 4. This subgraph can
be either non-multiplicative or multiplicative (Figure 4a,b,
respectively). In the following, we will review each of these
two cases, along with the point where a2 can come from.
If G1 is non-multiplicative (Figure 4a), the highest

MNSD of any of its OFs is n1 = 2p − 1 + 1 (this follows
from the inductive hypothesis). For the overall graph,
the only way to obtain an OF whose MNSD is n = 2p + 2
is having a2 coming from an A-operation that produces
constants with an MNSD at least equal to n − n1 = 2p − 1 +
1. From Observation B, we have that this MNSD can be



Figure 3 The two graphs with p = 2 A-operations: (a) additive graph and (b) multiplicative graph.
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obtained only from the p-th A-operation, which means
that a1 and a2 would be coming from the same A-oper-
ation, generating an articulation point. If a2 comes from
the (p − 1)-th A-operation, the articulation point is avoided
and the whole graph can still be non-multiplicative. How-
ever, the highest MNSD of a constant generated from the
(p − 1)-th A-operation is equal to 2p − 1 (see Observation
B) and thus the highest MNSD of the OF in the overall
graph is equal to n1 + 2p − 1 = 2p − 1 + 1 + 2p − 1 = 2p + 1.
If G1 is multiplicative (Figure 4b), it can have l articu-

lation points where 1 ≤ l ≤ p − 2. With l articulation
points and p operations, the highest MNSD of any OF
produced by G1 is n1 = 2l × (2p − l − 1 + 1). This follows
from the assumption that G1 is a CM-based graph and
from the inductive hypothesis. In order to obtain an OF
whose MNSD is n = 2p + 2, a2 must come from an A-op-
eration that produces constants with an MNSD at least
equal to n − n1 = 2p − 1 − 2l + 2. Moreover, such A-oper-
ation must be placed at a depth level less than the depth
level where the first articulation point is placed; other-
wise this articulation point will make the whole graph
multiplicative. Since G1 has its first articulation point at
a depth level equal to p − l, a2 must come from an A-oper-
ation placed in a depth level that does not exceed p − l − 1.
The highest MNSD of any NOF obtained from an A-oper-
ation placed in the (p − l − 1)-th depth level is 2p − l − 1

(from Observation B). Hence, this value should be equal or
greater than n − n1 = 2p − 1− 2l + 2 in order to obtain an OF
Figure 4 A graph composed by a subgraph G1 plus a last
A-operation. (a) G1 is non-multiplicative graph and (b) G1 is a
CM-based multiplicative graph.
in the overall graph whose MNSD is n = 2p + 2. However, it
can be shown that 2p − l − 1 < 2p − 1− 2l + 2 holds. Thus, the
highest MNSD of any OF in the overall graph is equal to
n1 + 2p − l − 1 = 2l × (2p − l − 1 + 1) + 2p − l − 1 ≤ 2p + 1.
As a result, we have that the inductive hypothesis for a

graph with p A-operations implies that it holds for p + 1
A-operations. Therefore, considering this implication
along with the base case with p = 2, we prove Theorem 1
by induction on p. ■

Theorem 2 A constant c whose MNSD is S(c) > 2p − 1+
2q − 1 with q = {1, 2,…, (p − 1)} can be obtained by using
a graph with p A-operations only if at least q of these op-
erations are articulation points.

Proof Consider that the overall graph is a CM-based
graph with l articulation points, where l < p. The highest
MNSD of any OF in the overall graph is n= 2l × (2p − l − 1 +
1) = 2p − 1 + 2l (from Theorem 1). Therefore, l has to be at
least equal to q in order to achieve n > 2p − 1 + 2q − 1. Note
that Theorem 1 corresponds to the case q = 1. ■

Theorem 3 A constant c whose MNSD is S(c) > 3× 2p − 2 +
1 cannot be obtained by using a non-multiplicative
graph with only p + 1 A-operations and A-depth pre-
served equal to p.

Proof For the simplest case p = 2, there is only one
graph with p + 1 = 3 A-operations and A-depth preserved
equal to p = 2. This graph is shown in Figure 5 (see also
Cost-3 Graph No. 7 of Appendix A of [13]). The highest
MNSD of the OF in this graph is 3 × 2 p − 2 + 1 = 4.
Now, we review the case p ≥ 3. Since the A-depth must

be preserved equal to p, only p of these operations can
be sequentially connected. Consider that a graph G1

with A-cost and A-depth equal to p − 1 is connected to
one of the inputs of the last A-operation, as shown in
Figure 6. In order to avoid an articulation point, the
other input must come from a different position. Thus,
this input is connected to the remaining A-operation,
which should be placed in the (p − 1)-th depth level to
obtain the highest possible MNSD (from Observation B),
and whose inputs are identified as a1 and a2. Consider that
a1 comes from the A-operation placed in the (p − 2)-th
depth level. Let us review the cases when G1 is either
non-multiplicative (Figure 6a) or multiplicative (Figure 6b),
along with the point where a2 can come from.



Figure 5 The unique graph with A-depth equal to p = 2 and
p + 1 = 3 A-operations.
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If G1 is non-multiplicative (Figure 6a), the highest
MNSD of its OFs is n1 = 2p − 2 + 1 (from Theorem 1)
and a1 with a2 can come from the A-operation placed in
the (p − 2)-th level. Thus, the highest possible MNSD of
the OF in the last A-operation is n = n1 + na1 + na2,
where na1 and na2 are the respective highest MNSD in
a1 and a2. The highest MNSD of G1 is n1 = 2p − 2 + 1
and na1 = na2 = 2p − 2. Therefore, we have n = (2p − 2 + 1) +
2p − 2 + 2p − 2 = 2p − 2 + 1 + 2p − 1 = 3 × 2p − 2 + 1.
Figure 6 Subgraph G1 that has A-depth equal to p − 1 and
p − 1 A-operations, plus two extra A-operations. (a) G1 is non-
multiplicative graph and (b) G1 is a CM-based multiplicative graph.
If G1 is multiplicative (Figure 6b), consider that it is a CM-
based graph with l articulation points, where 1 ≤ l ≤ p− 2.
The highest MNSD of its OFs is n1 = 2l× (2p − l − 2 + 1).
Similarly, the highest MNSD in a1 is na1 = 2l − 1 ×
(2p − l − 2 + 1). To avoid an articulation point, a2 must
come from a depth level that does not exceed p − l − 2,
thus na2 = 2p − l − 2. The highest possible MNSD of the
OFs in the last A-operation is n = n1 + na1 + na2 = 2p − 2 +
2p − 3 + 2l + 2l − 1 + 2p − l − 2, which can be shown to be
less or equal to 3 × 2p − 2 + 1. ■

Theorem 4 A constant c whose MNSD is S(c) > 3 × 2p − 2+
2q − 1 with q = {1, 2,…, (p− 2)} can be obtained by using a
non-multiplicative graph whose A-depth is equal to p only if
at least p + q + 1 A-operations are used.

Proof Consider p + r A-operations, with r < p. Since the
A-depth is equal to p, only p of these operations can be
sequentially connected. Let us assume that a graph G1

with A-cost and A-depth equal to p − 1 is connected to
one of the inputs of the last A-operation, whereas the
other input comes from a different position to avoid an
articulation point. Consider that this input comes from a
graph G2, formed with r − 1 of the remaining A-opera-
tions. To obtain the highest MNSD in G2, we can con-
sider that G2 is a CM graph with its last A-operation
placed at the (p − 1)-th depth level. Let us assume that
the last of the remaining A-operations is connected to
the input of G2, with its inputs being a1 and a2. This is
shown in Figure 7. The highest MNSD of any OF from
G2 is n2 = 2r − 1 × (na1 + na2), where na1 and na2 are the
respective highest MNSD in a1 and a2.
If G1 is non-multiplicative (Figure 7a), the highest

MNSD of its OFs is n1 = 2p − 2 + 1 (from Theorem 1).
Both inputs a1 and a2 can come from the same point be-
cause G1 is non-multiplicative, and the highest depth
level where this point can be placed is p − r − 1; thus,
na1 = na2 = 2p − r − 1. Hence, the highest MNSD of any
OF in the overall graph is n = n1 + n2 = (2p − 2 + 1) + 2r − 1 ×
(na1 + na2) = (2p − 2 + 1) + 2r − 1 × (2p − r) = (2p − 2 + 1) +
2p − 1 = 3 × 2p − 2 + 1, which clearly is less or equal
than 3 × 2p − 2 + 2q − 1 even for the smallest q = 1.
If G1 is multiplicative, consider that it is a CM-based

graph with l articulation points, where 1 ≤ l ≤ p − 2. The
highest MNSD of its OFs is n1 = 2l × (2p − l − 2 + 1). We
can have two cases, depending on whether r is greater
than l or not. Let us see each one of these cases.
When r ≤ l (Figure 7b), only either a1 or a2 can come

from the A-operation placed in the (p − l − 1)-th depth
level but not both, because an articulation point would
be generated. If a1 comes from this A-operation, a2 can
come from the immediate lower depth level. Thus, na1 =
(2p − l − 2 + 1) and na2 = 2p − l − 2. Hence, the highest
MNSD of any OF in the overall graph is n = n1 + n2 =



Figure 7 Subgraph G1, CM subgraph G2, and two extra
A-operations. (a) G1 is non-multiplicative graph. (b) G1 is a
CM-based multiplicative graph, with r ≤ l and (c) G1 is a CM-based
multiplicative graph, with r > l.
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(2p − 2 + 2l) + 2r − 1 × (na1 + na2) = (2p − 2 + 2l) + 2r − 1 ×
[(2p − l − 2 + 1) + 2p − l − 2] = 2p − 2 + 2l+ 2r − 1 × (2p − l − 1 + 1),
which can be shown to be less or equal to 3 × 2p − 2 + 2r − 1.
Thus, r must be at least equal to q + 1 in order to achieve
a value n > 3 × 2p − 2 + 2q − 1.
When r > l (Figure 7c), a1 and a2 can come from the
same point because the subgraph H in G1 is non-
multiplicative, thus na1 = na2 = 2p − r − 1. Hence, the highest
MNSD of any OF in the overall graph is n=n1 +n2 = (2

p − 2 +
2l) + 2r − 1 × (na1 + na2) = (2p − 2 + 2l) + 2r − 1 × (2p − r) =
2p − 2 + 2l + 2p − 1 = 3 × 2p − 2+ 2l. Since l is at most equal to
r− 1, we have that the highest value for n is n = 3 × 2p − 2 +
2r − 1. Thus, n > 3 × 2p − 2 + 2q − 1 holds only if r is at least
equal to q+ 1. ■
Now, let us introduce the number of prime factors of

the constant c, denoted as Ω(c). Note that, along with S
(c), Ω(c) is a function that can be known a priori from
the constants. Generally speaking, obtaining the prime
factors of c is a challenging problem for very large con-
stants (over 110 digits) and it is one of the bases for the
Rivest-Shamir-Adleman (RSA) encryption scheme [19].
However, for constants up to 32 bits, which cover the
DSP problem sizes of the most practical importance
[14], the prime factors of c can be obtained straightfor-
wardly even with the simple sieve approach, such as the
one used in the MATLAB function ‘factor’.
The following theorems present the relations between

the values Ω(c) and S(c). If the required multiplicative
characteristics for the corresponding graph of the con-
stant c, highlighted in the previous theorems, cannot be
accomplished due to the value Ω(c), the lower bounds
for the A-cost and the A-depth are affected.

Theorem 5 A constant c whose MNSD is S(c) > 2p − 1+
2Ω(c) − 1 only can be obtained by using a graph with at
least p + 1 A-operations.

Proof From Theorem 2, it is known that at least Ω(c)
articulation points are required if only p A-operations
can be used. However, since Ω(c) is the number of prime
factors, only up to Ω(c) − 1 articulation points are
allowed. Thus, the only solution is using an additional
A-operation. By adding one more A-operation, the over-
all non-multiplicative graph can give an OF whose
MNSD is up to 2p + 1, which covers the MNSD-range
regardless of the value Ω(c). Therefore, at least p + 1 A-
operations are required. ■

Theorem 6 A constant c whose MNSD is S(c) > 3 × 2p − 2+
2Ω(c) + q − 2 with q = {1, 2,…, (p−Ω(c)− 1)} only can be ob-
tained by using a graph with A-depth at least equal to p + 1
if up to p + q A-operations are used, or with at least p + q + 1
A-operations if the minimum A-depth equal to p is
preserved.

Proof Let us consider a CM-based graph with p + r A-
operations and A-depth equal to p + s, where r < p and
s ≥ 0. Since at most Ω(c) − 1 articulation points can be
used, its CM subgraph has Ω(c) − 1 A-operations, whereas



:

Figure 8 Graph with four A-operations to implement the
multiplier by 11,467.
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its non-multiplicative subgraph H has p + r −Ω(c) + 1 A-
operations and an A-depth equal to p + s −Ω(c) + 1. Ac-
cording to Theorem 4, the highest MNSD of any OF
generated in the subgraph H is 3 × 2p + s − Ω(c) − 1 + 2r − s − 1

and the highest MNSD at the output of the overall graph
is n= 2Ω(c) − 1 × (3 × 2p + s–Ω(c) − 1 + 2r − s − 1) = 3× 2p + s − 2 +
2Ω(c)+r − s − 2. If the A-depth is preserved equal to p, we
have s = 0. In such case r needs to be at least equal to q +
1 in order to achieve n > 3 × 2p − 2 + 2Ω(c) + q − 2. On the
other hand, if r ≤ q holds, the value s should be at least
equal to 1 in order to achieve n > 3 × 2p − 2 + 2Ω(c) + q − 2,
implying that the A-depth of the overall graph is at least
equal to p + 1. ■
From Theorem 5 and substituting p using (3), the

lower bound LA can be expressed as

LA ¼ ⌈ log2S cð Þ⌉; if Ω cð Þ≥ log2 S cð Þ−2⌈ log2S cð Þ⌉−1� �þ 1;
⌈ log2S cð Þ⌉þ 1; otherwise:

�

ð4Þ
Note that if LA = ⌈ log2S(c)⌉ holds, Ld will have the

same value as LA without requiring any additional A-oper-
ation (as given by (2)). From (4), we can see that this only
can be accomplished if Ω(c) ≥ log2{S(c)− 2 ⌈ log2S cð Þ⌉−1 } + 1
holds. The argument S(c) − 2 ⌈ log2S cð Þ⌉−1 in the log2{x}
operation is always greater than zero and therefore the
condition can always be evaluated.
From Theorem 6, we have that if the A-cost is given as

NA ≥ ⌈ log2S(c)⌉ + q+ 1 and if log2{S(c) − 3 × 2 ⌈ log2S cð Þ⌉−2} +
2 −Ω(c) > q holds, the A-depth can be kept equal to
⌈ log2S(c)⌉. By noticing that any real number a is greater
than an integer b if this integer is given as b = ⌈a⌉ − 1 and
applying this observation to q, we obtain q = ⌈ log2
S cð Þ−3� 2⌈ log2S cð Þ⌉−2� �þ 2−Ω cð Þ⌉ + 1. In this equality,

the log2{x} operation does not yield finite values when S(c)
≤ 3 × 2 ⌈ log2S cð Þ⌉−2 holds. However, according to Theorem 3,
the A-depth can be kept equal to ⌈ log2S(c)⌉ by using only
one additional A-operation if the condition S(c) ≤ 3 ×
2 ⌈ log2S cð Þ⌉−2 + 1 holds. Therefore,

Ld ¼ ⌈ log2S cð Þ⌉; if NA≥⌈ log2S cð Þ⌉þ LEA;
⌈ log2S cð Þ⌉þ 1; otherwise;

�
ð5Þ

where LEA, the lower bound for the number of extra
A-operations required to generate NEFs and preserve
Ld= ⌈ log2S(c)⌉, is given as

LEA ¼
0; if Ω cð Þ≥ log2 S cð Þ−2⌈ log2S cð Þ⌉−1� �þ 1;
1; if S cð Þ≤3� 2⌈ log2S cð Þ⌉−2 þ 1;
⌈ log2 S cð Þ−3� 2⌈ log2S cð Þ⌉−2� �þ 2−Ω cð Þ⌉; otherwise

8<
:

ð6Þ
It is worth highlighting that, whereas the lower bound

LA only depends on the relation between Ω(c) and S(c),
the lower bound Ld depends on the A-cost NA. As
pointed out in [12], for many problem instances, there is
a tradeoff between the A-cost and the A-depth. From
(5), we have that such tradeoff is the minimum theoret-
ical value LEA, given in (6).
5 Comparison of proposed and current lower bounds
Let us review a simple example to illustrate how the pro-
posed lower bounds given in (4) and (5)-(6) are more pre-
cise with respect to the lower bounds from [12], expressed
in (2). To this end, consider the 14-bit integer constant
11,467, whose binary representation is 10110011001011.
Its CSD representation is 10�10�1010�1010�10�1 , which can
be found from the binary representation by iteratively
replacing every string having n ≥ 2 consecutive digits ‘1’
(e.g., 1111, where n = 4) with the string having n − 1 digits
‘0’ between a digit ‘1’ and a digit ‘�1 ’, (e.g., 1000�1 , where
n = 4; see [20] for more details). A MATLAB routine to
find the CSD representation of an integer is given in [21].
Recall that the value S(c) represents the number of

non-zero digits of a minimum signed digit (MSD) repre-
sentation (such as CSD) of the constant c. Hence, it is
clear from the CSD representation of the constant c =
11,467 that S(c) = 8, i.e., there are eight non-zero digits
in that representation. Note in passing that, in this par-
ticular example, the number of non-zero digits is the
same for both, CSD and binary representations. How-
ever, this not always occurs. Additionally, we can obtain
Ω(c), the number of prime factors of the constant c,
using the MATLAB command ‘length(factor(c))’. For the
constant c = 11,467, we have Ω(c) = 1, which indicates
that 11,467 is a prime number.
The constant 11,467 is known to have an optimal A-

cost that does not exceed 4, as mentioned in [20]. A
graph with four A-operations that implements the multi-
plier by 11,467, based on the ‘Leapfrog’ Cost-4 Graph
No. 10 of Appendix A of [13], is shown in Figure 8.
Let us denote the current lower bounds from [12] as

LA,c for the A-cost and Ld,c for the A-depth, which can
be obtained using (2). Similarly, we will denote the new
lower bounds as LA,new for the A-cost and Ld,new for the
A-depth, which can be obtained using (4) and (5)-(6), re-
spectively. All these lower bounds will be calculated by
substituting c = 11,467.
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The value S(c) = 8 replaced in (2) yields LA,c = ⌈ log2S
(c)⌉ = ⌈ log2(8)⌉ = 3. However, besides of S(c) = 8, we also
have Ω(c) = 1 as additional information for the new
lower bounds. Using S(c) and Ω(c) in (4), we have that
the condition Ω cð Þ≥ log2 S cð Þ−2⌈ log2S cð Þ⌉−1� �þ 1 does not

hold (in other words, 1≥ log2 8−2⌈ log2 8ð Þ⌉−1� �þ 1 is a false
statement). Therefore, according to (4), the new lower
bound for the A-cost of this constant is LA,new = ⌈ log2S
(c)⌉ + 1 = ⌈ log2(8)⌉ + 1 = 4. This new lower bound re-
veals that the solution with A-cost equal to 4, whose
graph is presented in Figure 8, is in fact optimal in terms
of the A-cost.
On the other hand, recall from [12] that it is always

possible to find a solution with the lower bound Ld,c
given in (2), which in this case is Ld,c = ⌈ log2S(c)⌉ =
⌈ log2(8)⌉ = 3. Figure 9 shows a graph that implements
the multiplier by 11,467 with the minimum A-depth
equal to 3 and five A-operations, based on the ‘Leapfrog’
Cost-5 Graph No. 14 of Appendix A of [13].
Since we have LA,c = Ld,c = 3, with the current lower

bounds one can assume that the three A-operations ne-
cessary to meet the minimum A-depth might be sufficient
to implement the constant multiplier by 11,467. However,
from (5) we have that the lower bound Ld,new = ⌈ log2S(c)⌉ =
⌈ log2(8)⌉ = 3 can be preserved if at least LEA extra A-opera-
tions are used in addition to the three A-operations dictated
by the bound Ld,new = 3. The value for LEA is obtained using
(6), where the conditions Ω cð Þ≥ log2 S cð Þ−2⌈ log2S cð Þ⌉−1� �þ 1

and S cð Þ≤3� 2⌈ log2S cð Þ⌉−2 þ 1 do not hold (in other words,
1≥ log2 8−2⌈ log2 8ð Þ⌉−1� �þ 1 and 8≤3� 2⌈ log2 8ð Þ⌉−2 þ 1 are false

statements), leading to LEA = ⌈ log2 S cð Þ−3� 2⌈ log2S cð Þ⌉−2� �þ
2−Ω cð Þ⌉ = ⌈ log2 8−3� 2⌈ log2 8ð Þ⌉−2� �þ 2−1⌉ = 2. This
means that three A-operations are actually not sufficient
to preserve the minimum A-depth and at least five A-op-
erations are required. Thus, the solution with A-cost equal
to 5 and A-depth equal to 3, whose graph is presented in
Figure 9, is in fact optimal in terms of the A-cost subject
to the minimum A-depth.
Figure 9 Graph to implement the multiplier by 11,467 with five
A-operations and the minimum A-depth equal to 3.
It is clear that the proposed lower bounds are more in-
formative in comparison to the lower bounds from [12].
Similar examples arise with the integer constants 11,093
and 13,003, among others. Finally, Table 1 shows the
percentage of constants with improved lower bounds
among all the 14-bit odd integer constants and among
10,000 randomly generated constants that can be
expressed with B-bits, where 14 < B ≤ 32.

6 Conclusions
This paper has presented an extension of the current
theoretical lower bounds for the A-cost and the A-depth
in single constant multiplication (SCM) blocks con-
structed with shifts and A-operations (additions and
subtractions). The insight of this work has been the
introduction of the number of prime factors of the con-
stant as key information to such extension.
Additionally, a new lower bound has been revealed,

namely, the theoretical minimum number of A-opera-
tions required to preserve the minimum A-depth, de-
noted as LEA. This new lower bound is essential because
preserving the minimum A-depth has been currently an
important objective to design systems with high speed
and low power. By knowing LEA it is possible to have an
early estimation of how many extra adders would be
needed for a given implementation with the lowest A-
depth, which is translated to extra chip area. Since for
current and future semiconductor technologies leakage
power consumption is closely related to chip area and it
has a significant impact, the value LEA might provide
valuable information to decide in an early stage of design
if it is better to pursue a minimization of the A-cost sub-
ject to the minimum A-depth or minimize the A-cost
subject to a given A-depth greater than the minimum.
As a future work, the current theoretical lower bounds

for multiple constant multiplication (MCM) cases can
be also extended. The proposed theorems and the ex-
tended lower bounds can be used as a basis, and the in-
clusion of the number of prime factors of the involved
constants might, of course, play an important role as it
did in this work. The theoretical lower bound for the A-
cost required when the minimum A-depth is preserved,
as well as the lower bound for the A-depth necessary to
obtain the minimum A-cost, can be revealed. Addition-
ally, the formulation of optimal and a suboptimal SCM
and MCM algorithms to minimize the A-cost subject to
the minimum A-depth can be developed, taking as a
Table 1 Percentage of constants with improved lower
bounds

Word length Total LEA = 1 LEA = 2 LEA = 3

(B = 14)-bits 19.6% 19.4% 0.2% 0%

(14 < B≤ 32)-bits 33.36% 32.08% 1.14% 0.14%
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basis the theorems developed in this work, where the
prime factors of the involved constants can be used as
input information.
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