
Rouijel et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:128
http://asp.eurasipjournals.com/content/2014/1/128

RESEARCH Open Access

CP decomposition approach to blind
separation for DS-CDMA system using a new
performance index
Awatif Rouijel1*, Khalid Minaoui1, Pierre Comon2 and Driss Aboutajdine1

Abstract

In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two
major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on
the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and
is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP
decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to
direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and
demonstrate the good behavior of these algorithms, compared to others in the literature.
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1 Introduction
Blind source separation consists in estimating unknown
signals observed from their mixture without knowing any
information about them, except mild properties such as
their independence. Early work on blind source separa-
tion was initiated by Jutten and Hérault [1,2] in the case of
an instantaneous mixture. More recently, the use of multi-
linear algebra methods has attracted attention in several
areas such as data mining, signal processing, and partic-
ularly in wireless communication systems, among others.
Wireless communication data can sometimes be viewed
as components of a high-order tensor (order strictly larger
than 2). Solving the problem of source separation then
means finding a decomposition of this tensor and deter-
mining its parameters. One of the most popular tensor
decompositions is the canonical polyadic decomposition
(CP), also known as parallel factor analysis (PARAFAC),
which can be seen as an analog of thematrix singular value
decomposition (SVD), since it decomposes the tensor into
a sum of rank-one components [3-5]. This decomposi-
tion has been exploited and generalized in several works
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for solving different signal processing problems [6,7] such
as multi-array multi-sensor signal processing. The inter-
est of the CP decomposition lies in its uniqueness under
certain conditions. Typical algorithms for finding the CP
components include alternating least squares (ALS) and
descent algorithms [8,9], which do not isolate the scaling
factor matrix. Herein, we propose two new optimization
algorithms for CP tensor decomposition, which isolate the
scaling matrix in the optimization process and offers the
possibility to monitor the conditioning.
It is well known that loading matrices are identified up

to column scaling. This indeterminacy is complicated to
take into account, given that the product of all scaling
matrices must be equal to the identity. For this reason,
only approximate performance indices have been used so
far by ignoring the last constraint. However, one can ask
oneself whether it is possible to calculate the exact perfor-
mance index: this is our second contribution. The present
paper develops preliminary results appeared in [10] and
includes performances obtained in the frame of direct-
sequence code division multiplexing access (DS-CDMA)
blind multiuser detection and estimation.
The rest of this paper is organized as follows. Section 2

presents notation, definitions, and properties of third-
order tensors, and the exact CP decomposition problem
is then stated. In Section 3, the low-rank approximation
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is formulated. Existence and uniqueness of this decom-
position are also investigated. ALS and the two proposed
algorithms are presented in Section 4. Section 5 is dedi-
cated to the new performance criterion with a focus on
an exact performance index calculation. In Section 6, we
show the usefulness of our algorithms and the perfor-
mances obtained. An application of these algorithms to
CDMA transmission is then provided to illustrate the
effectiveness of the latter.

2 Notation and preliminaries
2.1 Notations and definitions
Let us first introduce some essential notation. Scalars are
denoted by lowercase letters, e.g., a. Vectors are denoted
by boldface lowercase letters, e.g., a; matrices are denoted
by boldface capital letters, e.g., A. Higher-order tensors
are denoted by boldface Euler script letters, e.g., T . The
pth column of a matrixA is denoted ap, the (i, j) entry of a
matrix A is denoted by Aij, and element (i, j, k) of a third-
order tensor T is denoted by Tijk . 1 will represent a vector
containing ones, and I the identity matrix.

Definition 2.1. The scalar product of two same-sized
tensors X , Y ε CI1×I2×···×IN is defined as:

〈X ,Y〉 =
I1∑

i1=1
· · ·

IN∑
iN=1

Xi1,··· , iN Y ∗
i1,··· , iN . (1)

where Xi1,··· , iN is the (i1, · · · , iN ) elements of the Nth order
of tensor.

Definition 2.2. The outer (tensor) product between two
tensor arrays X ∈ CI1×I2×···×IN and Y ∈ C J1×J2×···×JM of
orders N and M, respectively, is denoted by Z = X ⊗Y ∈
CI1×I2×···×IN×J1×J2×···×JM and defined by:

Zi1,··· , iN ,j1,··· , jM = Xi1,··· , iN Yj1,··· , jM . (2)

The symbol ⊗ represents the tensor outer product. The
outer product of two tensors is another tensor, the order
of which is given by the sum of the orders of the two for-
mer tensors. Equation 2 is a generalization of the concept
of outer product of two vectors, which yields itself a matrix
(second-order tensor). The outer product of three vectors
a ∈ CI and b ∈ C J and c ∈ CK yields a third-order
decomposable tensor Z = a⊗b⊗c ∈ CI×J×K where Zijk =
aibjck.

Definition 2.3. The rank of an arbitrary tensor T ∈
CI1×I2×...×IN , denoted by R = rank(X), is the mini-
mal number of rank-1 tensors that yield T in a linear
combination.

Decomposable tensors have thus a rank equal to 1.

Definition 2.4. The Kruskal rank, or krank, of a matrix
is the largest number j such that every set of j columns is
linearly independent.

Definition 2.5. The Frobenius norm of a tensor T ∈
CI1×I2×...×IN is defined as:

‖T ‖F = √〈T ,T 〉. (3)

Definition 2.6. The Khatri-Rao product between two
matrices with the same number of columns, A = [a1,
a2, · · · , aF ] ∈ CI×F and B = [b1,b2, · · · , bF ] ∈ C J×F , is
defined as the column-wise Kronecker product:

A � B = [a1 � b1, · · · , aF � bF ] ∈ CIJ×F . (4)

where � is the Kronecker product.

Definition 2.7. The coherence of a collection V =
{v1, · · · , vr} of unit-norm vectors is defined as the maxi-
mal value of the modulus of cross scalar products. In other
words, the coherence of the collection V is defined as:

μV = max
p	=q

|vHp vq|. (5)

Definition 2.8. Let A ∈ CI×J , then vec{A} ∈ CK

denotes the column vector defined by:

(vec{A})i+( j−1)I = Aij. (6)

where K = IJ.

2.2 Preliminaries
A tensor of order d is an object defined on a product
between d linear spaces. Once the bases of these spaces
are fixed, a dth order tensor can be represented by a d-
way array (a hyper matrix) of coordinates [4]. The order
of a tensor thus corresponds to the number of indices of
the associated array. We are interested in decomposing a
third-order tensor T as:

T =
R∑

r=1
λrD(r). (7)

where D(r) are decomposable tensors, that is, D(r) =
ar⊗br⊗cr . Denote by ( )T matrix transposition, λr real pos-
itive scaling factors, λ = [λ1, · · · , λR]T , and R the tensor
rank. Vectors ar (resp. br and cr) live in a linear space
of dimension I (resp. dimension J and K). Equivalently,
decomposition (7) can be rewritten as a function of array
entries:

Tijk =
R∑

r=1
λrAirBjrCkr , i ∈ {1, · · · , I} , j ∈ {1, · · · , J} ,

k ∈ {1, · · · ,K} .
(8)
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where Air (resp. Bjr and Ckr) denote the entries of vec-
tor ar (resp. br and cr). The above decomposition is called
the canonical polyadic decomposition (CP) of tensor T .
The model (7) can be written in a compact form using the
Khatri-Rao product, as:

TI,KJ
1 = A� (C � B)T ,

TJ ,KI
2 = B� (C � A)T ,

TK , JI
3 = C� (B � A)T .

where TI,KJ
1

(
resp. TJ ,KI

2 and TK , JI
3

)
is the matrix of size

I × KJ (resp. J × KI and K × JI) obtained by unfolding
the array T of size I × J × K in the first mode (resp. the
secondmode and the third mode), and� is the R×R diag-
onal matrix defined as � = Diag {λ1, . . . , λR}; see [5] for
further details on matrix unfoldings.
The explicit handwriting of decomposable tensors as

given in (8) is subject to scale indeterminacies. In the ten-
sor literature, optimization of the CP decomposition (8)
has been carried out without isolating the scaling factor�,
which is generally included in one of the loading matrices,
so that � = I. In [5], Kolda and Bader proposed to reduce
the indeterminacies by normalizing the vectors and stor-
ing the norms in�. Our first proposal is to pull the factors
λr outside the product and calculate the optimal value of
the scaling factor, which permits to monitor the condi-
tioning of the problem. Scaling indeterminacies are then
clearly reduced to unit modulus but are not completely
fixed, hence the difficulty in estimating the identification
error of loadingmatricesA,B andC. Our second proposal
(Section 5) is to calculate the 3R complex phases (reducing
to signs in the real case).

3 Existence and uniqueness
The goal is to identify all parameters in the right hand
side of (8), given the whole array T . According to exist-
ing results [11-13], a third-order tensor (i.e., a three-way
array) of rank R can be uniquely represented as sum
of R rank-1 tensors, under certain conditions. Kruskal
has demonstrated that the condition (9) is sufficient for
uniqueness in CP decomposition [13], where kA is the
krank of A. This means that matrices A, B, and C are
unique up to permutation and (complex) scaling of their
columns, under the Kruskal’s condition:

kA + kB + kC ≥ 2R + 2 (9)

For uniqueness, Harshman has shown that is sufficient to
have A and B of full rank, and C of krank ≥ 2 [3]. When
1 < R ≤ 2, the Kruskal and Harshman conditions are
equivalent. For R > 2, Kruskal’s condition may be satis-
fied even when Harshman’s are not, and this condition is
claimed to be only sufficient for R > 3 [14]. However,
observations are actually corrupted by noise, so that (8)
does not hold exactly.

3.1 Low-rank approximation
In practice, the exact CP decomposition always exists but
with a very large rank. Hence, it may not be physically
meaningful, and additionally, it is generally not unique.
It is consequently preferred to fit a multi-linear model of
lower rank, R < rankT , fixed in advance, so that we have
to deal with an approximation problem. To estimate the
parameters of the decomposition, we need to minimize
the following cost function:

ϒ (A,B,C,�) = ‖T − (A,B,C) .�‖2F . (10)

By convention (A,B,C).� denotes the tensor of rank
R of coordinates

∑R
r=1 λrAirBjrCkr . Minimizing error (10)

means finding the best rank-R approximate of T and its
CP decomposition. The cost function (10) can also be
written in three equivalent compact forms with respect to
the three loading matrices:

ϒ (A,B,C,�) =
∥∥∥TI,KJ

1 − A� (C � B)T
∥∥∥2
F
,

=
∥∥∥TJ ,KI

2 − B� (C � A)T
∥∥∥2
F
,

=
∥∥∥TK , JI

3 − C� (B � A)T
∥∥∥2
F
.

3.2 Conditioning of the problem
Assuming that the matrices A, B, and C are given, we will
calculate the optimal value of the scaling factor �. This
can be done by expanding the Frobenius norm in (10),
which is a quadratic form in the entries of� and canceling
the gradient with respect to λ (see details in Appendix 1).
Then, the following linear system is obtained:

Gλ = f, (11)

where f is R-dimensional vector defined by the contrac-
tion fr = ∑

ijk TijkAirBjrCkr , G represents the R×R Gram
matrix defined by:

Gpq = (
ap � bp � cp

)H (
aq � bq � cq

)
. (12)

In view of matrixG, we can see that coherences play a role
in the conditioning of the problem. From Equations 11
to 12, and since diagonal entries of G are equal to 1, it
is indeed clear that imposing cross scalar products of the
form aHp aq to have a modulus strictly smaller than 1 will
lead with greater chances to an acceptable conditioning.
Also note that scalar products do not appear individu-
ally in (12) but through their products, since entries of
G can also be written as Gpq = aHp aq bHp bq cHp cq. This
statement has deeper implications, particularly in exis-
tence and uniqueness of the solution to Problem (10), as
subsequently elaborated.
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3.3 Existence
According to the results in [15,16], the infimum of (10)
may not be reachable. In fact, the set of tensors of rank at
most ξ is not closed if ξ > 1. Examples of the lack of close-
ness have been provided in the literature [15,16], which
suffice to prove it. In other words, it may happen that for a
given tensor, and for any rank-r approximation of it, there
always exists another better rank-r approximation.
This is the reason why the authors proposed the con-

straint below, which ensures existence of a minimum.
Define the three coherences μA, μB, and μC associated
with the matrices A, B, and C, respectively. It has been
indeed shown in [15,17] that under the constraint:

μAμBμC ≤ 1
R − 1

, (13)

the infimum of (10) is reached. It may be seen that this
condition already gives a quantitative bound to the condi-
tioning of (11) because coherences bound extra-diagonal
entries of matrix G, which has ones on its diagonal.

3.4 Uniqueness
The uniqueness of the tensor decomposition can be
ensured by using a sufficient condition based on Kruskal’s
theorem (9), previously mentioned.
According to the lemma reported in [17,18], an inequal-

ity holds between Krank and coherence, namely kA ≥ 1
μA

,
as long as kA is strictly smaller than the column rank of
A. Including this inequality in Equation 9 leads to the
following sufficient uniqueness condition:

μ−1
A + μ−1

B + μ−1
C ≥ 2(R + 1). (14)

4 Optimization for CP decomposition
In Section 3, we presented CP for three-way tensors.
Various optimization algorithms exist to compute CP
decomposition without constraint, as ALS or descent
algorithms [7,8,19]. We subsequently present optimiza-
tion algorithms to compute the CP decomposition (10),
under the constraints of unit norm columns of loading
matrices.

4.1 Alternating least squares algorithm
The ALS algorithm was proposed for CP computation by
Carroll and Chang in [20] and Harshman in [3] and still
stays the workhorse algorithm today, mainly owing to its
ease of implementation [21]. ALS is hence the classical
solution tominimize the cost function (10), despite its lack
of convergence proof. This iterative algorithm alternates
among the estimation of matrices A, B, and C.
The principle of the ALS algorithm is to convert a non-

linear optimization problem into three independent linear

least squares (LS) problems. In the first steps, one of the
three matrices, say, A is updated while the two others
(B and C) are fixed to their values obtained in previous
estimation steps. The estimate of A is given by:

Â = TI,KJ
(
(C � B)†

)T
. (15)

whereTI,KJ is the unfoldingmatrix of size I×JK defined in
Section 2.2, and ()† is the Moore-Penrose pseudo inverse.
By symmetry, the expressions are similar for B̂ and Ĉ.

4.2 Proposed algorithms
Our optimization problem consists in minimizing the
squared error ϒ under a collection of 3R constraints,
namely:

min
A,B,C,�

∥∥∥∥∥T −
R∑

r=1
λrar⊗br⊗cr

∥∥∥∥∥
2

F

,

‖ar‖ = ‖br‖ = ‖cr‖ = 1, 1 ≤ r ≤ R

(16)

Therefore, we need to find three matrices A, B, and C
of unit norm columns which minimize (16). Stack these
three matrices in a I+J+K by Rmatrix denoted byX. The
objective can now be also written ϒ(X,�), for the sake of
convenience.
The computation of loading matrices is performed by

minimizing the quadratic cost function (10). One gener-
ates a series of iterates X(k) = [

A(k)T , B(k)T , C(k)T
]T ,

k ∈ N, with initial value X(0) arbitrarily chosen. Gener-
ally, the algorithm consists of choosing at the kth iteration
a point X(k + 1) in a direction lying in the half space
defined by the gradient of objective function ϒ , defined
by matrix D(k), which verifies [22]:

vec{∇ϒ(X(k))}Tvec{D(k)} < 0. (17)

One possibility is to choose the direction opposite to the
gradient:

D(k) = −∇ϒ(A(k),B(k),C(k)). (18)

The gradient components ∇ϒA (size I × R), ∇ϒB (J × R),
and ∇ϒC (K × R) can be stacked into a single matrix of
size I + J + K by R:

D =
⎛⎝ −∇ϒA

−∇ϒB
−∇ϒC

⎞⎠ . (19)

Since objective function (10) is real but its arguments are
complex, its gradient can be computed in the sense of
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[23,24]. Using the quadratic form proposed in [23], the
objective function can be expanded into:

ϒ (A,B,C;�) = ‖T ‖2 +
∑
i

R∑
p=1

R∑
q=1

AipMpqA∗
iq

−
∑
i

⎛⎝ R∑
q=1

NiqA∗
iq +

R∑
p=1

AipN∗
ip

⎞⎠ .

(20)

where Mpq = ∑
jk λpλ∗

qBjpB∗
jqCkpC∗

kq and Nip = ∑
jk Tijk

λ∗
pB∗

jpC∗
kp. Thus, the gradient of ϒ with respect to A is:

∂ϒ

∂A
= 2AM − 2N. (21)

whereM of size R×R andN of size I ×R. The gradient of
ϒ with respect to B and C is similar, taking into account
the fact that matricesM andN need to be defined accord-
ingly (for the gradient of ϒ with respect to B and C, the
dimension of matrix N is J × R and K × R, respectively,
while the dimension ofM is always R × R).
The difficulty that arises in constrained optimization is

to make sure that the move remains within the feasible
set, C, defined by the constraints. In the following subsec-
tions, we propose two versions of our algorithm, with two
different ways of calculating scale factor �.
Descent algorithms are also determined by the steps

that will be executed in the chosen direction. There are
various methods for the step selection, and the most
widely used are Backtracking and Armijo [22]. To com-
pute the stepsize �(k) in Algorithm 1 and Algorithm 2,
we use a popular inexact line search method, very simple
and quite effective, which is the backtracking line search.
It depends on two fixed constants α, β with 0 < α < 0.5
and 0 < β < 1.

Backtracking algorithm

1. Given a descent direction D for ϒ , α ∈ (0, 0.5),
β ∈ (0, 1).

2. Initialization: � = 1.
3. while ϒ(X + �D;�) > ϒ(X;�) + α�∇ϒTD
4. � = β�.

4.2.1 Algorithm 1
In the recent work on CP tensor decomposition, opti-
mization of the objective function (10) was made without
explicitly considering the factor�. More precisely in most
contributions, the scaling factor is integrated into load-
ing matrices, so that � may be set to the identity. The
first solution we propose is to use a projected gradient

algorithm while calculating � as the product of normaliz-
ing factors of matrices A, B, and C:

�(k) = �(k − 1) � �A � �B � �C . (22)

where � is the Hadamard product, �A = Diag{‖a1‖, · · · ,
‖aR‖}, and similar definitions for �B and �C . This
approach, which we call ‘Algorithm 1’ can be described by
the pseudo-code below:

1. Initialize {A(0);B(0);C(0)} to full-rank matrices with
unit norm columns, and set �(0) = I

2. For k ≥ 1 and subject to a stopping criterion, do:

(a) Compute the descent direction as the
gradient w.r.t. X:

D(k) = −∇ϒ(X(k − 1);�(k − 1)),

(b) Compute a stepsize �(k) using the
backtracking method [22] such as:

ϒ(X(k − 1) + �(k)D(k);�(k − 1))
< ϒ(X(k − 1);�(k − 1)).

(c) Update X(k) = X(k − 1) + �(k)D(k)
(d) Extract the three blocks of X(k): A(k), B(k)

and C(k), and store the norm of their
columns into �A, �B, �C

(e) Normalize them to unit-norm columns as:

A(k) := A(k)�−1
A ,B(k) := B(k)�−1

B ,
and C(k) := C(k)�−1

C

(f) update �(k) = �(k − 1) � �A � �B � �C

4.2.2 Algorithm 2
The other approach is to consider � as an additional vari-
able. By canceling the gradient of ϒ(X,�) with respect to
�, one obtains Equation 11, which can be solved for �

when X is fixed. This gives the algorithms below.

Algorithm 2.

1. Initialize (A(0),B(0),C(0)) to full-rank matrices with
unit-norm columns.

2. Compute G(0) and f(0), and solve G(0) λ = f(0) for
λ, as defined in Section 3.2 by (11). Set
�(0) = Diag{λ}.

3. For k ≥ 1 and subject to a stopping criterion, do
(a) Compute the descent direction as the

gradient w.r.t. X:

D(k) = −∇ϒ(X(k − 1);�(k − 1))

(b) Compute a stepsize �(k) using the
backtracking method [22] such as:

ϒ (X(k − 1) + �(k)D(k);�(k − 1))
< ϒ (X(k − 1);�(k − 1)) .
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(c) Update X(k) = X(k − 1) + �(k)D(k)
(d) Extract the three blocks of X(k): A(k), B(k)

and C(k)
(e) Normalize the columns of A(k), B(k) and

C(k)
(f) Compute G(k) and f(k), and solve

G(k) λ = f(k) for λ, according to (11). Set
�(k) = Diag{λ}.

Stopping criterion. The convergence is usually consid-
ered to be obtained at the kth iteration when the error
between tensor T , and the tensor reconstructed from the
estimated loading matrices, does not significantly change
between iterations k and k + 1.
However, in the complex case, the phase of the entries

of loading matrices found at the end of the algorithm –
as defined by the stopping criterion above - is different
from the original. To remedy this problem, we propose a
new performance criterion in order to minimize the dis-
tance between the original and the estimated matrices.
Although this criterion is not usable when actual load-
ing matrices are unknown, it still permits to assess the
performances effectively attained.

5 Performance criterion
As highlighted in Section 2, there is always an indeter-
minacy in the representation of decomposable tensors,
characterized in the CP decomposition by 3R complex
numbers of unit modulus. In order to better understand
this problem, let a, b, and c denote the rth column of
matrices A, B, and C, respectively, with 1 ≤ r ≤ R. Fur-
thermore, â, b̂, and ĉ denote one column of the estimated
matrices entering in the CP decomposition. We seek to
minimize a distance:

δ
(
x; x̂

) = min
ϕ,ψ ,χ

{∥∥a−ejϕ â
∥∥2+∥∥∥b − ejψ b̂

∥∥∥2+∥∥c−ejχ ĉ
∥∥2}.
(23)

In the literature, only approximate performance indices
have been used so far by neglecting relation between the
angles ϕ, ψ and χ given by:

exp(j (ϕ + ψ + χ)) = 1.

Our contribution herein consists in finding the exact
minimum distance (23) under this angular constraint, by
calculating the 3R optimal phases affecting the columns of
the estimated loading matrices.
The derivative of Equation 23 with respect to ϕ and ψ

yields a system of two equations. Finding 3R phases means
to solve, if the 2 sets of 3 columns are fixed:{

ρa sin x + ρc sin(ϕ + ψ + γ ) = 0,
ρb sin y + ρc sin(ϕ + ψ + γ ) = 0. (24)

where x = ϕ−α and y = ψ −β . After some trigonometric
manipulations described in Appendix 2, the solutions can
be obtained by rooting a polynomial of degree 6 in a sin-
gle variable ϕ. By replacing the admissible values of ϕ into
system (24), the corresponding values of ψ are obtained.
The calculation of the minimum distance (23) is done for
all possible permutations. We end up with the following
performance criterion:

E (T ;A,B,C,�) = min
π∈�

R∑
r=1

δ
(
xr ; x̂π(r)

)
. (25)

where � is the set of permutations of {1, 2, · · · , R}. When
the permutation acts in too large dimension, greedy ver-
sions are possible to limit the exhaustive search in the
permutation set.
Denote π(i) as the permutations of �, 1 ≤ i ≤ R!. The

overall algorithm to compute the performance criterion is
summarized as follows:

1. For 1 ≤ i ≤ R! do
2. Calculate the 3R optimal phases affecting the

columns of the estimated loading matrices:

(a) Permute the columns of the three estimated
matrices according to the permutation π(i):
Âπ(i), B̂π(i), and Ĉπ(i);

(b) For each rth columns of loading matrices and
estimated matrices, do:

• Set x = ϕ − α and y = ψ − β and solve the
polynomial of degree 6 in a single variable ϕ:

c0 + c1 cos(2x) + c2 cos2(2x) + c3 cos3(2x)
+ c4 cos4(2x)+c5 cos5(2x)+c6 cos6(2x) = 0.

• Replace x in sin y = ρa
ρb

sin x, obtain y and
consequently ψ ;

• Calculate χ in: exp(j (ϕ + ψ + χ)) = 1;
• Calculate the minimum distance δ:

δ
(
x; x̂

) = min
ϕ,ψ ,χ

{∥∥a − ejϕ â
∥∥2 +

∥∥∥b − ejψ b̂
∥∥∥2

+ ∥∥c − ejχ ĉ
∥∥2} .

• Save the results: distance(i) = δ, phaseϕ(i) = ϕ,
phaseψ(i) = ψ and phaseχ (i) = χ ;

3. End do.
4. Choose the 3R angles which return the smaller

distance δ.

6 Simulation results
To evaluate the efficiency and behavior of the proposed
algorithms with new performance criterion, two experi-
ments are made: the first one for random loading matrices
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and the second one for DS-CDMA system. In all exper-
iments, the results are obtained from 100 Monte Carlo
runs. At each iteration and for every SNR value, a new
noise realization is drawn. The stopping criterion chosen
for all experiments is ϒ(n) < ε and |ϒ(n) − ϒ(n−1)| < ε,
where ε is a threshold by which the global minimum is
considered to be reached, and n is the current iteration. In
the following simulations, we take: ε = 10−6.

6.1 Example 1: random loadingmatrices
In order to illustrate the behavior and performances of
the proposed algorithms, we first report simulation results
run on random tensors. In a first stage, we compare
‘Algorithm 2’, ‘Algorithm 1’, and the gradient descent algo-
rithm named herein ‘Algorithm 0’. We will analyze the
errors of matrix estimation obtained through the perfor-
mance criterion proposed in Section 5. Two scenarios are
analyzed using random tensors: (i) one tensor of rank 2
with dimensions 3 × 3 × 3 and (ii) another tensor of rank
5 with dimensions 8 × 8 × 8. Loading matrices are initial-
ized with random-valued columns and the two tensors are
corrupted by an additive Gaussian noise.
Figures 1 and 2 depict matrix estimation errors implied

in (25) as a function of SNR. As expected, it can be
seen that the results using Algorithm 0 show a poor per-
formance when compared to the results obtained with
Algorithms 1 and 2 (curves with diamonds and circles).
This supports the idea that our algorithms isolating the
scaling matrix are attractive. Furthermore, we check that
when the phase constraints are neglected in the calcula-
tion of the performance measure, the results are signifi-
cantly more optimistic, particularly at high SNR (curves of
the same color), which supports the interest of using our
performance index defined in (5).
In order to show the significant difference between

Algorithms 1 and 2, we will examine the convergence
speed of the tensor reconstruction according to the num-
ber of iterations, since the final error is about the same
(cf. Figures 1 and 2).We consider the case of a 3×3×3 ten-
sor of rank 2. The latter was constructed from three 3 × 2
Gaussian matrices drawn randomly. The results are pre-
sented in Figure 3, and show that in all our experiments,
Algorithm 2 converged faster in terms of number of iter-
ations, while Algorithm 1 and Algorithm 0 require more
iterations to reach convergence.

6.2 Example 2: application To DS-CDMA system
In this example, we place ourselves in a blind context.
We assume that the receiver has no knowledge neither
on the spreading codes nor on symbol sequences. Classi-
cally, telecommunications blind techniques are based on
some a priori knowledge, such as temporal properties of
transmitted signals or the spatial properties of the receiver
[25-27].

Recently, algebraic tensor methods have received con-
siderable attention in signal processing [2]. It also turns
out that multilinear algebra tools are often more power-
ful than their matrix equivalent. Sidiropoulos et al. are the
first to adopt tensor approaches in the telecommunica-
tions field in 2000 [12]. They observed that the samples
of a CDMA signal received by an array of antennas can
be stored in a cube, each dimension corresponding to a
diversity (coding diversity, temporal diversity, and spatial
diversity). Thus, they showed that the deterministic blind
separation problem of CDMA signals can be solved by the
CP decomposition [28].
In this example, we propose to apply the CP decompo-

sition algorithms as detailed in Section 4 with the new
performance criterion on the DS-CDMA technique. A
comparison with the ALS algorithm is then made.

6.2.1 Tensormodeling
We consider R users with one transmitting antenna, trans-
mitting simultaneously their signals to an array of K
receiving antennas. In other words, we consider a commu-
nication system of type ‘multiuser SIMO’.
For example, assume the user r transmits the symbols

sr of size J . These symbols are spreaded by cr CDMA
code of length I, uniquely allocated to user r and assumed
to be unknown at the receiver. These codes are binary
sequences taking values from {−1, 1} and could be non-
orthogonal. The spreading sequence propagates along a
single path in a memoryless channel and is received by
the antenna array under angle of arrival θr . Each of the K
antennas receives a signal Yk(t) of size J×I. Our approach
for detection and separation of the received signals is to
exploit the multilinear algebraic structure of these signals
using the new performance criterion. We observe these
signals during a time span of length JTs, where Ts is the
symbol period. The Yk(t) signals are sampled at the chip
period Tc = Ts/I, where I is the spreading factor. There-
fore, each antenna provides a set of IJ samples that can
be ordered in a tensor of order 3, denoted Y ∈ CI×J×K .
The Yijk component of this tensor that corresponds to the
sample of the overall signal received by the kth antenna at
time i of the jth symbol period can be written as follows:

Yijk =
R∑

r=1
AkrSjrCir i ∈ [1, I] j ∈ [1, J] k ∈ [1,K] .

(26)

where the complex scalar Akr = βrak(θr), with βr is the
fading coefficient of the rth user and ak(θr) the response
of the antenna k at the angle of arrival θr .
Separating the received signals is then equivalent to

decompose the tensor Y into a sum of R contributions,
where R represents the number of active users in the
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Figure 1Matrix estimation errors, with a random tensor of size 8 × 8 × 8 and rank 5. (a)Matrix A. (b)Matrix B. (c)Matrix S.

Figure 2 Sum E of matrix estimation errors, with a random tensor of size 3 × 3 × 3 and rank 5. Note the asymptote depending on the
maximum number of iterations executed.
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Figure 3 Typical example of reconstruction error (10) as a
function of the number of iterations. For a tensor of size 3 × 3 × 3
and rank 5.

system. To calculate the CP decomposition ofY , we resort
to Algorithm 2 presented in Section 4 with performance
index (25). The detection and separation of the matrix S
of transmitted symbols will be made, using the following
objective function:

ϒ (A,C, S,�) =
∥∥∥∥∥Y −

R∑
r=1

λrar⊗cr⊗sr

∥∥∥∥∥
2

F

. (27)

where ar , cr , and sr are the normalized vectors; the scal-
ing ambiguities on the estimated symbols are eliminated
by normalizing each symbol sequence by its norm and
calculating the exact scaling factor �. As to correct the
phases of the three estimated matrices, we will use the
exact performance index (28) seen in Section 5.

E(T ;A,C, S,�) = min
π∈�

R∑
r=1

(
min
ϕ,ψ ,χ

{∥∥ar − ejϕ âπ(r)
∥∥2

+∥∥cr−ejψ ĉπ(r)
∥∥2+∥∥sr−ejχ ŝπ(r)

∥∥2}).
(28)

6.2.2 Simulation
In this experiment, we present the performance of the
receiver algorithms (Algorithm 1 and Algorithm 2 with
new performance criterion) which estimate blindly the
symbol S.
We consider R = 4 users communicate simultaneously

in the same bandwidth. Each user transmits a sequence
J = 20 of consecutive symbols and is uniquely assigned

Table 1 Angles of arrival for four users

Angles of arrival

Figure 4 (-60, -30, 0, 20)

Figure 4 Bit error rate (BER) versus SNR results for scenario 1:
R = 4, K = 4, I = 10, and J = 20.

a spreading sequence of length I = 10. The user symbols
are generated from an i.i.d distribution and are modulated
using a pseudo-random quaternary phase shift keying
(QPSK) sequence. The signal is transmitted to a receiver
of K = 4 antennas. The angles of arrival are described in
Table 1.
In Figure 4, we will illustrate the ability of the blind ten-

sorial receiver Algorithm 2 using the new performance
criterion and the ALS receiver for noisy data extraction.
Using Monte Carlo simulations, we will represent the
evolution of bit error rate (BER) according to the signal-
to-noise ratio (SNR). These results shown in Figure 4
indicate that the performance of the proposed receiver
Algorithm 2 is better since it converges faster than the
ALS algorithm. That is tied to the normalization of the
factormatrices and the exact calculation of the scaling fac-
tor. Moreover, we can see that BER of Algorithm 2 without
the use of our criterion performance is very optimistic,
which proves the interest of our study.

Figure 5 Bit error rate (BER) versus SNR results. Receiver
performance for {two users, four antennas}, {four users, four
antennas}, and {five users, two antennas}.
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Table 2 Angles of arrival for three scenarios

Angles of arrival

Curve 1 ( -10, 20)

Curve 2 (-60, -40, 0, 20)

Curve 3 (-60,-50, 10, 40, 80)

The impact of factor K
R , which represents the number

of receiving antennas per user is illustrated in Figure 5. In
this figure, curve 1 represents the case where the number
of antenna is K = 4 and the number of users is R = 2,
K = 4, and R = 4 for the second curve, while for the third
curveK = 2 and R = 5. The angles of arrival are described
in Table 2. As a result, the overall system performance
is enhanced when increasing the factor K

R , indicating the
importance of spatial diversity.

7 Conclusions
In this paper, we have shown in Section 3.2 that, in CP
tensor decompositions, the scale matrix � takes as opti-
mal value a Gram matrix controlling the conditioning
of the problem. This shows that bounding coherences
would allow to ensure a minimal conditioning. We have
described several algorithms able to compute the min-
imal polyadic decomposition of three-way arrays. The
two proposed algorithms Algorithm 1 and Algorithm 2
have been described and tested, which involve a sep-
arate explicit calculation of the scale matrix �. Con-
trary to the performance measures used in the literature,
which are optimistic by construction, the performance
index calculated herein is more realistic by taking into
account the angular constraint. An application of the
CP decomposition with exact performance criterion to
DS-CDMA system has been presented. Finally, computer
simulations have been performed in the context of SIMO-
CDMA system, in order to demonstrate both the good
performances of the proposed algorithms, compared to
ALS one and their usefulness in CDMA system. The
judgment of our algorithms do not solely rely on the
reconstruction error and the convergence speed, but it
also takes into account the error in the loading matri-
ces obtained and the BER in the case of the CDMA
application.

Appendices
Appendix 1
Detailed� optimal calculation
We intend to calculate the optimal value of � which
minimize the following expression:

ϒ(A,B,C,�) = ‖T − (A,B,C).�‖2F . (29)

By developing, it leads to:

ϒ(A,B,C,�) = ‖T ‖2 −
∑
ijk

∑
p

T∗
ijkλpAipBjpCkp

−
∑
ijk

∑
q

Tijkλ
∗
qA

∗
iqB

∗
jqC

∗
kq,

+
∑
pq

∑
ijk

λpAipBjpCkpλ
∗
qA

∗
iqB

∗
jqC

∗
kq,

= ‖T ‖2−
∑
p

λp f ∗
p −

∑
q

λ∗
q fq+

∑
pq

λpλ
∗
qGpq.

(30)

where Gpq = ∑
ijk AipBjpCkpA∗

iqB∗
jqC∗

kq and fq = ∑
ijk Tijk

A∗
iqB∗

jqC∗
kq. By canceling the derivative ofϒ with respect to

λ, we find the following linear system:

Gλ = f. (31)

Appendix 2
Performance criterion details
In this appendix, we explain in more details how to obtain
performance index δ, in particular how phases (ϕ,ψ ,χ)

are calculated. Setting χ = −ϕ − ψ [2π ], equation (23)
can be rewritten as:

δ = ||a||2 + ||â||2 + ||b||2 + ||b̂||2 + ||s||2 + ||ŝ||2
−2ρa cos(ϕ − α) − 2ρb cos(ψ − β)

−2ρs cos(ϕ + ψ + γ ).

where aHâ def= ρa ejα , bHb̂def=ρb ejβ and sHŝdef=ρs ejγ . Sta-
tionary points are given by the solutions of the trigono-
metric system in e.g. variables x = ϕ − α and y = ψ − β

as unknowns:

ρa sin x + ρs sin(ϕ + ψ + γ ) = 0,
ρb sin y + ρs sin(ϕ + ψ + γ ) = 0.

The first simplification is achieved by noting that

ρs sin(ϕ + ψ + γ ) = −ρa sin x = −ρb sin y.

implies

sin y = ρa
ρb

sin x.

Now, using trigonometric identities, we can rewrite the
first equation of the trigonometric system

ρs sin(ϕ+ψ+γ ) = ρs sin(x+y+α+β+γ ) = −ρa sin x.

as

ρa sin x = −ρs
[
sin x cos y cos(α + β + γ )

+ sin y cos x cos(α + β + γ )

+ cos x cos y sin(α + β + γ )

− sin x sin y sin(α + β + γ )
]
.
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Letting cos y = √
1 − sin2 y and sin y = ρa

ρb
sin x, we obtain

ρa sin x = −ρsρa
ρb

sin x cos x cos(α + β + γ )

+ρsρa
ρb

sin2 x sin(α + β + γ )

+ [ρs sin x sin(α + β + γ )

− ρs cos x sin(α + β + γ )]
√
1 − ρa

ρb
sin2 x.

The goal of the next step is to eliminate the square root
and to rewrite the equation in term of variables sin x or
cos x. So, let us squaring both side of this equation and
using trigonometric identities such as cos2 x = 1+cos(2x)

2 ,
sin2 x = 1−cos(2x)

2 , cos x sin x = sin(2x)
2 , and cos2(2x) +

sin2(2x) = 1. Thus, after simplification we obtain

ρ2
b
2

+ 1
2

(
ρsρa
ρb

)2
− ρ2

s
2

+
[

ρ2
b
2

+ 1
2

(
ρsρa
ρb

)2

+ ρ2
s
2

cos2(α+β+γ ) − ρ2
s
2

sin2(α+β+γ )

]
cos2(2x)

+ [2ρs cos(α+β+γ ) sin(α + β + γ )]
√
1 − cos2(2x)

+
[
2

(
ρsρ2

a
ρb

)
cos(α + β + γ )

√
1 − cos2(2x)

−
(

ρsρ2
a

ρb

)
sin(α+β+γ ) (1−cos(2x))

] √
1−cos(2x)

2
= 0.

In the same way as above, we squared twice both sides
of the resulting equation to eliminate the squares roots.
Finally, we get an equation of degree six of the form

c0 + c1 cos(2x) + c2 cos2(2x) + c3 cos3(2x)

+ c4 cos4(2x) + c5 cos5(2x) + c6 cos6(2x) = 0.

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = c′21 − c′25,
c1 = 2c′1c′4 − 2c′5c′7,
c2 = 2c′1c′3 + c′24 − 2c′5c′6 − c′27 + c′25,
c3 = 2c′1c′2 + 2c′3c′4 − 2c′6c′7 + 2c′5c′7,
c4 = c′23 + 2c′2c′4 − c′26 + 2c′5c′6 + c′27,
c5 = 2c′2c′3 + 2c′6c′7,
c6 = c′22 + c′26.

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c′1 = c′′21 + c′′23 − 1
2 c

′′2
4 − 1

2c
′′2
5,

c′2 = − 1
2 c

′′2
4 + 1

2 c
′′2
5,

c′3 = c′′22 − c′′23 + 1
2 c

′′2
4 − 3

2c
′′2
5,

c′4 = 2c′′1c′′2 + 1
2c

′′2
4 + 4

2 c
′′2
5,

c′5 = −2c′′1c′′3 + c′′4c′′5,
c′6 = c′′4c′′5,
c′′7 = −2c′′2c′′3 − 2c′′4c′′5.

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c′′1 = 1
2ρ

2
a + 1

2

(
ρsρa
ρb

)2 − 1
2ρ

2
s ,

c′′2 = − 1
2ρ

2
a − 1

2

(
ρsρa
ρb

)2 + ρ2
s cos2(α + β + γ ) − 1

2 ,

c′′3 = −2ρ2
s cos(α + β + γ ) sin(α + β + γ ),

c′′4 = −2ρsρ2
a

ρb
cos(α + β + γ ),

c′′5 = ρsρ2
a

ρb
sin(α + β + γ ).

Solving the sixth degree equation yields x. Replacing x
in sin y = ρa

ρb
sin x yields y.
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