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Abstract

In this paper, we propose a new low-complexity joint estimator of the mean angle of arrival (AoA), the angular spread
(AS), and the maximum Doppler spread (DS) for single-input multiple-output (SIMO) wireless channel configurations
in a macrocell environment. The non-line-of-sight (NLOS) case is considered. The space-time correlation matrix is used
to jointly estimate the three parameters. Closed-form expressions are developed for the desired parameters using the
modules and the phases of the cross-correlation coefficients. Simulation results show that our approach offers a better
tradeoff between computational complexity and accuracy than the most recent estimators in the literature.
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1 Introduction
In wireless systems, the propagation environment has
a great impact on smart antenna performance. Indeed,
the multipath phenomenon produces the fading of sig-
nal strength due to constructive and destructive inter-
ferences. It also induces multiple angles of arrival (AoA)
and angular spreads (AS), which reduces signal quality
and hence degrades the performance of smart antennas.
The estimation of those parameters is crucial and would
improve the potential of smart antennas.
ThemeanAoA and the AS are critical parameters. Their

estimates are used in several applications like source local-
ization and detection [1]. The maximum Doppler spread
(DS) is also a key parameter. Indeed, it provides infor-
mation about the fading severity, and its knowledge at
the base station can be used for hand-off purposes [2].
It is also needed in dynamic channel assignment [2], so
that it can improve link quality. In this paper, we pro-
pose a new joint estimator for the mean AoA, the AS,
and the maximum DS with a low-complexity approach.
This work is motivated by the need to develop a new
simple and accurate approach to jointly estimate the
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desired parameters since they are all required by several
applications in mobile communication systems. To the
best of our knowledge, there is no estimator which jointly
estimates the three parameters. One can argue that two
estimators among the literature could be easily combined.
But implementing a different method for each parameter
increases the overall computational complexity. Besides,
there is room for performance improvement by recur-
ring to a joint estimation approach while keeping overall
complexity at a modest order, thereby resulting in a sig-
nificantly improved performance vs. complexity trade-off.
It is from this perspective that we propose in this work a
low-complexity algorithm to jointly estimate the desired
parameters with high accuracy.
Mean AoA and AS estimation has been studied in

recent works. The maximum likelihood (ML) method is
used in [3,4]. The Gaussian-Newton algorithm used in
[4] shows high computational complexity, whereas in [3],
a new derivative of the ML method is developed. The
latter considers the problem of localizing a source by
means of a sensor array for a noisy received signal. This
estimator is based on two solutions, considering both
high and low signal-to-noise ratio (SNR) cases. In [5],
the Gaussian-Newton algorithm is applied using the esti-
mated covariancematrix of a single-inputmultiple-output
(SIMO) configuration. This approach provides accurate
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estimates over a high computational complexity. In [6],
a simple and accurate mean AoA estimator in the case
of imperfect spatial coherence is proposed. In [1] and
[7], low-complexity estimators are developed. The idea
of replicating the transmitting source into two virtual
sources is used. Then, the mean AoA and the AS are esti-
mated by, respectively, averaging and differentiating the
two virtual AoAs. In [7], the spread root-MUSIC algo-
rithm is used, while in [1], the two-stage (TS) approach is
developed using closed-form expressions.
Several methods were developed in the context of

mobile communications to estimate the maximum DS.
The auto-correlation function (ACF) was exploited in
[3] and [8] to offer accurate estimates. In [3], a ML
method based on a polynomial approximation of the
ACF is used. While the estimator developed in [8] uses
the ACF derivatives and takes into account the incom-
ing wave distribution. Unlike the method described in
[3], it presents a low computational complexity. In [9], a
level crossing rate (LCR) approach is proposed. It con-
siders a novel Doppler adaptive noise suppression pro-
cess in the frequency domain to reduce the effect of the
additive noise. In [10-12], Azemi et al. investigate the
maximumDS estimation using three different techniques.
The first approach is based on the reduced interference
time-frequency distribution of the received signals [10].
The second one considers the ambiguity function [11],
while the proposed algorithm in [12] uses the instanta-
neous frequency of the received signal. The two-ray (TR)
approximation proposed in [13] offers a robust maximum
DS estimation. It offers a closed-form expression and con-
siders the presence of residual carrier frequency offset
(CFO), which is closer to real-life scenarios.
In this work, we consider as benchmarks the TS

approach [1] and the SRM algorithm [7] for the mean
AoA and AS estimation, and the TR approach [13] and
the ACF-based algorithm [8] for the maximum DS esti-
mation. These recent works were chosen because they
currently offer best trade-off between estimation accuracy
and computational complexity.
This paper is organized as follows: In Section 2, we

describe the considered signal model then define the
space-time correlation matrix. We consider here the
Gaussian and the Laplacian angular distributions for
the incoming AoAs [14], the most popular ones in the
literature. Nonetheless, the algorithm can be applied for
other distributions like the uniform one. Next, we pro-
pose our joint estimator for the mean AoA, the AS, and
the maximum DS. In Section 3, we evaluate the perfor-
mance of the proposed approach before drawing out our
conclusions in Section 4.
Notation:We use (.)∗ for conjugate operator, |.| for abso-

lute value, E[.] for mathematical expectation, and ∠ for
phase. �(.) represents the real parts of a complex number.

We also use (.)H for trans-conjugate operator. The bold
uppercase and lowercase letters represent, respectively,
the matrices and vectors, while the non-bold lowercase
letters represent scalars.

2 Derivation of the new joint estimator
In this section, we present the new joint estimator for the
desired parameters. To this end, we consider the uplink
transmission over a SIMO Rayleigh channel from a single
source to Na uniform linear array (ULA) at the receiver.
The received signal in baseband at the ith antenna element
is modeled as follows [15]:

xi(t) = σxi lim
P→+∞

1√
P

P∑
p=1

ap exp j
[
ωD cos

(
θp

)
t + φp

] + ni(t),

(1)

where σ 2
si is the power of the received signal, P is the

number of multipaths, ap are random unknown complex
constants normalized as follows:

lim
P→+∞ p−1

P∑
p=1

∣∣ap∣∣2 = 1, (2)

so that σ 2
si = E

[|xi(t)|2] − σ 2
ni where σ 2

ni is the power of
the additive white Gaussian noise (AWGN), ni(t), at the
ith antenna. The AoAs θp of the received signals follow an
angular distribution with a mean and a standard deviation
defined by themean AoA, θm, and the AS, σθ , respectively.
The phases φp are uniformly distributed over (−π π ].
ωD denotes the normalized maximum DS and is given by
ωD = 2πFDTs where FD is the Doppler frequency [15] and
Ts is the sampling interval.
As mentioned before, the estimation of the mean AoA,

AS, and DS is useful in several applications by improv-
ing therein the potential performance gains from smart
antennas. Most mean AoA and AS estimators as in [1,6,7]
consider the following spatial correlation function:

Rkl = E
[
xk(t)x∗

l (t)
]

√
E

[|xk(t)|2]E [|xl(t)|2]
=

∫ +∞

−∞
P

(
θp|θm, σθ

)
exp

(
−j

2π
λ
dkl sin (θm)

)
dθp,

(3)

where P(θp|θm, σθ ) is the probability density function
(PDF) of the incoming AoAs.
For the DS estimators, the temporal correlation function

is exploited as in [3,8,13] and is defined by

R(τ ) = E
[
xk(t)x∗

k(t + τ)
]

E
[|xk(t)|2]

=
∫ +∞

−∞
P (θD|θm, σθ ) exp

(−jωD cos (θD) τ
)
dθD,

(4)
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where P (θD|θm, σθ ) is the PDF of the Doppler angles θD.
The latter is given by

(
θp − α

)
, where α is the direction

of travel (DoT) defined as the angle between the direction
of the mobile and the antenna axis as shown in Figure 1.
In this work, instead of combining two methods from
the ones developed in the literature, we propose a unique
algorithm to jointly estimate the three parameters. To this
end, we jointly exploit both the spatial and the temporal
correlations. The cross-correlation matrix of the received
signals is then given by

Rkl(τ ) = E
[
xk(t)x∗

l (t + τ)
]

√
E

[|xk(t)|2]E [|xl(t)|2] .
After some algebraic manipulation and using (2), we

obtain the following expression for the cross-corrrelation
function:

Rkl(τ ) =
∫ π

−π

P
(
θp; θm, σθ

)
exp

(
−j

2π
λ
dkl sin

(
θp

))
(5)

exp
(−jωDτ sin

(
θp − α

))
dθp, (6)

with dkl is the distance between the kth and the lth
antenna elements.
The estimated cross-correlation coefficients are given by

R̂kl(τ ) = 1
Ns − τ

Ns−τ∑
m=1

xk(m) xl(m + τ), (7)

where Ns is the number of the received signal samples.
In this paper, we consider both Gaussian and Laplacian

angular distributions for the incoming AoAs [14]. Other
angular distribution for the incoming AoAs can be applied
like the uniform one, but this would yield to differ-
ent closed-form expressions. The von Mises distribu-
tion approximate all these angular distributions over κ

Figure 1 Angles of arrival configuration model for uplink
transmission from a single mobile source.

parameter value, but in our approach, it does not yield
to closed-form expressions of the auto-correlation and
cross-correlations functions.

2.1 Gaussian angular distribution
The PDF of the Gaussian angular distribution is given by

P
(
θp, θm, σθ

) = 1
σθ

√
2π

exp
[
− (θp − θm)2

2σ 2
θ

]
. (8)

The following entity is considered to solve the integral
expression [16]:∫ +∞

0
exp

(−ax2
)
cos bx dx = 1

2

√
π

a
exp

−b2

4 a
. (9)

In this work, we assume small ASs, σθ . Indeed, inmacro-
cell environments, the AS does not exceed 10◦ [15,17,18].
In this case, the following linearization is applied to ensure
regular integrals:

sin
(
θp

) = sin(θm) + (θp − θm) cos(θm). (10)

We obtain the following closed-form expression, Rkl(τ ),
for the Gaussian angular distribution:

|Rkl(τ )|=exp
[
−σ 2

θ

2

(
−ωDτ cos (θm−α)− 2π

λ
dkl cos (θm)

)2
]
,

(11)

∠Rkl(τ ) = −2π
λ
dkl sin (θm) − ωDτ sin (θm − α). (12)

In our algorithm, we consider the modules and the phases
of the estimated cross-correlation coefficients. The mean
AoA is estimated using, respectively, the phase of the
auto-correlation, R̂kk(τ ), of the received signal at the kth
antenna and the cross-correlation, R̂kl(τ ), associated to
the antenna pair (k, l) as follows:

θ̂m(k, l) = arcsin
(
∠R̂kk(τ ) − ∠R̂kl(τ )

2π
λ
dkl

)
, (13)

∀ k < l and (k, l) ∈ {1 . . .Na} with k 
= l.
The AS estimate is determined by exploiting the

modules of the cross-correlations R̂kj(τ ), R̂kl(τ ), and the
mean AoA estimates:

σ̂θ (k, l, j) =
√

− ln (|R̂kj(τ )|) −
√

− ln (|R̂kl(τ )|)
√
2π
λ

cos (θ̂m)(dkj − dkl)
, (14)

∀ k < l < j and (k, l, j) ∈ {1 . . .Na} with k 
= l 
= j.
Finally, the maximum DS is deduced using both the

module and phase of the cross-correlation, R̂kl(τ ), the
estimated values of the mean AoA and the AS and consid-
ering the trigonometric property (cos(θm)2 + sin(θm)2 =
1). The maximum DS estimate is then expressed as
follows:
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ω̂(k, l) = 1/τ

⎛
⎜⎜⎝

√√√√√√
(
∠R̂kl(τ ) + 2π

λ
dkl sin (θ̂m)

)2
+

⎛
⎜⎝

√
− ln |R̂kl(τ )|

σ̂θ

− 2π
λ
dkl cos (θ̂m)

⎞
⎟⎠

2
⎞
⎟⎟⎠ , (15)

∀ k < l and (k, l) ∈ {1 . . .Na} with k 
= l.

2.2 Laplacian angular distribution
The PDF of the Laplacian angular distribution is defined
by

P(θp, σθ , θm) = 1
σθ

√
2
exp

[
−|θp − θm|

σθ√
2

]
(16)

To overcome the integral expressions in (5), we can use
the following identity [16]:∫ +∞

0
exp(−ax) cos bx dx = a

a2 + b2
. (17)

Assuming a small AS, the following approximation can
be considered:

cos (θp) = cos (θm) − (θp − θm) sin (θm). (18)

After some algebraic manipulations, we obtain the cross-
correlation coefficient for the Laplacian distribution
Rkl(τ ). As for the Gaussian version, we consider separately
the magnitude and the phase of the cross-correlation
coefficients as follows:

|Rkl(τ )|= 1

1 + σ 2
θ

2
[
ωDτ cos (θm − α) + 2π

λ
dkl cos (θm)

]2 ,
(19)

∠Rkl(τ ) = −2π
λ
dkl sin (θm) − ωDτ sin (θm − α). (20)

The mean AoA is then obtained as for the Gaussian case
(13). Using all the cross-correlation coefficients defined in
(19) for two antenna couples (k, l) and (k, j), we obtain the
following AS estimate:

σ̂θ (k, l, j) =

√
2

|R̂kl(τ )| − 2 −
√

2
|R̂kj(τ )| − 2

2π
λ
cos (θ̂m(k, l))(dkl − dkj)

, (21)

where k, l, j ∈ {1 . . .Na} and k 
= l 
= j.
The maximum DS estimate is then deduced using the
addition of the square |R̂kl(τ )| in (19) and ∠R̂kl(τ ) in (20):

where k, l ∈ {1 . . .Na} and k 
= l.
The final estimates are then obtained by averaging

over antenna branches separated by a half wavelength.
As one can notice, only the cross-correlation matrix is
used to jointly estimate the three parameters. Contrar-
ily to the methods developed in [1,13], the proposed
algorithm does not require the additive noise power
estimation nor the eigenvalue decomposition of the cor-
relation matrix, which reduces considerably the overall
computational complexity. In the next section, we study
both performance and complexity of our joint estimator.

3 Simulation results
We illustrate the performance of the new joint estimator
(JE) in macrocell environments by means of Nb = 1, 000
Monte-Carlo simulations. We consider Ns = 1,024 sam-
ples and a ULA with Na = 5 elements spaced by a
half wavelength. We also use the non-selective frequency
Rayleigh channel model described in [19]. The simula-
tions are CFO free and run at SNR = 20 dB and the
sampling interval is set to Ts = 1

1,500 s. Two time lags
τ are needed to ensure high accuracy. This is why we
consider in this section τ = 1 for the mean AoA and
the AS estimation and τ = 100 for the maximum DS
estimation. However, if the targeted application does not
require accurate estimates, one time lag could be used
then. The sampling rate 1/Ts is sufficiently small to guar-
antee τTs � 1. Exhaustive simulations were performed
and showed that averaging over all antenna pairs induces
several possible AoAs that give the same phase differ-
ence. This is why only the closest antenna elements (d =
λ/2) are considered for the three-parameter estimation to
avoid the ambiguity problem. In that case, only the first
subdiagonal of the cross-correlation matrix is used. The
subdiagonal cross-correlation coefficients are nominally
equal; this is why considering more antenna elements
would not improve the estimation accuracy of the joint
estimation.
To evaluate our JE, we perform a comparative study in

terms of normalized root mean square error (NRMSE)
given by

ω̂D(k, l) = 1/τ

⎛
⎜⎜⎝

√√√√√√(
∠R̂kl(τ ) + 2πdkl sin (θ̂m(k, l))

)2 +
⎛
⎜⎝

√
2

|R̂kl(τ )| − 2

σ̂θ (k, l, j)
− 2πdkl cos (θ̂m(k, l))

⎞
⎟⎠

2
⎞
⎟⎟⎠ , (22)
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Figure 2 NRMSE of the mean AoA estimates at σθ = 6◦ for the Gaussian angular distribution.

NRMSE(η̂) =
√
E

{
(η − η̂)2

}
η

. (23)

We evaluate our approach by comparing it to the TS
approach [1] and the SRM [7] for the mean AoA and the
AS estimation. For the maximum DS, we take as bench-
mark the TR approach [13] and the ACF-based algorithm
[8]. We also compare these estimators to the Cramér-Rao
lower bounds (CRLBs). For the mean AoA and AS, we

consider the CRLB developed in [20]. For the maximum
DS, we use the one developed in [21]. The used CRLBs
for each given parameter assume the two others to be per-
fectly known and hence very likely overestimate the true
joint CRLB.
Figures 2 and 3 show the NRMSE of the mean AoA

estimates using the JE, TS, and SRM approaches at σθ =
6◦ for both Doppler frequencies FD = 50 and 100 Hz,
respectively, for the Gaussian and the Laplacian angular

Figure 3 NRMSE of the mean AoA estimates at σθ = 6◦ for the Laplacian angular distribution.
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Figure 4 NRMSE of the AS estimates at θm = 10◦ for the Gaussian angular distribution.

distributions.We notice that for both high and low FD val-
ues, the SRM algorithm offers a lower error rate than the
TS approach. The TS approach offers the same error rate
than the JE estimator for high mean AoA values, while
for low values, the JE provides a higher accuracy. For low
θm values, the JE and the SRM estimators have almost the
same performance, while for high mean AoA values, the
JE outperforms the SRM algorithm.

For the AS estimation, as shown in Figures 4 and 5,
the TS and JE approaches have similar error rate for low
AS values. The JE estimator achieves a lower NRMSE
than the TS approach [1] for high AS region where
accuracy is precisely more beneficial and is the most
encountered in practice. The inaccuracy shown by the TS
approach for mean AoA and AS estimation is due to the
approximation of the AS angular distribution while our

Figure 5 NRMSE of the AS estimates at θm = 10◦ for the Laplacian angular distribution.
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Figure 6 NRMSE of the maximumDS estimates at θm = 20◦ for the Gaussian angular distribution.

algorithm considers an exact expression. Indeed, the pro-
posed JE offers accurate estimates even for small ASs,
while the SRM algorithm offers higher NRMSE’s. For high
AS values, the SRM and JE estimators have similar per-
formances. We note that for both mean AoA and AS
estimates, we obtain a difference less than 1 dB between
the NRMSEs given by the JE estimator and the CRLB. We

note that, for low AS values, the JE NRMSEs are almost
optimal, since they coincide with the CRLB.
For the maximum DS estimation, we notice in Figures 6

and 7 that the JE and TR approaches [13] perform nearly
the same in terms of NRMSEs, while the ACF algo-
rithm provides higher error rate than the TR and JE ones
for both low and high ωD values. At high ωD values,

Figure 7 NRMSE of the maximumDS estimates at σθ = 3◦ for the Laplacian angular distribution.
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Figure 8 NRMSE of mean AoA, AS, andmaximumDS vs. SNR (FD = 5 Hz, σθ = 6◦, and θm = 20◦) for Gaussian angular distribution. The
dashed lines for TS and TR estimators.

TR estimator outperforms the JE one. While at low ωD,
the JE yields to more accurate estimates. Since Ts is
extremely small, ωD is as well, even if operating at rela-
tively high Doppler or mobility. Hence, accuracy is pre-
cisely more needed in the low normalized DS region,
the most encountered in practice in today’s high data
rate transmissions characterizing 3G/4G technologies and

beyond. We notice that the TR approach considers p time
lags with p ∈[0 . . . 19], while our new method uses only
two time lags. The first is (τ = 1) for the mean AoA
and AS estimation. For the maximum DS estimation, we
determine empirically the second time lag (τ = 100).
Moreover, our approach allows the joint estimation of the
three parameters.

Figure 9 NRMSE of mean AoA, AS, andmaximumDS vs. SNR (FD = 5 Hz, σθ = 6◦, and θm = 20◦) for Laplacian angular distribution. The
dashed lines for TS and TR estimators.
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Table 1 Performance and complexity comparison

JE TS TR TS and TR combined

Joint estimation capability Yes (3/3) Partly (2/3) No (1/3) Yes (3/3)

AS accuracy at practical high values + − N.A. −
AoA accuracy + − N.A. −
DS accuracy at practical low values + N.A. − −
Complexity order (floating-point operations) NsN2

a − N2
a NsN2

a Na (Ns − 1) NsN2
a + (Ns − 1)

(p + 1)3 Na(p + 1)3

N.A., not applicable.

In order to study the robustness of our algorithm against
the additive noise effect, we illustrate in Figures 8 and 9
the estimation performance of the three parameters vs.
the SNR for both the Gaussian and the Laplacian angular
distributions. We take as benchmark the TS and TR algo-
rithms in dashed lines, because these approaches use the
eigenvalue decomposition of the cross-correlation matrix
to estimate the additive noise power and to reduce its
effect. The proposed JE does not require such proce-
dure since the cross-correlation coefficients are nominally
noise free, i.e.,

(
E

[
nk(t) n∗

l (t − τ)
] = 0

)
.

As one can notice, bothmethods seem unaffected by the
SNR values variation. Figures 8 and 9 show that JE offers
better estimation accuracy than the TS approach even at
low SNR values for mean AoA. For AS estimation, the two
approaches present close NRMSEs. For the maximum DS
estimation, the TR approach outperforms our JE at the
expense of a noticeably higher complexity.
In the following, we compare in complexity our algo-

rithm with the TR, ACF, TS, and SRM approaches.
Indeed, the TS and SRM approaches have a complex-
ity order of NsN2

a floating-point operations, while the
JE presents a complexity order of (Ns − 1)N2

a floating-
point operations. For the maximum DS estimation, our
algorithm provides a similar estimation error as the TR
and ACF approaches. Indeed, the TR uses around p =
20 correlation coefficients and the ACF uses L = 15
time lags, while our method considers only two time
lags (τ = 1 and τ = 100). Hence, the TR complex-
ity around Na(Ns − 1)(p + 1)3 floating-point operations
[13]. The ACF complexity around Na(Ns − 1)(L + 1)3
floating-point operations. Both approaches have a higher
complexity than the JE’s. We could increase the temporal
correlation lags used in our approach in order to improve
the maximum DS estimation accuracy especially for high
ωD values, but this would increase the overall complex-
ity as well. In fact, combining the TS algorithm and the
TR approach or the SRM and ACF algorithms presents
an overall estimation complexity of the three parameters
around NsN2

a + Na(Ns − 1)(L + 1)3 floating-point oper-
ations, whereas our approach provides accurate estimates
for the three desired parameters with a single algorithm

and a lower computational complexity. The complexities
of the JE and TS approaches are summarized in Table 1.

4 Conclusions
In this paper, we proposed a new low-complexity
approach to jointly estimate the mean AoA, the AS, and
the maximumDS in macrocell environments. The magni-
tudes and the phases of the cross-correlation matrix were
used to estimate the three parameters. We developed the
joint estimation algorithm for both the Gaussian and the
Laplacian angular distributions in a NLOS scenario. Sim-
ulation results showed that our method provides more
accurate estimates of the mean AoA and the AS than
the TS and SRM approaches. For the maximum DS esti-
mation, the new joint estimator outperforms the TR and
ACF approaches at small DSs with lower computational
complexity.
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