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Abstract

H.264 video codec provides a wide range of compression options and is popularly implemented over various video
recording standards. The compression complexity increases when low-bit-rate video is required. Hence, the encoding
time is often a major issue when processing a large number of video files. One of the methods to decrease the
encoding time is to employ a parallel algorithm on a multicore system. In order to exploit the capability of a multicore
processor, a scalable algorithm is proposed in this paper. Most of the parallelization methods proposed earlier suffer
from the drawbacks of limited scalability, memory, and data dependency issues. In this paper, we present the results
obtained using data-level parallelism at the macroblock (MB) level for encoder. The key idea of using MB-level
parallelism is due to its less memory requirement. This design allows the encoder to schedule the sequences into the
available logical cores for parallel processing. A load balancing mechanism is added to allow the encoding with
respect to macroblock index and, hence, eliminating the need of a coordinator thread. In our implementation, a
dynamic macroblock scheduling technique is used to improve the speedup. Also, we modify some of the pointers
with advanced data structures to optimize the memory. The results show that with the proposed MB-level parallelism,
higher speedup values can be achieved.

Keywords: Video encoding; H.264; MB-level parallelism; Elapse time; Speedup; OpenMP; Barrier;
Multicore architecture; Scalability; Load balancing

1 Introduction
H.264 is an emerging video coding standard developed
by the ITU-T Video Coding Experts Group (VCEG) and
ISO/IECMoving Picture Experts Group (MPEG) together
with the partnership of Joint Video Team (JVT). H.264
has been developed with the aim of providing good-
quality video at lower bit rates compared to previous video
compression standards. H.264 also provides flexibility in
serving broad range of video applications by supporting
various bit rates and resolutions [1]. The improvement
on bit rate efficiency of H.264 is at the cost of increased
complexity compared to existing standards. The higher
complexity of H.264 encoder results in longer encoding
time [2]. This creates a need for improving the encod-
ing time of the video for batch processing or real-time
applications. Hardware acceleration or parallel algorithm
for multicore processor is often needed to increase the
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processing speed of the encoder. Parallel algorithm is
becoming popular with the usage of multicore processors
over the years even for mobile devices. Parallel algorithms
for H.264 encoder design have been discussed in sev-
eral papers [2-9]. These papers describe different levels
of parallelism that can be applied on H.264 encoder such
as GOP level, frame level, slice level, and macroblock
level. Out of these, macroblock-level parallelism is often
favored for its fine granularity and its ability to prevent any
video quality losses from its serial algorithm counterpart
[4].Macroblock-level parallelism provides good scalability
and load balancing. Some of the main concerns in design-
ing macroblock-level algorithm are the accessing pattern,
the data partitioning, and the load balancing. Macroblock
access pattern defines the way in which the data is to be
processed in order to reduce the data dependencies. The
data partitioning process defines how each macroblock
can effectively be assigned to separate processor core. The
load balancing mechanism ensures that each processor is
loaded with similar amount of workload to prevent the
processing core from staying idle or starvation.
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In general, all the threads may not run in parallel and
there will be a time difference of a few milliseconds to
microseconds among the threads. This problem leads
to load imbalancing. In this paper, a dynamic thread
scheduling strategy is proposed to solve the load imbal-
ancing problem. Furthermore, a new technique to access
data patterns is also proposed to improve the encoding
time. Another contribution of this paper is on memory
optimization using advanced data structures. This paper
proposes a scalable algorithm based on the above strate-
gies that exploits the capability of a multicore proces-
sor using macroblock-level parallelism for video encoder.
The remainder of this paper is organized as follows:
Section 2 gives the description of previous work related
to macroblock parallelism. Section 3 gives an overview
on the design consideration of the parallel algorithm. In
Section 4, the design and implementation of macroblock
parallelism of H.264 encoder parallelism are discussed
in detail. In Section 5, the experimental results of the
design are presented and analyzed. Section 6 consists of
the conclusion and the possible future work.

2 Literature review
Many researchers have been working on parallel algo-
rithms. The popular parallel algorithms that are proposed
are at the GOP, frame, slice, and macroblock levels. Many
researchers have implemented macroblock-level paral-
lelism [3-10], but all the proposed methods so far have
scalability issues. In [4], a method using SIMD instruc-
tions has been proposed to improve the encoding time of
H.264. However, this approach is too complex to imple-
ment on personal computers. The parallel algorithm using
wave-front technique reported in [5] splits a frame into
macroblocks and maps these blocks to different proces-
sors along the horizontal axis. This technique requires
data communication among the parallel processing blocks
(except for the outer blocks of a frame), slowing down the
encoding process. The speedup values achieved with this
implementation are 3.17 and 3.08 for quarter common
intermediate format (QCIF) and common intermediate
format (CIF) video formats, respectively [5]. The mac-
roblock region partition (MBRP) algorithm proposed in
[6] adopts wave-front technique and focuses on reducing
the data communication between processors using a new
data partitioning method. This data partitioning method
assigns a specific macroblock region for each processor,
so that neighboring macroblocks are mostly handled by
the same processor. However, in this implementation, the
waiting time of the processors before starting to encode a
new macroblock is high [6]. The speedup values achieved
with this method are 3.32 and 3.33, respectively, for CIF
and standard definition (SD) video formats. The MBRP
algorithm has not been applied to higher resolutions such
as high-definition (HD) and full high-definition (FHD).

A new macroblock-level parallelism method has been
reported in [7]. In this method, the data partitioning on
the macroblocks eliminates the dependency among the
macroblocks at the beginning of the encoding process.
Encoding the subsequent frames is initiated only when the
reconstructed macroblocks constitute more than half of a
frame. Thus, this method increases the concurrency of the
thread-level parallelism to process multiple frames. The
speedup values achieved with this method for CIF, SD,
and HD video resolutions are around 3.8×. However, in
this implementation, the authors have used only I and P
frames and they have not included B frames. The dynamic
data partition algorithm proposed in [8] for macroblock-
level parallelism reduces data communication overhead
and improves concurrency. The dynamic data partition
algorithm achieves speedup values of 3.59 for CIF, 3.88
for 4CIF, and 3.89 for HD resolution video formats. Even
though good speedup values are obtained, these values
are not consistent with different video formats. Vari-
ous thread-level techniques have been proposed in [9] to
effectively utilize a multicore processor. We have adopted
some of these techniques in the proposed algorithm to
improve the encoding time.

3 Design considerations
3.1 Data dependencies
In general, data dependency remains as one of the
major problems in parallel design. Macroblock-level
parallelism is also suffering from data dependency prob-
lem. There are three major types of data dependen-
cies for the macroblock-level parallelism which are
the dependencies introduced by intra-prediction (Intra
Pred.), inter-prediction (MV Pred.), and deblocking filter
(De-blocking). Some of the neighboring macroblocks
need to be encoded before the current macroblock can
be encoded. Figure 1 shows the current macroblock and
the related neighboring macroblocks used in a wavefront
model. In this case, four neighboring macroblocks need to
be encoded before encoding the current macroblock.
In the proposed implementation, only three neigh-

boring macroblocks are required to encode the current
macroblock as shown in Figure 2. The rate distortion
(RD) performance will not be affected very much since
the motion vector values in blocks 1 and 3 will be almost
identical. The pseudo code for implementing the pro-
posed method is shown in Figure 3.
The macroblock access pattern with the time stamp

used when four macroblocks are processed in parallel is
shown in Figure 4.

3.2 Load balancing
Scalability and load balancing are the two major concerns
when parallelizing a program [11,12]. Scalability implies
maximum number of threads that can be created for a
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Figure 1Macroblock accessing pattern in wavefront method.

parallel program. Load balancing is concerned with the
issue of allocating the same amount of load to all the pro-
cessing elements and ensuring that the execution times
of these processors are nearly the same. The main chal-
lenge of implementing macroblock-level parallelism is to
reduce the idle time among the processors. Processors
should wait until the reference macroblocks are encoded
except for the first macroblock. The balancing of tasks in
the MB level is performed by determining the execution
time of each function dynamically using the profiling. We
have written a function call in the program, which moni-
tors the threads’ function with their execution times and
makes all the threads active without going to idle state by

any interruptions during the task execution. Load balanc-
ing is further improved by allowing each of the processing
to access the structure and load the index of the mac-
roblock that can be encoded by themselves without the
need of a coordinator thread. A reference flag is created in
the program for each thread to identify the status of the
thread. The 0 and 1 statuses of a reference flag will indi-
cate respectively whether the thread is active or not active.
Each thread identifies starting and ending positions of its
region based on its own thread ID with reference flag.
Each thread shall only encode the macroblocks within its
own region after all the data dependencies are resolved
as shown in Figure 2. However, each thread will perform
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Figure 2 Accessing pattern in the proposedmethod.
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check if the mode is available;

check if the mode is valid for the current slice;

if(available) {

execute intra_prediction;

rdcost_t[ipmode]=rdcost;

}

else rdcost_t[ipmode]=UNAVAILABLE;

//store in the array that the ipmode is not available

/*store the rdcost in the array offset by their thread_id which is also ipmode*/

//end of parallel region

compare each rdcost in the array rdcost_t and save the minimum

*Note: This is a generalized pseudo code for concept visualization

and may need additional syntax to be fully functional.*

Figure 3 Pseudo code for the RD cost calculation.

entropy encoding if there are no macroblocks available for
encoding. This idea is to effectively balance the workload
among the threads, so that no threads will fall into an idle
state. Hence, threads do not have to wait for the availabil-
ity of macroblocks to encode within its region. In this way,
the balancing of tasks in the MB level is achieved dynam-
ically without going any thread to idle state, which solves
the load balance problem.
The parallel algorithm of encoder is designed in such a

way that each thread is independent and all the threads

Figure 4Macroblock access pattern with the time stamp.

continue their execution by checking the status of the ref-
erence flag. All the threads can be independently executed
without sharing of the cores by the threads. So, no data
race condition occurs, and this will not incur any extra
latency and eventually upgrade the overall encoding per-
formance. Another benefit with this configuration is that
for any thread, no extra waiting cycle is required to acquire
the Mutual exclusion (Mutex) lock. Whenever there is no
macroblock available for encoding, each thread will enter
the shared region. In the shared region, only one thread is
allowed to access at one time. Before entering the shared
region, each thread will try to acquire aMutex lock to gain
an access and execute the code inside the shared region. In
this way, no thread will fall into a waiting state, since there
will be no repeated failures in acquiring the Mutex lock.
This will not incur extra latency and eventually upgrade
the overall encoding performance. Therefore, this solves
the thread synchronization problem without the data race
condition and thread locking overhead.

3.3 Data partitioning
The data partitioning process assigns certain area of the
frame to a particular processor core to reduce the data
communication. Data partitioning can be generally sep-
arated into three variations, namely, horizontal, vertical,
and dynamic variations. Figure 5 shows the horizontal
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Figure 5 Data partitioning. (a) Horizontal variation. (b) Vertical variation.

and vertical variations of the data partitioning process
[8]. Data communication is needed when the current
and neighboring macroblocks are encoded by different
processors.

3.4 Parallel system design
To design a parallel system, each of the processing cores
should be able to determine which macroblock it has
to encode next. This normally requires a coordinator to
assign the macroblocks to each processor core. Figure 6
shows a general structure of macroblock-level parallelism
for a single frame. Figure 6 also shows the flow of mac-
roblock encoding process.

4 Design and implementation of parallel video
coding

4.1 Macroblock-level parallelism designmethodology
The proposed design utilizes a dynamic scheduling algo-
rithm to stores the current encoded macroblock index in

a temporary memory. This memory can be accessed by
all the processing cores to determine whichmacroblock is
to be encoded next. The processor that finishes first in a
given cycle will update the indices of the macroblocks for
the next cycle. Based on these indices, the macroblocks
will be encoded. The indices of the encoded macroblocks
will be automatically deleted from the memory. Figure 7
shows the process flow of the proposed macroblock-level
parallelism method.
In our proposed method, we create threads in such

a way that all the threads work without any starva-
tion and without any interruption in the thread process
even if there are any external stalls. Also, we use data
communication among all the threads, so that even if any
thread lags or stalls due to starvation or any other rea-
son, it should be immediately notified to the remaining
threads. The thread that finishes the task earlier will take
care of any stalled thread task dynamically. In this way,
we keep all threads running with full functionality without
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Figure 6 General macroblock encoding process.

any idle state, so that we get good load balance with all the
available threads. In this paper, themacroblock access pat-
tern is implemented with the dynamic data partitioning.
In order to keep track of the macroblock status, we define
a function in our program structure. The function in the
program can identify which macroblock can be encoded
after a specific macroblock is processed. By changing this
function, it is possible to change the macroblock access
pattern according to the encoding pattern. Figure 8 shows
the macroblocks that are unlocked when the shaded
macroblock is encoded. The idle processing core will
load the indices of the unlocked macroblocks into the
structure.
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Figure 7 Flow chart of the proposed dynamic parallel design.

Even though the data partitioning is done dynamically,
the processing core loads the index of the next encod-
ing macroblock into the structure in a random order.
Figure 9 shows the dynamic encoding process of the
macroblocks with four threads. It may be noted that in
this case, the work loads of the four threads are evenly
balanced.
Macroblock-level parallelism is implemented using two

structures termed as currSlice and currMB. Figure 10
shows the initialization of currSlice and currMB struc-
tures for parallelism using OpenMP. The processing core
encodes the current macroblock by obtaining the spe-
cific macroblock index using the currMB structure. In our

Figure 8Macroblocks that are unlocked.
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implementation, the initialization of the currSlice and cur-
rMB as well as the encoding sequence are modified to
facilitate dynamic parallelism. The pseudo code for the
parallelized currSlice and currMB structure initialization
is shown in Figure 10.

4.2 Scheduling
In the proposed dynamic scheduling algorithm, no addi-
tional thread (processing core) is used for task scheduling;
instead, one of the available thread is assigned to do this
scheduling task. Due to the problems such as data depen-
dency and control dependency in the shared memory
system, a barrier mechanism is applied to parallel pro-
gramming to retain programming execution order and
to prevent data corruption. Barrier is a type of coordi-
nation method where it defines a point in the program
where any thread that reaches there first has to wait for
the other thread’s completion before proceeding on. It is
useful to prevent data from being updated prematurely
by other thread. The scheduling algorithm attempts to
minimize the barrier wait. It is possible to enforce a flush
system to monitor the processing times of all the parallel
threads during a cycle. Figure 11 shows the structure of
parallelism with barrier. The balancing of tasks in themac-
roblocks is performed by determining the execution time
of each function dynamically to resolve the load imbalance
problem. The design supports a variable number of pro-
cessing cores to utilize more macroblocks at a time. Each
of the processing cores receives its macroblock index by
dynamically detecting the macroblock status.
In order to calculate the index of the macroblock, a new

variable termed as time cycle is introduced into the algo-
rithm. This variable stores the count of macroblocks that
are processed within the parallel region and outside the
parallel region. Figure 12 shows the pseudo code illustrat-
ing the process of determining the macroblock index. The
macroblock indices are numbered from left to right and
then from top to bottom. The calculations for determining
the index values are done for the master and slave threads
separately. Equations 1 and 2 give the index value (thread
status) for the master and slave threads, respectively. The
index values are determined dynamically as shown in the
pseudo code in Figure 12.

Figure 9 Output of the proposed DMBRP design pattern.

where t represents the time cycle number, tid represents
the thread ID, and MB represents the number of mac-
roblocks per row.

4.3 Data structures for memory optimization
The source code of JM 18.0 is implemented with pointers
all over the locations [13]. All the structures are tan-
gled together by these pointers which work fine in serial
mode. However, these pointers cause problems for mem-
ory access when parallelized. This is due to the fact that
when making a structure private to a processing core,
the pointer’s value is made private but not the memory
location pointed by the pointer. There are actually two
problems to be taken into account to tackle this issue.
The first problem occurs when a structure in the higher
hierarchy has a pointer pointing back to another struc-
ture in the lower hierarchy. The second problem occurs
when a structure is having two pointers one pointing to a
structure in the higher hierarchy and the other pointing to
a structure in the lower hierarchy. In the original source
code of JM 18.0 [13], pointers can be replaced with suit-
able data structures. To replace a pointer with a suitable
data structure, the encoding parameter structure p_Enc
(JM 18.0 encoder code) is made as a global variable and
all the structures can be directly or indirectly linked to the
p_Enc structure.

index =

⎧⎪⎨
⎪⎩

t if t < MB

t
MB × n×MB+ (t mod MB) otherwise

(1)

index =

⎧⎪⎪⎨
⎪⎪⎩

(tid ×MB)+ (t − (tid × 2)) if t < (MB+ (tid × 2))

t−(tid×2)
MB × (n+ tid)×MB+ (t − (tid × 2) mod MB) otherwise,

(2)
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allocate memory space for macroblock address set;

obtain all the macroblock addresses;

allocate memory space for currSlice and currMB for each thread;

#pragma omp parallel

/* the variable clause is not displayed as it is too long */

{

thread_id = omp_get_thread_num();

initialize currSlice_thread[thread_id]and      currMB_thread[thread_id];

}

/* Take note here; since the currSlice is separated into individual threads, some of 

the line require coordination such as critical region to execute properly.*/

Figure 10 Pseudo code of the parallel MB structure initialization.

The p_Enc structure provides more flexibility to access
all the structures, for example, whenever there is a need
to make a structure private, the value of that struc-
ture is copied to another memory location. In order to
store the macroblock’s references, the proposed encoder
is implemented with advance data structures, which
eliminates the need for the extra picture buffer. Using the
Intel Parallel Studio’s 2011 Vtune amplifier (Intel Corp.,
Santa Clara, CA, USA), we observed that memset func-
tion is taking most of the time to set memory locations for
specific values. The memset function in JM 18.0 encoder

[13] makes use of calloc function, for allocation of mem-
ory locations.We have replaced calloc function by malloc,
which allocates memory and also reduces the memory
stalls [14,15]. The malloc function reduces the runtime
and improves speedup value in a significant manner. To
solve the scalability and latency issues that occur for large
volumes of data, the ‘non-temporal stores’ function [14] is
used which stores data straight to the main memory with-
out going through cache allocation which makes faster
memory access. The use of ‘non-temporal stores’ function
provides better scalability. It is expected that when a core
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thread reference ID3

Encoding for
Thread ID 0

Initialize structure for 
thread reference ID2

Start Fork for 
encoding

Initialize structure for 
thread reference ID1
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Encoding for
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Thread ID 1

Encoding for
Thread ID 0
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Figure 11 Structure of the proposed parallel design with barrier.
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Figure 12 Pseudo code of macroblock index calculation.

processes a macroblock, its cache will be filled quickly,
so there is a possibility of more number of cache misses
taking place. In order to resolve cache miss issue, each
processor core dynamically keeps track of its cache sta-
tus. Whenever a cache is full, its data will be flushed to
the secondary-level cache. In this way, the cache usage
can be optimized effectively. Table 1 shows the num-
ber of cache accesses and cache misses per frame with
respect to data cache (L1) for first processor core. The
cache accesses and misses shown in Table 1 represent the
values obtained when encoding high-motion (Rush_hour)
video sequences with QCIF, CIF, SD, and HD resolutions.
The results shown in Table 1 indicates that the miss rates
are much lower compared to those obtained by other
researchers [5-8].
MB-level parallelism is performed on all parallel threads

without any dependencies by dynamically detecting the
threads’ status using reference flag so that the subse-
quent frames processed by each thread would not depend
on the results of other threads. Each thread will access
only a specific portion of the memory (of the core)

Table 1 Cache performancemetrics

Video sequences Cache accesses Cache misses

Rush_hour_QCIF 358× 106 3.8× 106

Rush_hour_CIF 562× 106 7× 106

Rush_hour_SD 363× 106 4× 106

Rush_hour_HD 575× 106 7.4× 106

without altering the existing memory mapping struc-
ture. Each thread writes the results prior to reading
the results. This would not affect the processor core’s
results to access the external DRAM and will not affect
the memory bandwidth bottleneck issues. For multi-
core architectures, this is one main benefit to enable
the flexible shared memory subsystem. This minimizes
the data exchanges between pipeline stages and enables
non-blocking handshaking between tasks of a multicore
architecture.

4.4 Encoding
In our implementation, we use looping structure for mac-
roblock encoding. Once the last macroblock in a slice is
encoded, the end of slice flag will be activated to end the
loop. The motivation for this method of looping is to sup-
port the flexible macroblock order (FMO) structure in the
H.264 standard. Figure 13 shows the pseudo code of the
loop with the macroblock encoding.
In the parallelized loop, the macroblock index cannot be

incremented sequentially, since each thread needs imme-
diate access to specific macroblock address. To solve this
problem, the macroblock address has to be pre-initialized.
Thus, each thread can fetch its macroblock according to
the macroblock index. The end_of_slice detection mech-
anism is also changed slightly to accommodate the pre-
computed macroblock address scheme. The pseudo codes
for the parallelized macroblock encoding are shown in
Figure 14. It may be noted that the time cycle is updated
outside the parallel region, since the macroblock index is
a function of time cycle. It is impossible for a thread to
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while(end_of_slice==FALSE)

{

load the currently encoding macroblock into currMB structure;

encode the macroblock;

end macroblock encoding;

if(recode_macroblock==FALS

{

load the next macroblock address;

if(last macroblock) end_of_slice=TRUE;

{

updates statistic;

prepare next macroblock

}

else recode macroblock;

}

}//end of while loop

Figure 13 Pseudo code of macroblock encoding scheme.

obtain its next macroblock address unless the time cycle
is incremented. This will act as an explicit barrier in addi-
tion to the implicit barrier inside the OpenMP structure.
This is due to the fact that the OpenMP implicit bar-
rier requires that all threads must exit the parallel region
before proceeding to the next cycle.

4.5 Simulation Environment
In this implementation, an Intel i7 platform is used
for simulating a four-physical-core system and as an
eight-logical-core system using hyper-threading technol-
ogy. It is assumed that each core has an independent
data cache (L1) and data can be copied from additional

while(end_of_slice==FALSE)

{

#pragma omp parallel /*the variable

clause is not displayed as it is too long*/

{ //start of parallel region

obtain the thread identifier;

obtain the macroblock index for the

thread;

if(macroblock index =macroblock in

picture-1)

end_of_slice = TRUE;

if(macroblock index != IDLE)

{

load the macroblock content;

encode the macroblock;

end macroblock encoding;

if(recode_macroblock==FALSE)

{

updates statistic;

prepare next macroblock

}

/*take note that the statistic that are being updated will be

accessed by all thread, and mostly at the same time, to

prevent this, a critical segment must be used*/

else recode macroblock;

}

}//end of parallel region

time_cycle++;

}//end of while loop

Figure 14 Pseudo codes for the parallelized macroblock encoding.
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caches (L2 and L3) through four channels. To record the
encoder’s elapse time, all existing native services and pro-
cesses in the cores are closely monitored and controlled.
It is also important to ensure that the computer is not
running any additional background tasks during encod-
ing as it will incur additional overhead to the processor.
The experimental results are obtained based on H.264
high profile using I, P, and B frames. The experiments
are conducted using JM 18.0 reference software [13] and
compiled with Microsoft Visual Studio 2010 using Intel i7
platform (Redmond, WA, USA) as described below: Intel
Core™ i7 CPU 930, running at 2.8GHz with four 32-KB D-
Cache (L1), four 32-KB I-Cache (L1), four 256-KB cache
(L2) with 8-way set associative, and 8-MB L3 cache with
16-way set associative and 8-GB RAM. The operating sys-
tem used is Windows 7 64-bits Professional version. The
following are some of the additional settings that are used
to create the testing environment:

• All external devices are disconnected from the
computer excluding the keyboard and mouse.

• All drivers for network adapters are disabled.
• Windows Aero, Gadget, Firewall are disabled.
• Visual effect is set to get better performance.
• Power setting is changed to “Always on” for all

devices.
• All extra windows features are removed with the

exception of Microsoft.net framework.

All simulations are performed under this controlled
environment and the encoder’s elapsed time is recorded
using Intel Parallel Studio’s 2011 Vtune Amplifier and
AMD code analyst. The memory leaks are analyzed using
Intel Parallel Inspector 2011. The parallel programming is
implemented using OpenMP technique. The resolutions
of the video sequences used in the simulation are QCIF,
CIF, SD, and HD resolutions. The scalability is tested by
increasing the number of processing cores and applying
homogeneous software optimization techniques to each
core.

5 Experimental results
The H.264 reference software JM 18.0 is implemented in
sequential with C language. After modifying the JM 18.0
with some optimized C language data structures, JM 18.0
is parallelized by using OpenMP. The simulation is per-
formed using a high-motion video sequence (rush_hour)
with different resolutions such as QCIF, CIF, SD, and HD.
In this implementation, 300 frames are encoded for all
sequences. For each of this resolution, a variable number
of threads from 2 to 8 are tested.

5.1 CPU performance
Figure 15A,B shows the CPU usage graphs before and
after parallelization, respectively. It is observed that all the
four cores are equally balanced after implementation of
the MB-level parallelism.

Figure 15 Performance of CPU usage (A) before parallelization and (B) after DMBRP implementation.
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5.2 Speedupperformance
Figure 16A,B,C,D shows the speedup values achieved for
different resolutions.
From Figure 16A,B,C,D, it is clear that speedup values

close to the number of threads created are achieved for
all resolutions. For example, for HD, a speedup value of
1.973 is achieved usingmulticore systemwith two threads,

which is very close to the maximum speedup value of 2
for a two-core system. A speedup value of 3.95 is achieved
using a multicore system with four threads, which is very
close to the maximum speed up of 4 for a four-core sys-
tem. A speedup value of 7.71 is achieved using multicore
system with eight threads. This value is not very close to
the maximum possible speed up value of 8 even though

Figure 16 Performance of speedup with different resolutions. (A) QCIF, (B) CIF, (C) SD, and (D) HD resolutions.
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Table 2 Speedup comparison with differentHD video
sequenceswith different configurations

Video sequences Two threads Four threads Eight threads
(HD resolution)

Life 1.98 3.95 7.8

Factory 1.97 3.94 7.72

Riverbed 1.978 3.953 7.75

Station2 1.976 3.955 7.76

dynamic scheduling is used to reduce the barrier. This
is because that though Intel i7 platform has eight logi-
cal cores, it has only four physical cores. We note from
Figure 16A,B,C,D that without parallelism, a speedup
value of 1 is achieved for all multicore processors, since
all are using a single thread only. We also observe from
Figure 16A,B,C,D that it is possible to achieve significantly
higher speedup values (closer to theoretical values) using
the macroblock-level parallelism. The results obtained
on the multicore system with two threads, four threads,
and eight threads (hyper-threading) demonstrate signif-
icant speedup improvements. The speedup values given
in Table 2 are calculated using Amdahl’s law shown in
Equation 3 [13]:

Speedup = 1
rs + rp

n
, (3)

where rp is parallel ratio, rs is serial ratio (1− rp), and n is
the number of threads. Figure 17 shows the speedup val-
ues obtained using dynamic MB-level parallelism for four

Table 3 Speedup comparison

Implementation methods QCIF CIF SD HD

Wavefront method 3.17 3.08 No No

MBRP parallelism 3.32 3.32 3.32 No

MBRP with data partitioning 3.8 3.7 3.68 3.54

Dynamic data partitioning 3.89 3.87 3.8 3.59

Our proposed method 3.954 3.954 3.959 3.959

different video sequences (life, Factory, riverbed, Station
2) with HD resolution.
The speedup values obtained using different video test

sequences with HD resolution using threads, four-thread
and eight-thread configurations, are shown in Table 2.
The speedup values obtained by using differentmethods

are shown in Table 3. The Table 3 values are shown only
for four-thread configuration to compare the other meth-
ods implemented, since the other methods implemented
only for four threads. From Table 3, it is observed that the
proposed method achieves significantly higher speedup
values compared to those obtained by other researchers
[6-9]. We can also note from Table 3 that the results
obtained by the proposedmethod are consistent for all the
resolutions unlike the varying results obtained by other
researchers.
Figure 18 shows the results of the peak signal-to-noise

ratio (PSNR) values obtained using the proposed method
for various threads using multicore system for QCIF,
CIF, SD, and HD resolutions. It is clear from Figure 18
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Figure 17 Speedup for HD resolution with four different video sequences.
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Figure 18 PSNR vs. number of threads.

that there is no loss of video quality for all resolutions
when the number of threads is increased from 2 to 16
(i.e., the PSNR value remains constant). For PSNR cal-
culation, we created more threads (up to 16) to see the
effect of the video quality compared to the effect of
speedup.

6 Conclusions
A new scalable method based on macroblock-level par-
allelism has been presented. The proposed method has
advantages such as good load balancing, scalability, and
higher speedup values compared to the existing meth-
ods. Unlike the existing methods where one thread is
specifically used for the purpose of assigning macroblock
indices, the proposedmethod makes use of all the threads
to encode the macroblocks leading to good load bal-
ancing. This is achieved by using a dynamic scheduling
technique. In order to obtain better scalability, the pro-
posed method makes use of a dynamic data partitioning
method. Experimental results show that speedup values
close to theoretical values can be obtained using the pro-
posedmethod. Speedup values of 1.97, 3.96, and 7.71 have
been obtained using two, four, and eight threads, respec-
tively. Furthermore, it has been found that the speedup
values remain constant for QCIF, CIF, SD, and HD res-
olutions. These values are very close to the theoretical
speedup values without degradation in the video quality.
Although, the focus of this paper is on the use of H.264
encoder, the proposed technique can be applied to other
video codecs and computationally intensive applications
to speedup the process.
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