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Abstract

We present a framework for Tensor-based subspace Tracking via Kronecker-structured projections (TeTraKron).
TeTraKron allows to extend arbitrary matrix-based subspace tracking schemes to track the tensor-based subspace
estimate. The latter can be computed via a structured projection applied to the matrix-based subspace estimate
which enforces the multi-dimensional structure in a computationally efficient fashion. This projection is tracked by
considering all matrix rearrangements of the signal tensor jointly, which can be efficiently realized via parallel
processing. In addition, we incorporate forward-backward-averaging and find a similar link between the real-valued
matrix-based and tensor-based subspace estimation. This enables the tracking of the real-valued tensor-based
subspace estimate via a similar Kronecker-structured projection applied to the real-valued matrix-based subspace
estimate. In time-varying multidimensional harmonic retrieval problems, the TeTraKron-based subspace tracking
schemes outperform the original matrix-based subspace tracking algorithms as well as the batch solutions provided
by the SVD and the HOSVD. Moreover, incorporating forward-backward-averaging leads to an improved accuracy of
the subspace tracking, and only real-valued processing is involved. Furthermore, we evaluate the performances of
ESPRIT-type parameter estimation schemes where the subspace estimates obtained by the proposed TeTraKron-based
subspace tracking algorithms are used for the tracking of spatial frequencies in time-varying scenarios.

Keywords: Subspace tracking; Tensors; Projection; Forward-backward-averaging

1 Introduction
The design of adaptive algorithms to track the subspace of
an instationary random signal has a long standing history
in signal processing. The main challenges are achiev-
ing a fast adaptation and a good steady-state behavior
while keeping the computational complexity low. The first
subspace-tracking schemes like [1] still had a complexity
of O{M2 · d} where M is the number of channels (sen-
sors) and d is the rank of the signal subspace. Later, as a
singular value decomposition (SVD) technique and a data
projection method (DPM) were proposed in [2] and [3],
respectively, the complexity was lowered to O{M · d2}.
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Approaches that belong to a low complexity class with
O{M · d} operations have been developed, such as the
scheme in [4] that estimates the eigenvector associated
with the largest eigenvalue. Classified into the category of
power-based methods similarly as DPM, the fast Rayleigh
quotient-based adaptive noise subspace (FRANS) algo-
rithm [5] combines DPM with a fast orthonormaliza-
tion procedure. Another power-based approach that has
the complexity of O{M · d}, as well as the fast approx-
imated power iteration (FAPI) algorithm [6], is based
on the power iteration method and a novel projection
approximation. On the other hand, belonging to the cat-
egory of projection approximation-based methods, the
well-known projection approximation subspace tracking
(PAST) algorithm [7] is one of the first low complex-
ity subspace tracking schemes with O{M · d} operations.
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PAST interprets the signal subspace estimate as the solu-
tion of a minimization problem which can be simplified
via an appropriate projection approximation and then
applies a recursive least squares (RLS) procedure to track
the signal subspace. A deflation-based version of PAST
(PASTd) with an even lower complexity was proposed in
[7]. In the literature, variants of some of the aforemen-
tioned algorithms have been developed to improve the
numerical stability or to track the minor subspace. For a
more detailed survey, the reader is referred to [8].
For stationary multidimensional signals, it has been

shown that the subspace estimation accuracy can be sig-
nificantly improved if tensors are used to store andmanip-
ulate the signals. A signal subspace estimate based on the
Higher-Order Singular Value Decomposition (HOSVD)
[9] was introduced in [10]. Therefore, extending this sub-
space estimation scheme to the tracking of the subspace
of a time-varying multidimensional signal is of significant
interest.
To this end, we introduce the Tensor-based sub-

space Tracking via Kronecker structured projections
(TeTraKron) frameworka. TeTraKron allows to exploit
the rich heritage of matrix-based subspace tracking and
flexibly extends arbitrary matrix-based subspace tracking
schemes to the tracking of the HOSVD-based subspace
estimate defined in [10] by running them on all the unfold-
ings of the data tensor in parallel. Note that tracking the
subspaces of all unfoldings of a tensor has been proposed
before, e.g., in [11,12]. For the computer vision applica-
tion, the incremental tensor subspace learning algorithm
developed in [11] tracks the subspace of the unfoldings
by using an incremental SVD approach. The unfoldings
of the data tensor are projected onto the subspaces. An
incremental tensor analysis framework and its variants
were introduced in [12] to efficiently compute a com-
pact summary of high-dimensional data and to reveal
the hidden correlations. However, these approaches do
not consider the recombination of these subspaces to the
HOSVD-based subspace estimate from [10]. The compu-
tationally efficient recombination is the main focus of the
TeTraKron framework. Moreover, [11,12] require to track
the core tensor of the HOSVD which TeTraKron does not
need at all.
The incorporation of forward-backward-averaging is

also investigated. Employed by many parameter esti-
mation algorithms as a preprocessing step, forward-
backward-averaging virtually augments the observations
and leads to an enhanced estimation accuracy. In addi-
tion, complex-valued measurements can be further con-
veniently and efficiently transformed to real-valued data
[10]. Due to the fact that only real-valued computations
are involved in the subsequent steps, the complexity is
reduced. In this work, we show that after incorporating
forward-backward-averaging, the real-valued HOSVD-

based subspace estimate can be obtained by apply-
ing a structured projection to the real-valued matrix-
based subspace estimate as well. Consequently, the
TeTraKron framework enables the extension of matrix-
based subspace tracking schemes to realize real-valued
tensor-based subspace tracking where forward-backward-
averaging is included and provides benefits in terms of
both the performance and the complexity. In time-varying
multidimensional harmonic retrieval problems, we use
the subspace estimates tracked via the TeTraKron-based
subspace tracking schemes in ESPRIT-type parameter
estimation algorithms [10] and evaluate their resulting
performances.
This paper is organized as follows: Section 2 introduces

the data model for the matrix-based and the tensor-
based subspace estimation. The TeTraKron framework
is described in detail in Section 3. The incorporation
of forward-backward-averaging and real-valued subspace
tracking are also discussed. Section 4 provides examples
of how TeTraKron can be employed to develop tensor-
based subspace tracking schemes based on PAST, PASTd,
and FAPI. Section 5 presents numerical results before the
conclusions are drawn in Section 6.
To facilitate the distinction between scalars, vectors,

matrices, and tensors, the following notation is used
throughout the manuscript: scalars are represented by
italic letters, vectors by lowercase bold-faced letters,
matrices by uppercase bold-faced letters, and tensors as
bold-faced calligraphic letters. The superscripts T, H, −1,
and ∗ refer to matrix transposition, Hermitian transposi-
tion, matrix inversion, and complex conjugation, respec-
tively. The Kronecker product is represented via ⊗ and
the Khatri-Rao (columnwise Kronecker) product via �. An
M × M identity matrix is symbolized by IM. A matrix
denoted by IM×d (M > d) has the form IM×d =[
Id 0d×(M−d)

]T. The two-norm of a vector is denoted
by ‖ · ‖. The operator Tri{·} calculates the upper/lower
triangular part of its argument and copies its Hermitian
transpose to the other lower/upper triangular part [7].
An R-way tensor with size Ir along mode r = 1, 2, . . . ,R

is represented asA ∈ C
I1×I2×...×IR . The r-mode vectors of

A are obtained by varying the rth index from 1 to Ir and
keeping all other indices fixed. Aligning all r-mode vectors
as the columns of a matrix yields the r-mode unfolding
of A which is denoted by [A](r) ∈ C

Ir×Ir+1·...·IR·I1·...·Ir−1 .
The order of the columns is arbitrary as long as it is cho-
sen consistently. We use the reverse cyclical ordering, as
proposed in [9]. The r-mode product between a tensor
A and a matrix U is written as A ×r U . It is computed
by multiplying all r-mode vectors of A with U . In other
words, [A ×r U](r) = U · [A](r). The r-rank of a ten-
sor A is the rank of the r-mode unfolding matrix [A](r).
The tensor IR,d is an R-dimensional identity tensor of size
d × d × . . . × d, which is equal to one if all R indices are
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equal and zero otherwise. In addition, [A �r B] symbol-
izes the concatenation of two tensors A and B along the
rth mode [10].

2 Datamodel
In this section, we introduce the data model for both the
matrix-based and the tensor-based subspace estimation.
To this end, we start with the non-adaptive case where the
subspaces are estimated once, based on N observations
in a stationary window. We consider a linear mixture of
d sources superimposed by additive noise, which can be
expressed as

X = A · S + W . (1)

Here, X ∈ C
M×N is the matrix of observations from

M channels at N subsequent time instants, A ∈ C
M×d is

the unknown mixing matrix or the array steering matrix,
S ∈ C

d×N contains the unknown source symbols, and W
represents the additive noise samples. Then, the SVD of X
can be expressed as

X =
[
Ûs Ûn

]
·
[

�̂s 0
0 �̂n

]
·
[
V̂ s V̂n

]H
, (2)

where the columns of Ûs ∈ C
M×d represent an

orthonormal basis for the estimated signal subspace, i.e.,
span

{
Ûs

}
≈ span{A}.

We can arrange the elements of the matrix X ∈ C
M×N

into a tensor X ∈ C
M1×M2...×MR×N , where M = M1 ·

M2 . . . · MR. While such a rearrangement is always possi-
ble, it only provides a benefit if the actual underlying signal
has a corresponding multidimensional structure, e.g., it
resembles a signal sampled on a multidimensional lattice.
These dimensions can for instance relate to space (1-D
or 2-D arrays at transmitter or receiver), frequency, time,
or polarization, depending on the application. The cor-
responding tensor-valued data model takes the following
form [10]

X = A ×R+1 ST + W , (3)

where A ∈ C
M1×M2...×MR×d and W ∈ C

M1×M2...×MR×N

represent the mixing tensor and the noise tensor, respec-
tively. Since (3) is a rearranged version of (1), the cor-
responding quantities are linked via the relations X =
[X ]TR+1, A = [A]TR+1, and W = [W]TR+1, respec-
tively. As shown in [10], based on (3), we can define a
tensor-based subspace estimate by computing a truncated
Higher-Order SVD (HOSVD) [9],

X ≈ Ŝ[s] ×1 Û
[s]
1 ×2 Û

[s]
2 . . . ×R+1 Û

[s]
R+1, (4)

where Û [s]
r ∈ C

Mr×pr has unitary columns and denotes the
matrix of the estimated r-mode singular vectors. More-
over, pr is the r-rank of the mixing tensor A, and Ŝ[s]

∈ C
p1×p2...×pR+1 represents the truncated core tensor that

can be computed fromX via

Ŝ[s] = X ×1 Û
[s]H
1 ×2 Û

[s]H
2 . . . ×R+1 Û

[s]H
R+1. (5)

Based on the HOSVD, an improved signal subspace

estimate is given by
[
Û [s]]T

(R+1)
∈ C

M×d , where Û [s]

is [10]

Û [s] = Ŝ[s] ×1 Û
[s]
1 ×2 Û

[s]
2 . . . ×R Û [s]

R ×R+1 �̂
−1
s ,

(6)

where �̂s has been defined in (2). Compared to the tensor-
based subspace estimation in [10], the multiplication with
�̂

−1
s represents only a normalization [13].
As discussed in [10], (6) provides a better subspace esti-

mate than Ûs if and only if A is r-rank deficient in at
least one mode r = 1, 2, . . . ,R, i.e., pr < Mr . An example
where this assumption is fulfilled is given by R-D har-
monic retrieval [10], where we consider a superposition of
d harmonics samples on an R-D lattice. This gives rise to
a mixing matrix A and a mixing tensorA of the following
form

A = A1 � A2 � . . . � AR (7)
A = IR+1,d ×1 A1 ×2 A2 . . . ×R AR, (8)

where Ar ∈ C
Mr×d represents the mixing matrix in the

rth mode. In this case, we have pr ≤ d and, there-
fore, the tensor-based subspace estimate is superior to the
matrix-based subspace estimate if d < Mr for at least one
r = 1, 2 . . . ,R [10]. However, there are applications with
r-rank deficiencies where the observed signal obeys (3)
but not (7), for instance, the tensor-based blind channel
estimation scheme in [14].

3 Tensor subspace Tracking via
Kronecker-structured projections (TeTraKron)

In a time-varying scenario, the observation matrix X is
augmented by a new column x(n) ∈ C

M×1 with every new
snapshot n

x(n) = A(n) · s(n) + w(n), (9)

where A(n) is the mixing matrix or the array steering
matrix for the nth snapshot. By employing a subspace
tracking scheme, an estimate of the signal subspace Ûs(n)

is obtained for each new snapshot n. In the tensor case,
x(n) ∈ C

M×1 is rearranged into X (n) ∈ C
M1×M2...×MR . A

tensor-based subspace tracking algorithm aims at estimat-

ing the HOSVD-based subspace estimate
[
Û [s]

(n)
]T
(R+1)

∈ C
M×d for each new snapshot.
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3.1 Tensor subspace estimation via structured
projections

At first sight, (6) suggests that in order to track the signal
subspace, we need to track the r-mode singular vectors
as well as the core tensor. However, it can be shown that
tracking the core tensor is indeed unnecessary, since the
tensor-based subspace estimate can be computed from
the matrix-based subspace estimate via a structured pro-
jection which does not involve the core tensor. This was
first pointed out in [15] for the 2-D case. However, it can
be generalized to an arbitrary number of dimensions. This
claim is summarized in the following theorem:

Theorem 1. The HOSVD-based subspace estimate can
be computed by projecting the unstructured matrix-based
subspace estimate obtained via the SVD onto a Kronecker
structure in the following manner

[
Û [s]]T

(R+1)
=

(
T̂1 ⊗ T̂2 . . . ⊗ T̂R

)
· Ûs, (10)

where T̂r = Û [s]
r · Û [s]H

r is a projection matrix onto the
space spanned by the r-mode vectors.

Proof. [13]

In the proof, the core tensor in (6) is first eliminated by

substituting (5) into (6), and
[
Û [s]]T

(R+1)
is then computed

as[
Û [s]]T

(R+1)
=

(
T̂1 ⊗ T̂2 . . . ⊗ T̂R

)
· [X ]T(R+1) · Û [s]∗

R+1 · �̂
−1
s .

Relying on the observation that X = [X ]T(R+1), V̂ s =
Û [s]∗

R+1, and

X = Ûs · �̂s · V̂H
s ,

which follows (2), the identity (10) is proved. Equation (10)
provides the central idea behind the TeTraKron frame-
work that we introduce in this paper. It shows that the
tensor-based subspace estimate can be understood as
a projection of the unstructured matrix-based subspace
estimate onto the Kronecker structure inherent in the
data. It also shows that for all modes where pr = Mr , we
have T̂r = Ir , i.e., no projection is performed. Another
consequence we can draw from (10) is that there is no
need to compute (or track) the core tensor. We can find
the tensor-based subspace estimate only based on the
r-mode subspaces contained in Û [s]

r . These are the sub-
spaces obtained from the r-mode unfoldings of X , which
are again matrices. Therefore, any matrix-based subspace
tracking scheme can be applied to track these subspaces
as well.

Consequently, the main idea can be summarized as fol-
lows: in addition to tracking the subspace of the matrix X
(which is the same as tracking the row space of the (R+1)-
mode unfolding), we apply the same tracking algorithm to
all r-mode unfoldings of the tensor which satisfy pr < Mr
for r = 1, 2, . . . ,R in parallel. Note that even though this
seems to increase the complexity by a factor equal to the
number of modes we track, all these trackers can run
in parallel which facilitates an efficient implementation.
After each step, the tensor-based subspace estimate can
be recombined via (10).
However, this recombination requires O

{
M2 · d}

mul-
tiplications, i.e., it is quadratic inM, which is undesirable.
To lower the complexity, we rewrite (10) as

[
Û [s]]T

(R+1)
= U [s]

Kron · ˆ̄Us, (11)

where U [s]
Kron = U [s]

1 ⊗ . . . ⊗ U [s]
R ∈ C

M×dR and ˆ̄Us =
U [s]H

Kron · Ûs ∈ C
dR×d assuming pr = d ≤ Mr , for

r = 1, 2, . . . ,R. Note that the matrix product in (11)
requires only O

{
M · dR} multiplications, i.e., it is linear

in M. Moreover, (11) can be used for tensor-based sub-
space tracking as well: we track U [s]

r for r = 1, 2, . . . ,R
by applyingmatrix-based subspace tracking schemes to all
unfoldings, then project ourM-dimensional observations
into a lower-dimensional space by premultiplying them
with U [s]H

Kron ∈ C
dR×M and finally run a matrix-based sub-

space tracker on the lower-dimensional data to track the
d-dimensional subspace ˆ̄Us ∈ C

dR×d.
TeTraKron allows to readily extend arbitrary matrix-

based subspace tracking schemes to tensors which yields
an improved estimation accuracy as we demonstrate in
Section 5. Therefore, we obtain novel tensor-based sub-
space trackers by building on known algorithms, which
is a particularly attractive feature of the TeTraKron
framework. In addition to running these trackers on all
unfoldings in parallel and recombining the signal sub-
space estimate via (10) or (11), the only modification
we have to apply to the matrix-based subspace tracking
schemes is the following: as introduced at the beginning
of this section, it is typically assumed that the obser-
vation matrix X is augmented by a new column x(n)

with each new snapshot n. For the r-mode unfoldings of
X (n) ∈ C

M1×M2...×MR that is a rearranged version of x(n),
every new snapshot generates not only one but also sev-
eral new columns. For instance, for the 1-mode unfolding,
we obtain

∏R
r=2Mr new columns, each of size M1. This

new batch of columns can be processed sequentially, or,
by modifying the tracking schemes, also in one batch. We
demonstrate such a modification using the examples of
the PAST algorithm [7] and the FAPI algorithm [6] in
Section 4.
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3.2 Forward-backward-averaging and real-valued
subspace tracking

Forward-backward-averaging and real-valued subspace
estimation are introduced for the matrix case in [16]
and the tensor case in [10], respectively. By employing
forward-backward-averaging, the number of snapshots is
virtually doubled. It also results in the decorrelation of two
coherent sources. Moreover, the complex spatial covari-
ance matrices can be mapped to the real-valued matrices
such that the subsequent computations are real-valued,
which contributes to a reduced complexity.
In this section, we revisit the concept of forward-

backward-averaging and present real-valued subspace
tracking. First, we calculate a forward-backward-
averaged version of the measurement tensor
X ∈ C

M1×M2×...×MR×N [10]

Z = [
X �R+1

[
X ∗ ×1 �M1 ×2 �M2 · · · ×R+1 �N

]]
∈ C

M1×M2×...×MR×2N , (12)

where �p is a p × p exchange matrix which has ones
on its anti-diagonal and zeros elsewhere. We further map
this centro-Hermitian tensor to a real-valued tensor ϕ(Z)

∈ R
M1×M2×...×MR×2N by using the transformation [10]b

ϕ(Z) = Z ×1 QH
M1 ×2 QH

M2 · · · ×R+1 QT
2N , (13)

where Qp is a p × p left-� real and unitary matrix, i.e., it
satisfies �p · Q∗

p = Qp [17].
For the matrix-based case, the matrix of observations

X ∈ C
M×N is mapped to the following centro-Hermitian

matrix

Z = [
X �M · X∗ · �N

] ∈ C
M×2N . (14)

Then, Z is transformed to a real-valued matrix using the
transformation [16]

ϕ(Z) = QH
M · Z · Q2N , (15)

where QM is defined as [10]

QM = QM1 ⊗ QM2 · · · ⊗ QMR . (16)

By computing a truncated HOSVD of ϕ(Z), a real-

valued subspace estimate is obtained as
[
Ê [s]]T

(R+1)

∈ R
M×d , where Ê [s]

has the following form [10]

Ê [s] = Ŝ[s]
Z ×1 Ê

[s]
1 ×2 Ê

[s]
2 . . . ×R Ê[s]

R ×R+1 �̂
′−1

s . (17)

The matrices Ê[s]
r , r = 1, 2, . . . ,R + 1, denote the

estimates of the real-valued bases for the r-mode sub-
spaces, and �̂

′
s represents the diagonal matrix of the

(R + 1)-mode singular values. The multiplication of �̂
′−1

s

is only a normalization procedure. By substituting the
expression of the core tensor Ŝ[s]

Z

Ŝ[s]
Z = ϕ(Z) ×1 Ê

[s]H
1 ×2 Ê

[s]H
2 . . . ×R+1 Ê

[s]H
R+1 (18)

into (17),
[
Ê [s]]T

(R+1)
∈ R

M×d is further expressed as

[
Ê [s]]

(R+1)
= �̂

′−1

s · Ê[s]H
R+1 · [ϕ(Z)](R+1)

×
(
T̂

′
1 ⊗ T̂

′
2 . . . ⊗ T̂

′
R

)T
, (19)

where T̂
′
r = Ê[s]

r · Ê[s]H
r . Substituting (12) into (13) gives

ϕ(Z) = [[
X ×1 QH

M1 · · · ×R QH
MR

] �R+1[
X ∗ ×1

(
QH
M1 · �M1

) · · · ×R
(
QH
MR · �MR

) ×R+1 �N
]]

×R+1 QT
2N .

(20)

Notice that(
QH
M1 · �M1

) ⊗ (
QH
M2 · �M2

) · · · ⊗ (
QH
MR · �MR

)
= QH

M · (�M1 ⊗ �M2 · · · ⊗ �MR)

= QH
M · �M. (21)

Expanding the (R + 1)-mode unfolding of (20) yields

[ϕ(Z)](R+1) = QT
2N ·

[
[X ](R+1) · (

QH
M

)T
�N · [X ]∗(R+1) · (

QH
M · �M

)T
]
.

(22)
As there exists a link between the matrix-based data

model and its tensor-based counterpart such that X =
[X ]T(R+1), we can express [ϕ(Z)]T(R+1) as

[ϕ(Z)]T(R+1) = QH
M · [

X �M · X∗ · �N
] · Q2N . (23)

Recall that ϕ(Z) is defined via (14) and (15), leading to
the observation that

ϕ(Z) = [ϕ(Z)]T(R+1) . (24)

As a real-valued equivalent to Theorem 1, we have[
Ê [s]]T

(R+1)
=

(
T̂

′
1 ⊗ T̂

′
2 . . . ⊗ T̂

′
R

)
· Ês, (25)

where the columns of Ês ∈ R
M×d represent a real-valued

orthonormal basis for the estimated signal subspace in the
matrix-based case. The proof proceeds along the lines of
the proof of Theorem 1 in [13].
Hence, (25) indicates that the real-valued tensor-

based subspace estimate can be computed by apply-
ing a Kronecker-structured projection to the real-valued
matrix-based subspace estimate similar to the complex-
valued case. The calculation of the core tensor is also not
required. Note that the obtained real-valued tensor-based
subspace estimate can be employed in the unitary tensor
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ESPRIT algorithm [10] for parameter estimation in mul-
tidimensional harmonic retrieval problems. We show the
corresponding numerical results in Section 5.
To summarize, in case that forward-backward-

averaging is incorporated, the TeTraKron framework
can be employed to extend a matrix-based subspace
tracking scheme to tensors such that real-valued tensor-
based subspace tracking is realized. For each snapshot, a
forward-backward-averaged version of the measurement
tensor is mapped to a real-valued tensor similarly as (12)
and (13). Then, any matrix-based subspace tracker can
be run on all unfoldings of this tensor in parallel where
only real-valued computations are involved. Finally, the
real-valued subspace estimate is obtained via a recom-
bination procedure such as (25)c. In Section 4, where
the matrix-based algorithms PAST [7] and FAPI [6] are
used as examples, we explain explicitly how real-valued
tensor-based subspace tracking based on the TeTraKron
framework is performed.

4 Examples
In this section, we provide examples of how the
TeTraKron framework can be used to devise tensor-based
subspace tracking schemes. Since TeTraKron allows us
to extend an arbitrary matrix-based subspace tracking
scheme to the tensor case, we choose two examples,
namely, the simple but widely used PAST algorithm [7] as
well as the FAPI scheme [6] that is a fast implementation
of the power iteration method for subspace tracking.

4.1 Tensor-based PAST/PASTd
The PAST algorithm for tracking the signal subspace is
summarized in Algorithm 1, where x(n) is the new mea-
surement vector at time n, P(n) corresponds to the inverse
of the correlation matrix of the projected vector y(n) =
Û

H
s (n) ·x(n), which is approximated as y(n) = Û

H
s (n−1) ·

x(n). Moreover, g(n) is the gain vector and β the forget-
ting factor of the underlying RLS procedure. Finally, e(n)

is the approximation error and IM×r symbolizes the first r
columns of anM × M identity matrix.

Algorithm 1 Summary of the PAST algorithm [7]

P(0) = Id , Ûs(0) = IM×d

FOR n = 1, 2, . . . DO

y(n) = Û
H
s (n − 1) · x(n)

h(n) = P(n − 1) · y(n)

g(n) = h(n)/
(
β + yH(n) · h(n)

)
P(n) = β−1 · Tri{P(n − 1) − g(n) · hH(n)}
e(n) = x(n) − Ûs(n − 1) · y(n)

Ûs(n) = Ûs(n − 1) + e(n) · gH(n)

END

Recall that the data tensor observed at each new snap-
shot X (n) ∈ C

M1×M2...×MR is a rearranged version of
x(n) ∈ C

M×1. In the TeTraKron extension of PAST, we
apply the same algorithm to all unfoldings of X (n), i.e.,
[X (n)](r) ∈ C

Mr× M
Mr , r = 1, 2 . . . ,R. For instance, in the

R = 2-dimensional case, i.e., our data tensor X is of
size M1 × M2 × N . With each new observation vector
x(n) ∈ C

M1·M2×1, we obtain a new matrix of observations
for the one-space and the two-space of X which is given
by X̃(n) ∈ C

M1×M2 for [X ](1) and X̃T
(n) for [X ](2). Note

that X̃(n) is a rearranged version of x(n) which satisfies
vec

{
X̃(n)

}
= x(n).

Since PAST is based on RLS, it can be modified to pro-
cess the entire new batch of observations at the same time.
The modified update equations for the r-mode unfolding
[X (n)](r) ∈ C

Mr× M
Mr become

Y r(n) = Û [s]H
r (n − 1) · [X (n)](r) (26)

Hr(n) = Pr(n − 1) · Y r(n) (27)

Gr(n) = Hr(n) ·
(
β · IM/Mr + YH

r (n) · Hr(n)
)−1

(28)
Pr(n) = β−1 · Tri{Pr(n − 1) − Gr(n) · HH

r (n)} (29)

Fr(n) = [X (n)](r) − Û [s]
r (n − 1) · Y r(n) (30)

Û [s]
r (n) = Û [s]

r (n − 1) + Fr(n) · GH
r (n). (31)

Notice that to process the batch of M
Mr

columns, the
inverse of a M

Mr
× M

Mr
matrix is involved. Especially for

R > 2, it is usually true that d < M
Mr

. In such cases,
it becomes computationally more efficient to update the
d × d correlation matrix of Y r(n) given by

Cyryr (n) = β · Cyryr (n − 1) + Y r(n) · YH
r (n), (32)

and directly calculate its inverse Pr(n) = C−1
yryr (n). Mul-

tiplying
(
β · IM/Mr + YH

r (n) · Hr(n)
)
to the right of both

sides of (28) yields

Gr(n) · (
β · IM/Mr + YH

r (n) · Hr(n)
) = Hr(n). (33)

Then, Gr(n) is expressed as

Gr(n) = β−1 · (
Hr(n) − Gr(n) · YH

r (n) · Hr(n)
)
. (34)

Substituting (27) into (34) gives

Gr(n) = β−1 · (
Pr(n − 1) − Gr(n) · YH

r (n) · Pr(n − 1)
) · Y r(n)

= β−1 · (
Pr(n − 1) − Gr(n) · HH

r (n)
) · Y r(n).

(35)

Knowing that

C−1
yryr (n) = Pr(n) = β−1 · (

Pr(n − 1) − Gr(n) · HH
r (n)

)
,

(36)
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while the operation Tri{·} in (29) is only employed to pre-
serve the Hermitian symmetry of Pr(n) in the presence of
rounding errors [7], Gr(n) is alternatively updated as

Gr(n) = C−1
yryr (n) · Y r(n). (37)

Equations (27), (28), and (29) are replaced by (32) and
(37). The deflation-based version of PAST, PASTd [7], is
also based on RLS and can hence be modified in the
same manner. We summarize the tensor-based PASTd
algorithm for updating the r-mode subspace estimates
in Algorithm 2, where û[s]r,i (n) denotes the ith column of
Û [s]

r (n) ∈ C
Mr×d, and dr,i(n) represents the ith entry of

dr(n) ∈ R
d that contains the eigenvalue estimates. The

initial values of the eigenvalue estimates are chosen to be 1
[7], i.e., dr(0) is an all-ones vector.

Algorithm 2 Summary of the tensor-based version
of the PASTd algorithm [7] for updating the r-mode
subspace estimates

X̄r,1(n) = [X (n)](r)

FOR i = 1, 2, . . ., d DO

yTr,i(n) = û[s]
H

r,i (n − 1) · X̄r,i(n)

dr,i(n) = β · dr,i(n − 1) + ‖yr,i(n)‖2
Fr,i(n) = X̄r,i(n) − û[s]r,i (n − 1) · yTr,i(n)

û[s]r,i (n) = û[s]r,i (n − 1) + Fr,i(n) · (
y∗
r,i(n)/dr,i(n)

)
X̄r,i+1(n) = X̄r,i(n) − û[s]r,i (n) · yTr,i(n)

END

When forward-backward-averaging is incorporated,
each new observation vector x(n) is augmented by a new
virtual column. In the matrix-based case, the real-valued
subspace estimate Ês(n) is obtained by applying the PAST
algorithm to

ϕ(Z(n)) = QH
M · Z(n) · Q2, (38)

where Z(n) is a forward-backward-averaged version of
x(n) given by

Z(n) = [
x(n) �M · x∗(n)

]
. (39)

In the tensor-based case, a real-valued tensor
ϕ (Z(n)) ∈ R

M1×M2×...×MR×2 is computed by using
N = 1 in (13)

ϕ (Z(n)) = Z(n) ×1 QH
M1 ×2 QH

M2 · · · ×R+1 QT
2 , (40)

where Z(n) is a forward-backward-averaged version of
X (n)

Z(n) = [
X (n) �R+1

[
X ∗(n) ×1 �M1 ×2 �M2 · · · ×R �MR

]]
∈ C

M1×M2×...×MR×2.
(41)

In the new real-valued tensor-based subspace track-
ing scheme that is an extension of PAST based on the
TeTraKron framework, we run the PAST algorithm on all
unfoldings of the real-valued tensor ϕ (Z(n)) in parallel.
For the r-mode unfolding [ϕ (Z(n))](r) ∈ R

Mr×2· M
Mr where

pr < Mr , the updated equations where only real-valued
computations are involved are as follows:

Y r(n) = Ê[s]T
r (n − 1) · [ϕ (Z(n))](r) (42)

Cyryr (n) = β · Cyryr (n − 1) + Y r(n) · YT
r (n) (43)

Gr(n) = C−1
yryr (n − 1) · Y r(n) (44)

Fr(n) = [ϕ (Z(n))](r) − Ê[s]
r (n − 1) · Y r(n) (45)

Ê[s]
r (n) = Ê[s]

r (n − 1) + Fr(n) · GT
r (n). (46)

Afterwards, the real-valued signal subspace estimate
can be recombined via (25).

4.2 Tensor-based FAPI
As an additional example of how to apply the TeTraKron
framework to extend a matrix-based subspace tracker to
the tensor case, we consider the exponential window FAPI
algorithm [6]. As before, to update the r-mode subspace
estimate, the matrix-based subspace tracker has to be
modified to process a batch of M

Mr
observations. This can

be carried out at the same time as in the aforementioned
example of the extended PAST algorithm. Alternatively,
each column of the r-mode unfolding of X (n) can be
treated as a new observation vector, and the columns
are processed sequentiallyd. The r-mode subspace esti-
mates can be updated via exactly the same procedures
as in the matrix-based subspace tracking scheme. How-
ever, only when the first column of the r-mode unfolding
of X (n) is used as an equivalent new observation vector,
the forgetting factor stays the same as that used in the
matrix-based subspace tracking algorithm at each snap-
shot. Starting from the second column that is treated as
the second equivalent observation vector, the forgetting
factor is set to one. In the following, we explain in detail
how this approach is applied to obtain a tensor-based ver-
sion of the exponential window FAPI algorithm [6] via the
TeTraKron framework. Denote the �th column of the r-
mode unfolding [X (n)](r) ∈ C

Mr× M
Mr as x(r)

� ∈ C
Mr , where

� = 1, 2, . . . , M
Mr

. The details on updating Û [s]
r are given

in Algorithm 3. For each snapshot, after obtaining Û [s]
r
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(r = 1, 2, . . . ,R) via the procedures in Algorithm 3 and the
matrix-based subspace estimate Ûs by employing expo-
nential window FAPI [6], we recombine them via (10) to

obtain the tensor-based subspace estimate
[
Û [s]]T

(R+1)
.

Algorithm 3 Summary of the tensor-based version
of the exponential window FAPI algorithm [6] for
updating the r-mode subspace estimates

P′
r(0) = Pr(n − 1), Û ′

r(0) = Û [s]
r (n − 1)

FOR � = 1, 2, . . ., M
Mr

DO

IF � = 1

β ′ = β

ELSE

β ′ = 1

exponential window FAPI [6]

yr(�) = Û ′H
r (� − 1) · x(r)

�

hr(�) = P′
r(� − 1) · yr(�)

gr(�) = hr(�)/
(
β ′ + yHr (�) · hr(�)

)
ε2r (�) = ‖x(r)

� ‖2 − ‖yr(�)‖2

τr(�) = ε2r (�)

1 + ε2r (�) · ‖gr(�)‖2 + √
1 + ε2r (�) · ‖gr(�)‖2

ηr(�) = 1 − τr(�) · ‖gr(�)‖2
y′
r(�) = ηr(�) · yr(�) + τr(�) · gr(�)

h′
r(�) = P′H

r (� − 1) · y′
r(�)

εr(�) = τr(�)

ηr(�)
·
(
P′
r(� − 1) · gr(�) −

(
h′H
r (�) · gr(�)

)
· gr(�)

)

P′
r(�) = 1

β ′ ·
(
P′
r(� − 1) − gr(�) · h′H

r + εr(�) · gHr (�)
)

e′
r(�) = ηr(�) · x(r)

� − Û
′
r(� − 1) · y′

r(�)

Û
′
r(�) = Û

′
r(� − 1) + e′

r(�) · gHr (�)

END
Pr(n) = P′

r(
M
Mr

), Û [s]
r (n) = Û ′

r(
M
Mr

)

In case that forward-backward-averaging is incorpo-
rated, similar procedures as in Algorithm 3 are employed
on the r-mode unfolding of the real-valued tensor,
[ϕ (Z(n))](r) ∈ R

Mr×2· M
Mr , to update the real-valued esti-

mate of the r-mode subspace Ê[s]
r , i.e., Û [s]

r (n − 1), M
Mr

,

and x(r)
� in Algorithm 3 are replaced by Ê[s]

r (n − 1), 2 · M
Mr

,
and the �th column of [ϕ (Z(n))](r), where � = 1, 2, . . . ,
2 · M

Mr
, respectively. Then, the real-valued signal subspace

estimate can be recombined via (25).

4.3 Summary of the proposed tensor-based subspace
tracking schemes

To this end, we summarize the tensor-based subspace
tracking algorithms developed via the TeTraKron frame-
work in Algorithms 4 and 5. For the schemese that have
been employed in the simulations (cf. Section 5), the
corresponding equations are specified.

5 Simulation results
In this section, we first demonstrate the performance of
the tensor extension of PAST and PASTd achieved via the
proposed TeTraKron framework. To this end, we choose
a simulation scenario that represents an extension of the
one shown in [7] to R = 2 dimensions. We consider a
uniform rectangular array (URA) with d = 3 impinging
wavefronts. The first two sources are moved by changing
their spatial frequencies (direction cosines) as a function
of the time index n = 1, 2, . . . ,N according to

μ
(1)
1 [n]= 0.3 − 0.1 · t[n] , μ

(1)
2 [n]= 0.2 + 0.1 · t[n] ,

μ
(2)
1 [n]= 0.2 + 0.1 · t[n] , μ

(2)
2 [n]= 0.2 + 0.1 · t[n] ,

for t[n]= n−1
N−1 , whereas the third source remains station-

ary at μ
(1)
3 = μ

(2)
3 = 0.1. Therefore, for n close to N/2

the first and the second sources cross. Note that μ
(r)
i rep-

resents the spatial frequency of the ith source in the rth
dimension for i = 1, 2, . . . , d and r = 1, 2, . . . ,R. The total
number of snapshots N is set to 1,000 in all examples.
The source samples as well as the noise samples are drawn
from a zero mean circularly symmetric complex Gaussian
distribution with variance one (SNR = 0 dB). We choose
the forgetting factor β = 0.97 for all examples shown
in this section. Similar to [7], we compare the algorithms
based on the largest principal angle (LPA) between the
true and the estimated signal subspace since the LPA pro-
vides a measure for the agreement of the subspaces which
is invariant to the particular choice of the basis.
Figure 1 shows the LPA for a 9 × 9 URA. The

curve labeled ‘PAST’ refers to the original matrix-based
PAST algorithm from [7]. As summarized in Section 4.3,
TeTraKron-PAST and TeTraKron-PAST II refer to the
tensor extensions of PAST via the proposed TeTraKron
framework based on (10) and the reduced-complexity
version (11), respectively. For reference, we display two
curves labeled ‘SVD’ and ‘HOSVD’ where the entire
matrix/tensor of observationsf up to the current snapshot
n is used to calculate a subspace estimate via the SVD and
the HOSVD, respectively.
In Figure 2, we replace PAST by PASTd. Moreover, we

change the array size to a 7 × 7 URA to demonstrate
that the tensor gain is present for different array sizes.
Both simulation results show that the tensor-based sub-
space tracking algorithms outperform the matrix-based
algorithms, as expected.
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Algorithm 4 Summary of TeTraKron-PAST, TeTraKron-PASTd, TeTraKron-PAST II, TeTraKron-PASTd II, and
TeTraKron-FAPI

Initialization:
Ûs(0) = IM×d

Û [s]
r (0) = IMr×d for r = 1, 2, . . . ,R

TeTraKron-PAST / TeTraKron-PAST II: P(0) = Id, Cyryr (0) = Id for r = 1, 2, . . . ,R
TeTraKron-PASTd / TeTraKron-PASTd II: initialize d(0) and dr(0) (r = 1, 2, . . . ,R) as d-dimensional all-ones vectors
TeTraKron-FAPI: P(0) = Id, Pr(0) = Id for r = 1, 2, . . . ,R

FOR n = 1, 2, . . . DO

Step 1: Update the r-mode subspace estimates Û [s]
r (n) (r = 1, 2, . . . ,R) in parallel

Step 2: Update the matrix-based subspace estimate Ûs(n) or ˆ̄Us(n) (as defined in (11))

Step 3: Update the tensor-based subspace estimate
[
Û [s]

(n)
]T
(R+1)

Step 1 Step 2 Step 3
TeTraKron-PAST Equations (26), (32), (37), (30), and (31) Algorithm 1 or [7]

Equation (10)TeTraKron-PASTd Algorithm 2 [7]
TeTraKron-FAPI Algorithm 3 [6]

TeTraKron-PAST II Equations (26), (32), (37), (30), and (31) Algorithm 1 or [7] Equation (11)TeTraKron-PASTd II Algorithm 2 [7]
END

Algorithm 5 Summary of TeTraKron-PAST with FBA and TeTraKron-FAPI with FBA

Initialization:
Ês(0) = IM×d

Ê[s]
r (0) = IMr×d for r = 1, 2, . . . ,R

TeTraKron-PAST with FBA: P(0) = Id, Cyryr (0) = Id for r = 1, 2, . . . ,R
TeTraKron-FAPI with FBA: P(0) = Id, Pr(0) = Id for r = 1, 2, . . . ,R

FOR n = 1, 2, . . . DO

Step 1: Calculate the real-valued tensor ϕ (Z(n)) via (40) and (41)

Step 2: Update the real-valued r-mode subspace estimates Ê[s]
r (n) (r = 1, 2, . . . ,R) in parallel

Step 3: Update the real-valued matrix-based subspace estimate Ês(n)

Step 4: Update the real-valued tensor-based subspace estimate
[
Ê [s]

(n)
]T
(R+1)

Step 1 Step 2 Step 3 Step 4
TeTraKron-PAST with FBA Equations

(40) and (41)
Equations (42) to (46) Algorithm 1 or [7] Equation (25)TeTraKron-FAPI with FBA Algorithm 3 [6]

END
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Figure 1 LPA (in radians) for three moving sources on a 9 × 9
URA at an SNR of 0 dB. Averaged over 100 trials.

Using the same scenario as for Figure 1, we evaluate
the performance of the tensor extensions of the FAPI
algorithm [6]. In Figure 3, where the LPA is plotted,
the curves labeled ‘TeTraKron-FAPI’ and ‘TeTraKron-
FAPI with FBA’ correspond to two tensor-based FAPI
schemes that are extensions of the FAPI algorithm via
the TeTraKron framework based on (10) and (25), respec-
tively. The curve labeled ‘FAPI with FBA’ corresponds to
an extended version of FAPI where forward-backward-
averaging is included (cf. (38)). It is observed that the per-
formance of tensor-based FAPI is superior to that of the
matrix-based FAPI algorithm. A gain is further obtained
by incorporating forward-backward-averaging.
In the fourth example, a three-dimensional harmonic

retrieval problem of size 7×7×7 is simulated. As an exten-
sion of the two-dimensional scenarios shown previously,
the spatial frequencies (direction cosines) of the first two
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Figure 2 LPA (in radians) for three moving sources on a 7 × 7
URA at an SNR of 0 dB. Averaged over 100 trials.
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Figure 3 LPA (in radians) for three moving sources on a 9 × 9
URA at an SNR of 0 dB. FAPI and its tensor extensions are employed;
averaged over 100 trials.

sources are represented as a function of the time index
n = 1, 2, . . . ,N

μ
(1)
1 [n]= 0.3 − 0.1 · t[n] , μ

(1)
2 [n]= 0.2 + 0.1 · t[n] ,

μ
(2)
1 [n]= 0.2 + 0.1 · t[n] , μ

(2)
2 [n]= 0.2 + 0.1 · t[n] ,

μ
(3)
1 [n]= 0.2 + 0.1 · t[n] , μ

(3)
2 [n]= 0.2 + 0.1 · t[n] ,

for t[n]= n−1
N−1 , whereas the third source remains station-

ary at μ
(1)
3 = μ

(2)
3 = μ

(3)
3 = 0.1. Similarly, as n approaches

N/2, the first and the second sources cross. The LPA
between the true and the estimated signal subspace is
illustrated in Figure 4. The curve labeled ‘TeTraKron-
PAST with FBA’ refers to the real-valued subspace track-
ing scheme as a tensor extension of PAST via the proposed
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Figure 4 LPA (in radians) for three-dimensional harmonic
retrieval problemof size 7 × 7 × 7. Threemoving sources at an SNR
of 0 dB; FBA – forward-backward-averaging; averaged over 100 trials.
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TeTraKron framework based on (25) where forward-
backward-averaging is incorporated. On the other hand,
the curve labeled ‘PAST with FBA’ corresponds to an
extended version of the matrix-based PAST algorithm
with forward-backward-averaging included (cf. (38)). It
can be observed that incorporating forward-backward-
averaging contributes to a performance improvement for
both the matrix-based and the tensor-based algorithms.
Similarly as in the first three examples, the tensor-based
subspace tracking schemes provide a better performance
compared to the matrix-based schemes due to the fact
that the former exploit the multidimensional structure
inherent in the data in a better way.
Moreover, we assess the performance of various

ESPRIT-type parameter estimation algorithms that use
the subspace estimates obtained by the proposed sub-
space tracking schemes and least squares (LS) to solve the
invariance equations [10]. The evaluation criterion is the
root mean square estimation error (RMSE). We define the
RMSE in the spatial frequency domain as

RMSE =

√√√√√E

⎧⎨
⎩ 1
d
1
R

d∑
i=1

R∑
r=1

(
μ

(r)
i − μ̂

(r)
i

)2⎫⎬
⎭, (47)

where μ̂
(r)
i represents an estimate of μ(r)

i .
A two-dimensional scenario is considered where the

sources are assumed to be correlated. The source samples
s are generated such that Rss = E

{
s · sH}

has the form

Rss =
⎡
⎣ 1 ρ1,2 ρ1,3

ρ2,1 1 ρ2,3
ρ3,1 ρ3,2 1

⎤
⎦ , (48)

where ρi,j = ρ · ej ·ϕi,j , and ϕi,j = −ϕj,i are drawn from a
uniform distribution in [0, 2π ] for i = 1, 2, 3, j = 1, 2, 3,
and i �= j. Here, ρ is chosen as 0.7. The other parameters
are the same as for Figure 2.
We plot the LPA in Figure 5. Similar observations as

in the previous examples can be obtained. In addition,
the performance improvement due to the incorporation
of forward-backward-averaging is more significant in the
presence of source correlation compared to the case of
uncorrelated sources. The RMSE of the tracked spa-
tial frequencies is shown in Figure 6. Four parameter
estimation techniques, standard ESPRIT (SE) [18], uni-
tary ESPRIT (UE) [16], standard tensor ESPRIT (STE)
[10], and unitary tensor-ESPRIT (UTE) [10] are employed
where the subspace estimates are tracked by PAST, PAST
with forward-backward-averaging, tensor extension of
PAST via TeTraKron, and tensor extension of PAST
via TeTraKron with forward-backward-averaging incor-
porated, respectively. It can be observed that the tensor-
based parameter estimation algorithms combined with
tensor-based subspace tracking schemes outperform the
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Figure 5 LPA (in radians) for three moving sources on a 7 × 7
URA at an SNR of 0 dB. Sources correlated with ρ = 0.7; FBA –
forward-backward-averaging; averaged over 1,000 trials.

combinations of matrix-based parameter estimation and
matrix-based subspace tracking algorithms. Moreover,
a gain is achieved by incorporating forward-backward-
averaging. This corroborates the benefits provided by
forward-backward-averaging that it decorrelates coherent
sources and contributes to an enhanced accuracy of the
parameter estimation.
In Figures 7 and 8, the corresponding spatial fre-

quency estimates of the first mode and the second mode
averaged over 1,000 trials are illustrated, respectively. To
demonstrate the variation of the spatial frequency esti-
mates around the averaged values, we plot the bars that
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Figure 6 RMSE of spatial frequencies for three moving sources
on a 7 × 7 URA at an SNR of 0 dB. Sources correlated with ρ = 0.7;
FBA – forward-backward-averaging; SE – Standard ESPRIT; UE –
Unitary ESPRIT; STE – Standard Tensor-ESPRIT; UTE – Unitary
Tensor-ESPRIT; averaged over 1, 000 trials.
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Figure 7 Averaged spatial frequency estimates of the first mode and error bars for three moving sources on a 7 × 7 URA at an SNR of
0 dB. Sources correlated with ρ = 0.7; FBA – forward-backward-averaging; SE – Standard ESPRIT; UE – Unitary ESPRIT; STE – Standard Tensor-ESPRIT;
UTE – Unitary Tensor-ESPRIT; averaged over 1, 000 trials.

represent the ±1 standard deviation estimated from the
1,000 trials as well. The two combinations of tensor-
based subspace tracking and parameter estimation tech-
niques (corresponding to the two plots labeled ‘STE +
TeTraKron-PAST’ and ‘UTE + TeTraKron-PAST with
FBA’, respectively, at the bottom of Figures 7 and 8)
achieve an accurate estimation of the spatial frequencies.
Even when the first two sources cross, their performances
do not suffer much, and a fast adaptation is observed.
In case of unitary tensor ESPRIT combined with the
TeTraKron extension of PAST where forward-backward-
averaging is included, its performance is slightly better
than that of the combination of standard tensor ESPRIT
and the TeTraKron extension of PAST. By contrast, the
matrix-based algorithms standard ESPRIT and unitary
ESPRIT combined with PAST adapt much slower at the
beginning of the tracking as well as at the crossing point
of the first two sources and fail to accurately estimate the

spatial frequencies. The deviation of the spatial frequency
tracks from the average is also much more severe com-
pared to the deviation in case of the two combinations of
tensor-based subspace tracking and parameter estimation
techniques.

6 Conclusions
In this paper, we have proposed the Tensor-based sub-
space Tracking via Kronecker structured projections
(TeTraKron) framework. TeTraKron allows to extend arbi-
trary existing matrix-based subspace tracking schemes
to the tracking of the HOSVD-based subspace estimate.
Therefore, compared to previous matrix-based subspace
tracking schemes, the subspace estimation accuracy is
improved. The extension is based on an algebraic link
between matrix-based and tensor-based subspace esti-
mates via a Kronecker structured projection. Therefore,
matrix-based subspace tracking schemes are applied to



Cheng et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:123 Page 13 of 14
http://asp.eurasipjournals.com/content/2014/1/123

Figure 8 Averaged spatial frequency estimates of the secondmode and error bars for three moving sources on a 7 × 7 URA at an SNR of
0 dB. Sources correlated with ρ = 0.7; FBA – forward-backward-averaging; SE – Standard ESPRIT; UE – Unitary ESPRIT; STE – Standard Tensor-ESPRIT;
UTE – Unitary Tensor-ESPRIT; averaged over 1, 000 trials.

all tensor unfoldings, and there is no need to track the
core tensor.We have proposed a low-complexity approach
for the recombination of the separate subspaces into one
final estimate which is achieved in linear complexity.
In addition, we have investigated the incorporation of
forward-backward-averaging. To this end, a connection
between the real-valued matrix-based and the HOSVD-
based subspace estimate via a similar Kronecker struc-
tured projection has been revealed. Consequently, the
TeTraKron framework can also be employed to devise
real-valued tensor-based subspace tracking schemes. As
an example, we have used the TeTraKron framework to
extend the PAST, the PASTd, and the FAPI algorithms to
tensors and demonstrated the enhanced subspace estima-
tion accuracy via numerical simulations. In time-varying
multidimensional harmonic retrieval problems, we have
investigated the performances of standard tensor ESPRIT
and unitary tensor ESPRIT where the tensor-based

subspace estimates tracked by the TeTraKron-based sub-
space tracking algorithms are used for direction-of-arrival
estimation.

Endnotes
aParts of this paper have been published at the IEEE

5th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP 2013),
Saint Martin, French Antilles, December 2013.

bHere, QT
2N is used instead of QH

2N as originally
proposed in [10] where this transformation was
introduced. This facilitates to build the link between the
matrix-based data model and its tensor-based
counterpart, i.e., (24).

cAlternatively, after tracking the r-mode subspaces, a
projected lower-dimensional subspace similar to ˆ̄Us can
be tracked, and a recombination procedure similar to
(11) can be used, leading to a reduced complexity.
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dBoth approaches, namely, the batch processing and
the sequential processing, can be employed in the
tensor-based PAST algorithm. We have performed
simulations to compare these two methods. It has been
observed that when they are used to modify the PAST
algorithm to update the r-mode subspace estimates, they
lead to the same performance. It should be noted that for
some state-of-the-art matrix-based subspace tracking
schemes, such as the exponential window FAPI
algorithm [6], they have been developed based on the
fact that each new observation takes the form of a
column vector. Compared to the batch processing, this
important feature is better preserved in the sequential
processing. Consequently, when extending these schemes
to the tensor case via TeTraKron, it is more convenient to
use the sequential processing.

eTeTraKron-PAST, TeTraKron-PASTd, and
TeTraKron-FAPI refer to the tensor extensions of PAST
[7], PASTd [7], and FAPI [6] via the proposed TeTraKron
framework based on (10), respectively. In case of the
reduced-complexity version (11), the corresponding
tensor extensions of PAST and PASTd are called
TeTraKron-PAST II and TeTraKron-PASTd II,
respectively. In addition, we use ‘TeTraKron-PAST with
FBA’ and ‘TeTraKron-FAPI with FBA’ to refer to the
real-valued subspace tracking schemes as tensor
extensions of PAST and FAPI, respectively. Here the
TeTraKron framework based on (25) is applied, and
forward-backward-averaging is incorporated.

fTo render the comparison to the adaptive RLS-based
schemes fair, the exponential weighting with a forgetting
factor β is also applied here.
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