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Abstract

A channelizer is used to separate users or channels in communication systems. A polyphase channelizer is a type of
channelizer that uses polyphase filtering to filter, downsample, and downconvert simultaneously. With graphics
processing unit (GPU) technology, we propose a novel GPU-based polyphase channelizer architecture that delivers
high throughput. This architecture has advantages of providing reduced complexity and optimized parallel
processing of many channels, while being configurable via software. This makes our approach and implementation
particularly attractive for using GPUs as DSP accelerators for communication systems.
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1 Introduction

A modern communication transceiver contains two major
components: a radio frequency integrated circuit (RFIC)
and a baseband processor. An RFIC is responsible for con-
version between analog and digital domain signals, and
mixing signals up and down from baseband (BB) to some
RF. A BB processor or a modem is responsible for han-
dling all of the signal processing tasks and communication
protocols. The notion of software radio (SWR) is defined
in [1]. An SWR is responsible for the entire processing
chain between RF and BB via software.

In SWR systems, signal processing (SP) tasks, such as
signal conversion, mixing, resampling, and filtering, are
all done in BB using software in the discrete-time sample
domain. An RFIC is then responsible for direct conversion
to and from RF.

A majority of the transceiver functionality is contained
in the software modem. The goal of the software-based
transceiver is to bring the SP functionality closer to the
antenna as much as possible, reducing the burden on the
RF front-end and utilizing the full flexibility of software.
A software-based modem is particularly attractive over
dedicated hardware solutions, such as ASIC- and FPGA-
based solutions, due to significantly reduced design time
from modeling to implementation to production. One of
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the major advantages of dedicated hardware is low-power
design, but with the advancements made in system-on-
chip (SoC) architectures over the years with particular
emphasis on low-power design, solutions based on pro-
grammable SoC architectures can deliver levels of energy
efficiency that are sufficient for many applications (e.g.,
see [2]). An SoC can be delivered as a complete solution
that integrates not only the radio unit but other key units,
such as central processing unit (CPU), graphics process-
ing unit (GPU), and peripheral controller subsystems, as
well.

A modern communication system requires multiple
users and data streams to be processed simultaneously. A
front-end transceiver must be able to transmit and receive
multiple channels simultaneously, and a technique known
as channelization is used to separate multiple users or
channels from a single communication stream. A chan-
nelization process is responsible for three basic tasks:
(1) signal up/down conversion (mixing), (2) sample rate
change, and (3) filtering. In this paper, we refer to chan-
nelization in the receiver architecture only, which means
that the channelization process is responsible for down
conversion, reducing sample rates, and filtering to reject
images at the receiver.

A straightforward approach to designing a channelizer
is to design a bank of dedicated sub-receivers. Each sub-
receiver is allocated to a single channel. Such an approach
involves large costs in terms of area, power, and complex-
ity. At the same time, the channels are in general not all
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used simultaneously, and many of the sub-receivers may
be idle at any given time during operation. Such idle sub-
receivers are wasteful in terms of power consumption and
area.

A more integrated approach is needed to replace
such a ‘room full of receivers’ to reduce redundancies
and improve resource utilization. For this purpose, a
polyphase channelizer was introduced in [3,4]. This archi-
tecture employed polyphase filter banks (PFBs) and dis-
crete Fourier transform (DFT) operations to accomplish
multiple channelization tasks at the same time. In par-
ticular, the PFB was used to perform inner-product (IP)
computation for filtering and resampling at the same time,
and DFTs were used for mixing signals up or down. We
refer to a polyphase channelizer in the receiver chain as
a polyphase down channelizer and in the transmitter as
a polyphase up channelizer. In this paper, we focus on
polyphase down channelizer implementation, which we
will simply refer to as a polyphase channelizer (PCZ).
The input to a PCZ is a frequency domain multiplexed
(FDM) signal, and the output is a time domain multiplexed
(TDM) signal. The input FDM signal can represent, for
example, a dedicated channel for one user or a channel
that is shared across multiple users using spreading codes
within the channel.

In this paper, we demonstrate an important applica-
tion of GPU technology to SWR systems. In particular,
we develop a novel GPU-based polyphase channelizer
architecture that delivers high throughput and provides
reduced complexity and optimized parallel processing of
many channels, while being configurable via software.
Since BB modems require SP accelerators that are per-
forming the same SP tasks on incoming streams of data,
there are significant data and task parallelism available,
which we exploit in our proposed architecture using the
intensive parallel processing capability of a GPU. In our
proposed design, the GPU can be used as a stand-alone
unit or in conjunction with an existing hardware modem.
Our goal is to use the GPU as a radio and bring it as close
to the antenna as possible. Such a GPU-based system can
reduce the burden on a power-hungry BB modem and ide-
ally replace the existing modem altogether. Thus, our pro-
posed channelizer architecture simplifies the design and
enhances flexibility while providing significantly acceler-
ated performances.

The remainder of this paper is organized as follows.
First, we discuss the theory and operation of PCZ and
the general-purpose GPU parallel programming language
called Compute Unified Device Architecture (CUDA). We
then introduce a novel GPU-based approach for high-
throughput PCZ implementation.

Finally, we integrate all of the novel methods devel-
oped in this paper and demonstrate their utility using an
important wireless communication standard.
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2 Background information

In this section, we review the theory and operation of
polyphase channelizers. In our system model, we assume
baseband operation and we are given a wide system band-
width (BW) that contains multiple channels. These chan-
nels do not overlap and are equally spaced apart. It is not
our goal here to re-derive the system equations, but rather
to focus on relevant design and architecture aspects in
signal processing systems for parallel processing.

2.1 Polyphase channelizer

A PCZ combines multiple operations into an all-in-one
design. A basic operation of down channelization is as
follows. A downconversion of a channel-of-interest is
performed, followed by a low-pass filter to reject adja-
cent channels. Finally, a downsampling is necessary to
reduce the sampling rate to a Nyquist rate so that unnec-
essary computation is avoided. A PCZ has two major
components: PFB and DFT. A PFB is a multirate filter
that performs downsampling and low-pass filtering at the
same time. A DFT is used to downconvert the output
of PFB to baseband and allow the user to select desired
channel indices. We will not derive or discuss the trans-
formation of band-pass filters and mixers into a PCZ (for
details on this, see [3]), but rather focus on design and
implementation of an efficient PCZ architecture.

A prototype filter is designed that has a filter order of
N. This 1D filter is reshaped, using polyphase decompo-
sition [4,5], into a 2D polyphase filter. A polyphase filter
has Q rows or filter banks, where each row has M columns
or sub-filter coefficient taps. Therefore, the overall filter
length N can be viewed as having a dimension of Q x M.
In addition, the number of DFT points equals the number
of PFB rows, Q. In order to filter or perform convolution
operations, a buffer is created to match the dimension of
the PFB. This is an IP operation across each row of the
PFB. A commutator is used to present the input sample
in a bottom-up fashion as shown in [3,4] since this is a
downsampling operation. Once all Q rows of samples have
been inserted into the input buffer, the IP operation is
performed.

The output of the IP produces a Q x 1 vector. This
vector is presented to the DFT for a downconversion oper-
ation. It is important to note that each bank or row is
independent from the other rows, and as the input sam-
ples are presented one at a time, the IP operation can
be performed on a per-row basis. Therefore, once the
commutator reaches the top, the matrix multiplication
between the input buffer and the filter coefficient matrix
is complete. Since the row operations are independent of
the others, they can be fully parallelized. In addition, if the
input samples can be presented Q at a time instead of one
sample at a time, the need for the commutator is elimi-
nated. However, there is a trade-off in that more resources
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are required. For example, more multipliers are required
in the commutator-free version to support parallel opera-
tions, whereas when the commutator is employed, a single
multiplier can be shared across the entire matrix multipli-
cation provided that all of the required operations can be
completed prior to arrival of the next input sample.

Prior to applying the PCZ, we have an input sampling
rate FI", a given system BW, and a data rate Rq. After appli-
cation of the PCZ, the input sampling rate is divided by
Q and, similarly, the system BW is divided by Q, yield-
ing equally spaced channels and a reduced sampling rate
at the output of the PCZ. This is called a standard or
maximally decimated polyphase channelizer [3]. In [3],
an interpolation operation was combined with a maxi-
mally decimated PCZ to perform a rational resampling at
the same time. This is a partially decimated PCZ. Since
the interpolation in a partially decimated PCZ is being
performed at some rate P while Q samples are being pre-
sented to the input, the output of the IP is presented
R = Q/P (R is referred to here as the rational resampling
ratio) times faster than in the standard PCZ configuration.
This in turn causes the need to shift the data at the input
and output of the IP operation. A serpentine shift and cir-
cular shift are needed to provide such translations, which
prevent phase shifts at the output of the DFT [3].

In summary, there are five factors involved in designing
a PCZ: the (1) input sample rate F;“, (2) system bandwidth
BW, (3) data rate Rq, (4) channel spacing Af = BW =+ Q,
and (5) output sample rate FO = Fi* = Q.

2.2 CUDA

NVIDIA introduced CUDA [6] as a parallel program-
ming language for programming GPUs for use in graph-
ics as well as in other computationally intensive appli-
cation areas. CUDA is based on a single-instruction
multiple-thread (SIMT) programming model, where mul-
tiple threads execute the same instructions over different
data sets. The SIMT model provides an attractive model
for implementation of SP algorithms.

A CUDA Kkernel is a grid set of blocks, and a block is a set
of threads. A processing core is referred to as a streaming
multiprocessor (SMX). A group of 32 threads is called a
warp and is executed as a group inside an SMX. The total
number of threads inside a block should be multiples of a
warp. To achieve maximum performance, it is important
to keep the GPU as busy as possible and utilize as many
threads and blocks as possible.

The GPU memory hierarchy also needs to be utilized
carefully to maximize performance. An external memory
or global memory (GM) is the largest memory in a GPU
system and is also the slowest memory. GM is commonly
used to transfer data back and forth between the GPU and
a corresponding host CPU. Shared memory (SM) is con-
tained within an SMX and is visible only to a specific block
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of threads. It is a fast read/write local memory that can be
viewed as a fast, user-enabled cache. A constant memory
(CM) is a fast, read-only memory for storing constants. In
addition, there are registers for local variables. Any regis-
ter spills or arrays that are not in SM are stored in local
memory (LM). It is important to utilize SM as much as
possible since registers are limited and GM and LM are
relatively slow.

There are several important features of CUDA that
require careful attention when programming GPUs. First,
memory transfers between CPU and GPU must be mini-
mized due to the high latency of transferring data over the
bus. Accesses to GM should be coalesced whenever pos-
sible, and SM should be used to avoid unnecessary access
to GM. Grouping threads in multiples of a warp facilitates
coalescing of data with GM and helps to enhance GPU
utilization. The programmer typically profiles the appli-
cation extensively to fine tune performance and identify
bottlenecks. To summarize, a GPU programmer should
design kernels to spread the workload as much as possible
throughout the GPU, read from GM in a coalesced man-
ner to an SM, instantiate sufficient numbers of threads per
block (TPB), and write back results to GM in a coalesced
manner.

3 Related work

We introduced the notion of using the GPU as a radio,
particularly as a front-end transceiver, in [7], and in this
paper, we continue to explore the concept of a GPU
front-end (GFE) receiver. GPU back-end receivers, which
are responsible for channel decoding (e.g., using Turbo
and LDPC decoders), are captured in [8,9]. A modern
GPU-powered communication system that uses multiple
antenna configurations and a MIMO detector has been
presented in [10].

Other related works on application of GPUs to com-
munication system design include GPU acceleration of
fast Fourier transform (FFT) computation for channel-
ization [11], integrating GPU technology into a software
radio framework [12], accelerating polyphase filters using
GPUs [13], and channelization via mobile GPUs [14].
In [11,14], optimizing FFT and PFB for wideband channel-
ization was introduced using OpenCL. This work inves-
tigated implementations that were targeted to different
classes of AMD GPUs. It targeted GNU Radio’s polyphase
filter channelizer and compared the speedups and com-
putation time between CPUs and different GPUs. In this
work, we design and optimize our polyphase channel-
izer on NVIDIA GPUs using CUDA. Our primary goal is
to target our implementation toward wireless communi-
cation systems and toward meeting critical performance
constraints of such systems - in particular, constraints on
throughput and latency.
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Additionally, there are various FPGA/VLSI implemen-
tations of PCZs in the literature (e.g., see [15-19]). These
works largely focus on optimizing resource usage, such as
use of multipliers, and memory.

A preliminary version of this work was presented
in [7]. This new paper goes beyond the developments of
the preliminary version by incorporating significant new
enhancements to our proposed polyphase channelizer
architecture for high-throughput and real-time communi-
cation systems. Specifically, we further enforced coalesced
loads and stores from GM to SM, spread work across
the GPU more efficiently by enabling increased workloads
and scheduling more blocks of threads for the GPU to
process, and eliminated some sequential aspects of the
underlying algorithms that were present in our prelimi-
nary version. Due to these enhancements, the execution
time of our new architecture is significantly reduced,
well below the target latency. Furthermore, the through-
put has been increased significantly while providing for
simultaneous processing of multiple channels.

4 GPU-based high-throughput polyphase
channelizer

We map our PCZ algorithm onto a GPU and exploit
parallelism found in PCZ operations. First, we imple-
ment a fully parallel PFB on a GPU, with the GPU used
here to accelerate IP operations. We then integrate into
our GPU implementation a CUDA fast Fourier transform
(CUFFT) kernel. CUFFT, a part of NVIDIA’s library of
signal processing blocks, is a parallel version of the DFT
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that is highly optimized for use in CUDA. We process
real I-Q values instead of complex values in our GPU
implementation.

We demonstrated an approach to high-throughput IP
computation using GPUs in [7,20]. In this approach, we
are given an input array from the host CPU that is stored
initially in GM. Instead of using an input buffer with
dimensions Q x M to match the PFB, we simply index the
necessary input samples. In order to minimize the usage
of GM, we first load the data from GM into SM. Each
SM contains M groups of samples so that the IP for mul-
tiple samples can be computed simultaneously. Since we
can access Q samples at the same time, we no longer need
a commutator. However, one must be careful to access
the input samples in a bottom-up manner to ensure that
processing is carried out in the correct order.

The algorithm presented in [7] uses a sequential for-
loop to index through the input data. This is a simple
approach to access Q samples at a time, but this serial-
ization inside the GPU causes increased latency. If there
is a large number of input samples to process, then this
loop will dominate over the fast parallel processing inside
the loop. We propose a new algorithm that eliminates this
for-loop based processing. Specifically, instead of using
a for-loop to step through the input, we unroll the loop
completely and map each sample to a separate thread.
This enforces the notion of SIMT processing in the GPU
since we are performing the same operation over and
over across the input data stream - i.e., polyphase filtering
over the input data. This design optimization eliminates

M saimples M se:mples
f ) f )
input array, x[n] in GM ‘ ‘ ‘ ‘ ‘ ‘ ----- ‘ ‘ ‘ ‘ ‘ ‘ .....
sample index: k=0 k=1 k=K-1
block, Q thread, O,,,v'” thread, 1 sccee \t‘t‘]read, K-1
" MAC unit, 0 MAC unit, 1 MAC unit, K-1

M input samples M input samples

M input samples

input ségnples
inSM

filter taps in CM

[> output, y[0]

L> output, y[1]
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Figure 1 An example of how data is split and loaded onto the GPU.

block dimension (threads per block)
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sequential operation. Furthermore, because only one out-
put sample is generated by each thread, the optimization
enables the spawning of larger numbers of blocks and
threads across the GPU, which helps to improve overall
device utilization. Figure 1 shows how the data is split and
loaded onto the targeted GPU.

Our objectives in further optimizing the design beyond
the developments in [7] include exploiting the SM as
much as possible rather than reading and writing exces-
sively from and to GM. The optimized kernel design pro-
vides a larger workload that is spread across the threads,
with each thread encapsulating a lightweight operation.
Since the volume of input data exceeds the filter dimen-
sion, GPU utilization is increased. Each block or SM is
loaded with TPB+M —1 input samples, and each thread is
now responsible for filtering M samples. Therefore, in the
optimized design, a thread encompasses a multiply-and-
accumulate (MAC) operation, which also takes advan-
tage of GPU’s fused multiply-add (FMA) operation. This
is compared to our previous design, where each thread
performed multiplication only. The results of these mul-
tiplications were then summed separately using a single
thread, which paused the other threads, leading to less
efficient GPU utilization and loading of the GPU.

For polyphase filtering, we load the values column-wise,
but we operate row-wise. Thus, when loading the data
from GM to SM, the data is not coalesced properly, and
an additional step is necessary to enforce further coa-
lescing in the IP operation. A kernel is applied to shuffle
the data to pre-position the data prior to polyphase fil-
tering. A pseudocode specification of this data shuffling
process is shown in Algorithm 1. It is important to note
that we read the data in a linear fashion initially, to enforce
caching on the read operation, then we write back to
GM in polyphase decomposed fashion. This reduces the
latency slightly compared to reading the data in polyphase
decomposition manner first, and then writing it back lin-
early. Following this operation, the polyphase filter kernel
is called. This kernel now reads the data linearly in a coa-
lesced manner to SM. Since we instantiate threads that are
multiples of a warp, the access pattern is byte aligned and
linearly read, which further enhances the efficiency of the
GPU implementation.

Algorithm 1 Pseudocode for data shuffling
idx = blockldx.x x blockDim.x + threadldx.x
if idx < INPUT_LENGTH then
out[col + row x SAMPLES_PER _ROW| = in[idx]
end if

To demonstrate the overall operation of our proposed
fully parallel PCZ design, we provide the pseudocode
specification shown in Algorithm 2. Even with an extra
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kernel for data shuffling, the entire operation is now sim-
plified and further streamlined by eliminating a dominant
sequential loop from our previous design. We reshuf-
fle the data back to its original format prior to applying
CUFFT for the DFT. After application of CUFFT, the
channelization process is complete. Each of the CUFFT
output index corresponds to a TDM output stream. All
of the the channel outputs are produced simultaneously
due to the parallel structure of our proposed architec-
ture. Figure 2 shows the overall block diagram of our new,
optimized PCZ implementation.

Algorithm 2 Pseudocode for polyphase channelizer
ix = threadldx.x
iy = blockldx.y
pdx = blockldx.x x blockDim.x + threadldx.x
idx = iy x SAMPLES_PER_ROW + pdx
odx = pdx x Q + iy
if pdx < SAMPLES_PER_ROW then
SM_REG(ix + M — 1] = in[idx]
ifix < M — 1 then
SM_REG(ix] = inlidx — M + 1]
end if
SYNC_THREADS
forii=0toM — 1do
SM_MAC](ix] +=CM_COEF[(M—1—ii) x Q+iy] x
SM_REGlix + M — 1 — ii]
end for
SYNC_THREADS
outlodx] = SM_MAC][ix]
end if

In summary, in this section, we have built on our
recent developments on PCZ implementation [7] and
incorporated additional design optimizations to further
improve performance. The new design optimizations dis-
cussed here include minimizing the rate of data transfers,
enhancing coalesced access of GM, optimized utiliza-
tion of SM, and enhanced GPU utilization by reducing
thread granularity (operation complexity). The result is a
simpler architecture with reduced bottlenecks and elimi-
nation of a dominant sequential loop. Collectively, these
optimizations result in significant further improvement in
throughput and latency.

In the remainder of this paper, we demonstrate and
experiment with our proposed design methods using a
wireless communication standard. The results provide
concrete insight into the the performance of our GPU-
based, multichannel, parallel transceiver in the context of
a practical wireless communication system.

5 Design and implementation
To experiment with our proposed new PCZ design, we
target an important 3G wireless standard, the Universal
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Figure 2 Block diagram of GPU optimized polyphase channelizer.

Mobile Telecommunications System (UMTS) air inter-
face, wideband code division multiple access (WCDMA)
[21].

The radio frame duration of WCDMA is 10 ms, which is
further divided into 15 time slots per frame. In our exper-
iments, we consider the front-end of a receiver at the base
station or at the associated user equipment to evaluate our
optimized PCZ design.

WCDMA/UMTS has a set of allocated frequency bands
or operating band numbers. Each operating band has a
center frequency and a BW associated with it. Each band
can occupy several tens of megahertz, as much as 80 MHz.
WCDMA is a spread spectrum system that has a data
(chip) rate of 3.84 MHz and occupies approximately 5
MH?z of BW. One of the common BW levels of UMTS is
60 MHz. Given that a modern RFIC can handle an instan-
taneous BW of more than 60 MHz, we assume that at the

input to our GFE, a 60-MHz wide BW is presented. Within
this wide BW, there can exist multiple WCDMA signals
with 5-MHz channel spacing. Therefore, we have at most
12 WCDMA channels present, as shown in Figure 3. We
process all of the available WCDMA channels (up to 12)
simultaneously using our PCZ implementation.

Our approach to using PCZ here works well given a
wide input BW, equal channel spacing, downconversion,
and the ability to reduce the sampling rate at the output
of the PCZ simultaneously using a prototype filter and
DFT. In addition, this particular type of channelizer con-
verts FDM channels into TDM channels. The GPU-based
PCZ provides a highly parallelized and efficient channel-
ization option, which we demonstrate in this paper for a
realistic system scenario. More details on this demonstra-
tion are discussed in the following section, which covers
experimental results and analysis.

spectrum plot, Fs = 60 MHz

magnitude (dB)

F I

i t |

—40
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Figure 3 Plot of WCDMA channels. Twelve WCDMA channels are present in 60-MHz wide bandwidth.
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We design our prototype filter using an equiripple FIR
filter with order N = 192. We design the filter such that
the passband covers the WCDMA band up to 3.84 MHz
and the stopband is near 5 MHz. The passband ripples
and stopband attenuation are 0.05 and 70 dB, respectively.
This gives us non-overlapping polyphase filters, unlike the
overlapping PCZ filter design that we presented in [7] for
GSM. Since WCDMA uses QPSK modulation, it is impor-
tant that we preserve the passband and that we do not
overlap in the filter transition region, unlike GSM’s GMSK
modulation in [7]. A sample plot of our filter design is
shown in Figure 4. Across our 60-MHz system BW, there
is a total of 12 polyphase filters and channels side by side.
This can be viewed as an example where a maximum
number of channels is present in a band to maximize the
network capacity.

Since there are 12 channels to process, we decompose
our PCZ into 12 rows or PFBs, resulting in 16 sub-filter
coefficients per row for our prototype filter length of 192.
Therefore, we have a Q x M IP matrix, where Q = 12 and
M = 16. The decimation rate or number of rows, Q, is
also the number of DFT points. Here, M = 16, which is
half of the GPU warp size. After application of the PCZ,
the output sampling rate should be 60/Q or 5 MHz, which
matches the desired channel spacing of WCDMA. Since
we have Q input samples being presented and Q IP values
for a Q-point DFT, which produces Q channel outputs,
we have a maximally decimated channelizer. In addition,
we process each channel independently, thereby realizing
a fully parallel transceiver.

Now that we have all of the parameters in place, we
map our WCDMA-targeted PCZ using the algorithm
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presented in the previous section. First, we prepare the
input data for coalesced access with polyphase filtering.
Given 60 MHz of BW and a 10-ms radio frame dura-
tion, we pre-process 600,000 samples into the desired 2D
matrix for polyphase filter operation in the PCZ. We shuf-
fle or reshape the 1D input array into a 2D matrix, as
discussed earlier. This can be viewed as a row-major order
that is transposed or simply a matrix that is loaded col-
umn first, but operated on across the rows, as given by the
polyphase decomposition. This operation takes advantage
of cached read accesses each time and block processing
of input data. In addition, it enhances coalesced reads
from GM to SM in the polyphase filtering process. This is
implemented as a separate CUDA kernel prior to a filter
kernel.

Earlier, we described our previous algorithm as being
for-loop-dominant and indexing through the input array
sequentially. Performance can be improved significantly
when it is possible to parallelize this sequential process.
For this purpose, we unrolled the loop completely and
divided up the workload across more threads and blocks
to utilize large numbers of blocks and cores in the targeted
GPU.

While our original method had worked in the context
of standards such as GSM which have longer radio frame
durations of 120 ms, such a method is not well suited
to 3GPP radio frames, which have durations that are 12
times shorter at 10 ms. Operation within 3GPP poses fur-
ther challenges since faster processing is required. The
new design presented in this paper maps the PCZ oper-
ation more efficiently for practical operation within the
context of 3GPP. The workload is spread across the GPU
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more evenly such that the GPU has a large number of
lightweight threads operating, which helps to improve
GPU utilization, as discussed earlier.

Next, we discuss the integration of the different com-
ponents discussed above to construct our overall PCZ
design. We exploit SIMT in our kernel dimension designs.
We can reshape our kernel dimension each time, dividing
up the workload evenly across different kernels. Multiple
kernel calls are used to split the data for different pur-
poses. First, our reshape or data shuffling kernel divides
up one frame worth of data, composed of 600,000 input
samples, by 512 TPB, yielding 1,172 blocks. This is a
1D split that assigns one thread per sample. For the
PFB kernel, this same data set is divided into 12 chan-
nels, with 50,000 samples per channel. Each channel is
then further divided by 512 TPB, which yields 98 blocks.
Since there are 12 channels, we use a 2D data split,
where the x-direction corresponds to individual sam-
ples within a channel, and the y-direction corresponds to
specific channels. Thus, the total lengths of the x- and
y-directions are N, and Nj, respectively, where N, is the
number of samples per channel and N), is the number of
channels.

This decomposition maps 600,000 input samples into
one sample per thread across the 2D grid dimension. Here,
each thread is responsible for one sub-filter operation;
therefore, it will compute M = 16 MAC operations per
thread. Each input sample is read into SM along with
(M — 1) previous sample points to perform filter opera-
tion. The independent MAC operations are performed by
each thread (i.e., 512 threads perform 512 MAC opera-
tions with each thread accessing 16 samples). This further
improves the performance by increasing the utilization of
SM instead of using registers or LM. The filter coefficients
are stored in CM so that they are cached and broadcast
throughout the entire kernel for fast, read-only operation.
The output of the IP is then reshuffled when written back
to GM for the subsequent CUFFT operation. The last ker-
nel call in the sequence is the CUFFT, which outputs the
TDM data for each of 12 individual channels at the same
time.

Thus, to handle the more demanding processing
required when applying our GPU-based PCZ design in
3GPP, we see that our new design employs much larger
numbers of blocks and threads per block. In particu-
lar, under these design constraints, our previous design
instantiates 12 blocks and 16 threads per block, which
are sufficient for the GSM context in which the design
was originally applied, but leaves large numbers of unused
blocks and threads in the GPU. This low utilization of
GPU resources is problematic under the more severe per-
formance constraints of the 3GPP communication system
targeted in this paper. Additionally, using multiple kernel
calls provide significant flexibility to reshape the kernel
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dimension each time, which is a form of flexibility not
found in dedicated hardware solutions.

6 Results and analysis

For our experiments, we employed NVIDIA’s GeForce
GTX 680 as the target GPU to implement our design. This
GPU is based on the Kepler architecture, which has 1,536
CUDA cores (8 SMXs with 192 CUDA cores per SMX),
2 GB of GDDR5 memory, 64 kB of CM, and 48 kB of SM.
It has 256-bit memory bus width, 192 GB/s bandwidth,
and over 3,000 GFLOPS speed. We used the latest CUDA
driver version 6.0 and a compute capability of 3.0. We
summarize our results in Table 1 for both throughput and
run-time. We also present our results with and without
memory transfer between the CPU and GPU. Our tar-
get latency for real-time operation is 3GPP’s radio frame
length of 10 ms, and our calculated speedups are based on
a sampling rate of 5 MSps (mega samples per second).

Our emphasis here is on high-throughput and low-
latency PCZ implementation. We use 32-bit floating-
point precision throughout the experiments. We test our
implementation on a collected WCDMA band of 60 MHz
for 10 ms, where each WCDMA channel occupies 5 MHz
of BW. Thus, the overall 60-MHz bandwidth is channel-
ized into 12 channels. We achieve a high throughput on all
of the kernel calls. The PCZ kernel call includes CUFFT
since CUFFT is highly optimized and available as a part
of the CUDA software development kit (SDK). As one can
see from the results, when memory transfer is involved,
it dominates the overall run-time. Therefore, unneces-
sary transfer of data between the CPU and GPU is highly
undesirable.

Our implementation results in no register spills, SM
usage of 8,312 bytes, and CM usage of 360 bytes. As one
can see from Table 1, all of our kernel calls are executed
with performance that falls within our target latency of 10
ms, even with the overhead of data transfers taken into
account. Without data transfers, the kernels ran under 1
ms. The overall kernel call (which is the slowest of all)
achieves over 280x speedup compared to the 5-MSps
sampling rate. Since this is a front-end and first stage of
baseband processing, one would typically leave the data in
the GPU for further processing and only transfer data back
to the CPU when needed after such further processing is
complete.

We note that the data shuffle kernel achieves an over-
all occupancy of 84.5%; a global memory load efficiency of

Table 1 Experimental results (run-time/throughput)

With transfer Without transfer
Shuffle 2.085ms /575.5 MSps 0.116 ms/ 10,357.5 MSps
New PCZ 2.868 ms /418.5 MSps 0.734ms/ 1,633.6 MSps
Overall 2.901 ms/413.5 MSps 0.856 ms/ 1,402.0 MSps
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100%, which is as expected due to our use of linear coa-
lesced reads; and a global memory store efficiency of 33%,
which is due to shuffling of data for polyphase decom-
position, as we discussed earlier. Nearly all of the kernel
execution time is spent on load and store operations since
there are no arithmetic operations involved.

The PCZ kernel, which encapsulates the PFB opera-
tion, achieves an overall occupancy of 95.6% and GM
load efficiency of 99.8%. Due to our use of the data shuf-
fle kernel, we are able to enforce coalescing for nearly
100% of the global read operations. Without our use of
the data shuffle kernel here, we expect that the GM load
efficiency would be much lower due to irregular read
patterns for polyphase filtering. For the PCZ kernel, SM
efficiency is 99.8%, but GM store efficiency is nearly 0%.
This low level of GM store efficiency is expected; it is due
to non-coalesced writes from reshuffling data after MAC
operations across different blocks and threads.

The PFB operation utilizes full FMA floating-point
operations in the kernel. The GPU excels in such com-
putations [22]. Because our kernels under-utilize available
computational resources to some extent, the kernels are
memory bounded (at the L1 cache). However, this is
not a major bottleneck in our implementation since our
main goal is to process data channels in real-time, and
the implementation meets these objectives in terms of
throughput and latency. We note here that our exper-
iments apply to a single instance of a data set rather
than a continuous stream of data. Applying a continuous
stream of data could lead to higher levels of utilization for
the available computational resources. A useful direction
for future work is the further exploration of the poten-
tial of our implementation in the context of continuously
streaming data.

We compare the performance of our previous PCZ
design [7] with the new design we that we propose in
this paper. We emphasize that although our previous
design (from [7]) exhibits lower performance compared
to our new design, the previous design successfully met
the performance constraints of GSM, which is the pri-
mary standard to which it was targeted. The new design
introduced in this paper has been developed by building
on the experience and insights gained from the previ-
ous design and targeting the more stringent constraints of
3GPP communication.

Table 2 demonstrates that the previous design cannot
achieve the 3GPP real-time latency constraint of 10 ms,
and in fact, its performance is at least 5 times slower than
what is required for the communication system perfor-
mance targeted in this work. In contrast, our new method
achieves the real-time latency constraint, even with mem-
ory transfer, as discussed above. Furthermore, without
memory transfer, the new design runs under 1 ms, which
is near the slot time of 0.667 ms. In other words, the time
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Table 2 Comparison of polyphase channelizer designs

With transfer Without transfer
Old PCZ 52.591 ms/ 22.8 MSps 50.808 ms / 23.6 MSps
New PCZ 2.868 ms /418.5 MSps 0.734ms/ 1,633.6 MSps
Speedup 18.3x 69.2x

to process a complete frame is less than 2 times the time
required by a single slot in the frame. Overall, our new
PCZ design achieves significantly improved throughput,
and a speedup of 326 x compared to the sampling rate of
5 MSps. The new design is also nearly 70x faster than the
previous design, as shown in Table 2.

As expected, the data shuffling kernel exhibits high per-
formance, since it is a simple data swap; however, the new
design allows us to combine this data swapping function-
ality with the benefits of caching and coalescing. Overall,
the new PCZ design provides improvement over the pre-
vious one by eliminating serial processing of the for-loop
and providing more thorough enforcement of memory
coalescing. Additionally, the workload in the new design
is spread much more evenly throughout the GPU, and
each thread encompasses a fine-grained operation (MAC)
utilizing GPU’s FMA floating-point operations.

A limitation of our proposed new design is the output
data rate, which must be increased with some amount
of resampling to achieve the WCDMA data rate. Given
the 5-MHz sampling rate at the output of the PCZ, we
would need to resample to at least twice the sample rate
of the WCDMA data rate, which is 3.84 MSps. There-
fore, a resampler is needed to dynamically achieve such
a fractional rate. We presented a GPU-based arbitrary
resampling method using polyphase filters in [7]. How-
ever, due to serialization within the underlying resampling
approach, this approach does not allow us to achieve the
target latency when it is integrated with our new PCZ
design. Integrating a suitable resampling subsystem at
the output of our proposed new PCZ design is a useful
direction for further investigation.

7 Conclusions

In this paper, we have presented a novel GPU-based
polyphase channelizer that achieves high throughput and
low latency. The new architecture eliminates sequential
processing and spreads the processing workload evenly
across large numbers of blocks and threads in the tar-
geted GPU. Furthermore, the design incorporates prepro-
cessing of the input data to thoroughly enforce caching
and coalescing prior to polyphase filter operation. We
demonstrated our application of GPU technology as the
basis for front-end transceiver implementation by pro-
cessing multiple channels simultaneously and exploiting
data parallelism across different channels, which provides
large increases in throughput.
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Our proposed new GPU-based polyphase channelizer
design provides the high performance of a dedicated sin-
gle receiver using a fully integrated receiver structure
and without sacrificing flexibility. We demonstrated our
design on an important wireless communication standard
and demonstrated large speedups in both throughput
and latency. We also compared the performance to that
of a previous polyphase channelizer design and demon-
strated nearly 70 x improvement, while providing detailed
analysis of how such speedup improvements have been
obtained.

Collectively, the advances presented in this paper make
use of off-the-shelf GPU devices as floating-point soft-
ware radios that can compete in many design scenarios
with fixed-point dedicated hardware radios, and help to
bring GPUs one step closer to the antenna.
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