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Abstract

Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent
component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical
polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing
matrix, which contains the information about the intensities of some latent source signals present in the observation
channels. In addition, in many applications, such as the magnetic resonance spectroscopy (MRS), the columns of the
mixing matrix are viewed as relative concentrations of the spectra of the chemical components. Therefore, the two
loading matrices of the three-way array, which are equal to the mixing matrix, are nonnegative. Most existing CP
algorithms handle the symmetry and the nonnegativity separately. Up to now, very few of them consider both the
semi-nonnegativity and the semi-symmetry structure of the three-way array. Nevertheless, like all the methods based
on line search, trust region strategies, and alternating optimization, they appear to be dependent on initialization,
requiring in practice a multi-initialization procedure. In order to overcome this drawback, we propose two new
methods, called JD+

LU and JD+
QR, to solve the problem of CP decomposition of semi-nonnegative semi-symmetric

three-way arrays. Firstly, we rewrite the constrained optimization problem as an unconstrained one. In fact, the
nonnegativity constraint of the two symmetric modes is ensured by means of a square change of variable. Secondly,
a Jacobi-like optimization procedure is adopted because of its good convergence property. More precisely, the two
new methods use LU and QR matrix factorizations, respectively, which consist in formulating high-dimensional
optimization problems into several sequential polynomial and rational subproblems. By using both LU and QR matrix
factorizations, we aim at studying the influence of the used matrix factorization. Numerical experiments on simulated
arrays emphasize the advantages of the proposed methods especially the one based on LU factorization, in the
presence of high-variance model error and of degeneracies such as bottlenecks. A BSS application on MRS data
confirms the validity and improvement of the proposed methods.
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Introduction
Higher order (HO) arrays, commonly called tensors, play
an important role in numerous applications, such as
chemometrics [1], telecommunications [2], and biomedi-
cal signal processing [3]. They can be seen as HO exten-
sions of vectors (one-way arrays) and matrices (two-way
arrays). In many practical situations, the available data
measurements cannot be arranged into a tensor form
directly, that is to say, the observation diversity is insuf-
ficient either in time or frequency. However, if the latent
data satisfies the statistical independence assumption,
which is reasonable in many applications, meaningful HO
arrays can be built by resorting to HO statistics (HOS)
of the data [4]. In this instance, the HO arrays are par-
tially symmetric or Hermitian due to the special alge-
braic structure of the basic HOS, such as moments and
cumulants. In independent component analysis (ICA), the
latent physical phenomena which are assumed to be sta-
tistically independent can be revealed by decomposing
the HO array into factors. There exists several ways to
decompose a given HO array, such as the Tucker model
[5,6]. Among the existing reliable HO array decomposi-
tion models, the canonical polyadic (CP) decomposition
model has attracted much attention. Indeed, its unique-
ness can be ensured under the sufficient conditions estab-
lished by Kruskal [7]. In addition, unlike the HO singular
value decomposition (HOSVD) [6], the CP model does
not impose any orthogonality constraint on its factors.
Theoretically, a polyadic decomposition exactly fits an

array by a sum of rank-one terms [8]. A CP decom-
position is defined as a polyadic decomposition with a
minimal number of rank-one terms which are needed to
exactly fit a given HO array. Currently, the CP decom-
position is gaining importance in several applications, for
example, in exploratory data analysis [9], sensor array pro-
cessing [10], telecommunications [11,12], ICA [13], and
in multiple-input multiple-output radar systems [14]. A
multitude of methods were developed to compute the
CP decomposition. They include the iterative alternating
least squares (ALS) procedure [15], which gains popu-
larity due to its simplicity of implementation and low
numerical complexity. Uschmajew proved the local con-
vergence property of ALS under some conditions [16].
However, this convergence can be slow. Therefore, an
enhanced line search (ELS) procedure was proposed by
Rajih et al. [17] to cope with the slow convergence prob-
lem of ALS. Other approaches were also proposed, such
as the conjugate gradient algorithm [18] and joint eigen-
value decomposition-based algorithms [19,20], to cite a
few. Some HO arrays enjoy certain properties, such as
i) symmetry and ii) nonnegativity, which cannot be simply
handled by the aforementioned general CP decomposition
methods. Therefore, special CP models become more and
more important.

The first special form of the CP model for three-way
arrays that are symmetric in twomodes brings the concept
of individual differences in scaling (INDSCAL) analysis
[21]. On one hand, INDSCAL analysis has been studied
as a way of multiple factor analysis [22] with applications
to chemometrics, psychology, and marketing research.
On the other hand, in the domain of signal processing,
and more particularly in blind source separation (BSS),
the INDSCAL analysis is widely known as the joint diag-
onalization of a set of matrices by congruence (JDC).
During the past two decades, many successful JDC meth-
ods have been proposed, such as Yeredor’s alternating
columns and diagonal center (ACDC) algorithm [23], the
joint approximate diagonalization (JAD) algorithm pro-
posed by Cardoso and Souloumiac [24], the fast Frobenius
diagonalization (FFDIAG) algorithm proposed by Ziehe
et al. [25], Afsari’s LUJ1D algorithm [26], and many oth-
ers [27-33]. A recent survey of JDC can be found in [34].
The second special form of CP model is defined when all
the factors in the CP decomposition are constrained to be
nonnegative, commonly known as nonnegative tensor fac-
torization (NTF). NTF can be regarded as the extension
of nonnegative matrix factorization (NMF) [35] to higher
orders. In many applications, the physical properties are
inherently nonnegative, such as chemistry [1] and fluo-
rescence spectroscopy [36,37]. In those applications, the
results are only meaningful if the nonnegativity constraint
is satisfied. Various methods for computing NTF and also
NMF can be found in [38,39].
So far, the CP model with both the symmetry and non-

negativity constraints has not received much attention.
Coloigner et al. proposed a family of algorithms based
on line search and trust region strategies [40]. Wang
et al. developed an alternating minimization scheme [41].
Those methods appear to depend on initialization, and
therefore in practice require a multi-initialization pro-
cedure, leading to an increase of numerical complexity.
In this paper, we propose to fit the CP model of a
three-way array by imposing both the semi-nonnegativity
and the semi-symmetry constraints. More precisely, we
impose a nonnegativity constraint on the two symmet-
ric modes of the INDSCAL model, which leads to the
semi-nonnegative INDSCAL model or equivalently the
CP decomposition of semi-nonnegative semi-symmetric
three-way arrays. Such a model is often encountered
in ICA problems where a nonnegative mixing matrix is
frequently considered. For example, in magnetic reso-
nance spectroscopy (MRS), the columns of the mixing
matrix represent the positive concentrations of the source
metabolites. Then, the three-way array built by stack-
ing the matrix slices of a cumulant array is both non-
negative and symmetric in two modes. In such a case,
the semi-nonnegative INDSCAL problem is equivalent to
the JDC problem subject to a nonnegativity constraint
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on the joint transformation matrix. We propose two
new algorithms to solve the semi-nonnegative INDSCAL
problem, called JD+

LU and JD+
QR. Firstly, we rewrite the

constrained optimization problem as an unconstrained
one. Actually, the nonnegativity constraint is ensured by
means of a square change of variable. Secondly, we pro-
pose two Jacobi-like approaches using LU and QR matrix
factorizations, respectively, which consist in formulat-
ing high-dimensional optimization problems into several
sequential polynomial and rational subproblems. By using
both LU and QRmatrix factorizations, we aim at studying
the influence of the used matrix factorization. Numeri-
cal experiments highlight the advantages of the proposed
methods especially JD+

LU, in the case of dealing with high-
variance model error and with degeneracies such as bot-
tlenecks. A BSS application on MRS signals confirms the
validity and improvement of the proposed methods. A
part of this work has been recently presented at the 8th
IEEE Sensor Array and Multichannel Signal Processing
Workshop [42].
The rest of the paper is organized as follows. After the

presentation of some notations, the ‘Multilinear algebra
prerequisites and problem statement’ section introduces
some basic definitions of the multilinear algebra then
gives the semi-nonnegative INDSCAL problem formula-
tion. In the ‘Methods’ section, we describe the proposed
algorithms in detail and also provide an analysis of the
numerical complexities. The ‘Simulation results’ section
shows the computer simulation results. Finally, we con-
clude the paper.

Multilinear algebra prerequisites and problem
statement
Notations
The following notations are used throughout this paper.
�
N1×N2×···×Ni and �N1×N2×···×Ni+ denote the set of real-

valued (N1 ×N2 × · · ·×Ni) arrays and the set of nonneg-
ative real-valued (N1 ×N2 × · · ·×Ni) arrays, respectively.
Vectors, matrices, andHO arrays are denoted by bold low-
ercase letters (a, b, · · · ), bold uppercase letters (A, B, · · · )
and bold calligraphic letters (A, B, · · · ), respectively. The
(i, j)-th entry of a matrix A is symbolized by Ai,j. Some-
times, the MATLAB® column/row notation is adopted to
indicate submatrices of a given matrix or subarrays of
a HO array. Also, ai denotes the i-th column vector of
matrixA.� denotes theHadamard product (element-wise
product), and A�2 = A � A. � denotes the Khatri-Rao
product. A� denotes the pseudo inverse of A. The super-
scripts −1, T, and −T stand for the inverse, the transpose,
and the inverse after transpose operators, respectively.
The (N × N) identity matrix is denoted by IN . 0N stands
for N-dimensional vectors of zeros. |a| denotes the abso-
lute value of a. ‖A‖F and det(A) stand for the Frobenius
norm and determinant of matrix A, respectively. diag(A)

returns a matrix comprising only the diagonal elements of
A. Diag(b) is the diagonal matrix whose diagonal elements
are given by the vector b. off(A) vanishes the diagonal
components of the input matrix A. vec(A) reshapes a
matrix A into a column vector by stacking its columns
vertically.

Definitions and problem formulation
Now we introduce some basic definitions in multilinear
algebra which are necessary for the problem formulation.

Definition 1. The outer product C = u(1) ◦ u(2) ◦ u(3)

of three vectors u(i) ∈ �
Ni (1 ≤ i ≤ 3) is a three-

way array of �N1×N2×N3 whose elements are defined by
Ci1,i2,i3 = u(1)

i1 u(2)
i2 u(3)

i3 .

Definition 2. Each three-way array C expressed as the
outer product of three vectors is a rank-1 three-way array.

More generally, the rank of a three-way array is defined
as follows:

Definition 3. The rank of an array C ∈ �N1×N2×N3 ,
denoted by rk(C), is the minimal number of rank-1
arrays belonging to �N1×N2×N3 that yield C in a linear
combination.

Despite the similarity between the definition of the
tensor rank and its matrix counterpart, the rank of a
three-way array may exceed its dimensions [4].

Definition 4. A three-way array slice is a two-
dimensional section (fragment) of a three-way array,
obtained by fixing one of the three indices [38].

For example, the k-th frontal slice of a three-way array
C can be denoted by C:,:,k using MATLAB notation, and
sometimes it is also denoted by C(k).
The low-rank INDSCAL model of a three-way array is

defined as follows:

Definition 5. For a given P, corresponding to the num-
ber of rank-1 terms, the INDSCAL model of a three-way
array C ∈ �N×N×K can be expressed as:

C =
P∑

p=1
ap ◦ ap ◦ dp + V (1)

where the three-way arrayV represents themodel residual.

The notation C = [[A,A,D]]+V refers to the INDSCAL
decomposition (1) of C with the associated loading matri-
ces A = [a1, · · · , aP] ∈ �N×P and D = [d1, · · · , dP] ∈
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�K×P . If and only if the residualV is a null tensor, we have
an exact INDSCAL decomposition.
An exact INDSCAL decomposition is considered to be

essentially unique when it is only subject to scale and
permutation indeterminacies. It means that an INDSCAL
decomposition is insensitive to a scaling of the three vec-
tors ap, ap, and dp provided that the product of the three
scale numbers is equal to 1, and an arbitrary permutation
of the rank-1 terms. A necessary and sufficient unique-
ness condition for the INDSCAL model was established
by Afsari [43].
The INDSCALmodel can also be described by using the

frontal slices of C:
∀ k ∈ {1, 2, · · · ,K}, C(k) = C:,:,k = AD(k)AT+V (k) (2)

where D(k) is a diagonal matrix whose diagonal contains
the elements of the k-th row of D, and V (k) = V :,:,k .
In this paper, we propose to fit the INDSCAL model

of three-way arrays while imposing nonnegativity con-
straints on both equal loading matrices A. It will be
referred to as the semi-nonnegative INDSCAL model, as
follows:

Problem 1. Given C ∈ �N×N×K and an integer P, find
a semi-nonnegative INDSCAL model of C = [[A,A,D]],
subject to the (N × P) matrix A having nonnegative com-
ponents.

The semi-nonnegative INDSCAL problem is equivalent
to the JDC problem subject to the nonnegativity con-
straint on the joint transformation matrix. In this paper,
we mainly focus on the case of square nonnegative joint
transformation matrix, for which N = P. The case of
N > P will be discussed briefly in the next section. There-
fore, the problem that we tackle in this paper is defined as
follows:

Problem 2. Given a three-way array C ∈ �N×N×K with K
symmetric frontal slices C(k) ∈ �N×N , find a (N×N) joint
transformation matrix A and K diagonal matrices D(k) of
dimension (N × N) such that:

∀ k ∈ {1, 2, · · · ,K}, C(k) = AD(k)AT + V (k) (3)

by minimizing the residual term V (k) in a least-squares
sense, subject to A having nonnegative components.

JDC cost functions
If the residual array V is a realization of a Gaussian ran-
dom array, it is logical to fit the INDSCAL model by the
following direct least square (DLS) criterion [23,44]:

JDLS(A,D) =
K∑

k=1

∥∥∥C(k) − AD(k)AT
∥∥∥2
F

(4)

and to minimize (4) with respect to A and D. Note that,
in the field of ICA, only the loading matrix A is of interest
since it corresponds to the mixing matrix of several latent
source signals. The minimization of (4) with respect to D,
when A is fixed, was given by Yeredor in [23]:

D(k) = Diag
{[(ATA)� (ATA)]−1

(A � A)T vec
(
C(k)

)}
(5)

When A is orthogonal, we can replace D(k) by
Diag

{
(A � A)T vec

(
C(k)

)}
in (4). Then, the extra param-

eter D can be eliminated and the minimization of (4)
is equivalent to minimizing the following indirect least
square (IDLS) criterion [45,46]:

JIDLS-O(A) =
K∑

k=1

∥∥∥ off(ATC(k)A
) ∥∥∥2

F
(6)

In some cases such as in ICA, the orthogonality assump-
tion of A can be satisfied by using a spatial whitening
procedure [47]. However, it is known that the whiten-
ing procedure may introduce additional errors. Therefore,
many algorithms propose to relax the orthogonality con-
straint by introducing the following cost function [25,31]:

JIDLS(A) =
K∑

k=1

∥∥∥ off (A−1C(k)A−T
) ∥∥∥2

F
(7)

Frequently, the minimization of criterion (7) is per-
formed on a matrix Z def= A−1 instead of A for simplicity,
and Z is called the joint diagonalizer. To use this crite-
rion, thematrixA (orZ) should be properly constrained in
order to avoid the trivial zero solution and/or degenerate
solutions [34].
Besides the criterions (4) and (7), Afsari [26] presented

a new cost function, which is invariant to column scaling
of A. Pham proposed an information theoretic criterion
[48], which requires each matrix C(k) to be positive defi-
nite. Tichavský and Yeredor gave a special weighted least
square criterion [49].

Methods
Problem reformulation
Existing semi-nonnegative INDSCAL algorithms are
based on the minimization of the cost function (4)
[40,41]. They are able to achieve a better estimation of A
than ACDC when the data satisfies the semi-nonnegative
INDSCAL model at the cost of a higher computational
complexity. We propose to use criterion (7) based on ele-
mentary factorizations of A due to the fast convergence
property of this kind of procedures. Generally, it is quite
difficult to impose the nonnegativity constraint onAwhile
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computing its inverse A−1 by minimizing (7). Let us con-
sider the structure of C = [[A,A,D]] with the following
assumptions:

1© A ∈ �N×N+ is nonsingular;
2© D ∈ �K×N does not contain zero entries.

Then, each frontal slice of C is nonsingular and its
inverse can be expressed as follows:(

C(k)
)−1 = A−T

(
D(k)

)−1
A−1 (8)

We use C(k,−1) to denote
(
C(k)

)−1
for simplicity. Eq. 8

shows that C(k,−1) also preserves the jointly diagonaliz-
able structure. Furthermore, instead of A−1, A serves as
the joint diagonalizer. Then, A can be estimated by min-
imizing the following modified criterion based on (7):

J(A) =
K∑

k=1

∥∥∥ off (ATC(k,−1)A
) ∥∥∥2

F
(9)

By such a manipulation, most algorithms based on cri-
terion (7) can now estimate A directly. However, none of
them can guarantee the nonnegativity of A. In order to
impose the nonnegativity constraint on A, we resort to
use a square change of variable which was introduced by
Chu et al. [50] for NMF, next adopted by Royer et al. for
NTF [37] and by Coloigner et al. for semi-nonnegative
INDSCAL [40]:

A = B� B = B�2 (10)

where B ∈ �N×N . Then, problem 2 can be reformulated
as follows:

Problem 3. Given C = [[A,A,D]]∈ �N×N×K , find the
square nonnegative loading matrix A = B�2 such that B
minimizes the following cost function:

J(B) =
K∑

k=1

∥∥∥∥off
((

B�2
)T

C(k,−1)B�2
)∥∥∥∥2

F
(11)

LU and QR parameterizations of B
In order to minimize (11), one may consider a gradient-
like approach. However, the performance of this kind of
method is sensitive to the initial guess and to the search
step size. In addition, the calculation of gradient of (11)
with respect to B is computationally expensive due to the
existence of the Hadamard product. Other algorithms,
using Jacobi-like procedures [25,26,31], parameterize A as
a product of several special elementary matrices and esti-
mate each elementary matrix successively. We propose to
follow such a minimization scheme.

Now let us recall the following definitions and lemmas:

Definition 6. A unit upper (or lower) triangular matrix
is an upper (or lower, respectively) triangular matrix
whose main diagonal elements are equal to 1.

Definition 7. An elementary upper (or lower) triangu-
lar matrix with parameters {i, j, ui,j} and i < j is a unit
upper (or lower, respectively) triangular matrix whose
non-diagonal elements are zeros except the (i, j)-th entry,
which is equal to ui,j.

U(i,j)(ui,j) with 1 ≤ i < j ≤ N denotes an elementary
upper triangular matrix:

U(i,j)(ui,j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I i−1
... 0

... 0
. . . 1 . . . ui,j . . .

0 ... I j−i−1
... 0

. . . 0 . . . 1 . . .

0
... 0

... IN−j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(12)

Similarly, L(i,j)(�i,j) with 1 ≤ j < i ≤ N corresponds to
an elementary lower triangular matrix.

Definition 8. A Givens rotation matrix with parame-
ters {i, j, θi,j} and i < j is equal to an identity matrix except
for the (i, i)-th, (j, j)-th, (i, j)-th, and (j, i)-th entries, which
are equal to cos(θi,j), cos(θi,j), − sin(θi,j), and sin(θi,j),
respectively.

Q(i,j)(θi,j) with 1 ≤ i < j ≤ N indicates the correspond-
ing Givens rotation matrix:

Q(i,j)(θi,j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I i−1
... 0

... 0
. . . cos(θi,j) . . . − sin(θi,j) . . .

0 ... I j−i−1
... 0

. . . sin(θi,j) . . . cos(θi,j) . . .

0 ... 0 ... IN−j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Lemma 1. Any (N × N) unit lower triangular matrix L
whose (i, j)-th component is �i,j (i > j) can be factorized
as the following product of N(N − 1)/2 elementary lower
triangular matrices [51, Chapter 3]:

L =
∏
j∈J1

∏
i∈I1(j)

L(i,j)(�i,j) (14)

where the two sets of indices J1 and I1(j) are defined by
J1 = {1, 2, . . . ,N} and I1(j) = {j + 1, j + 2, . . . ,N} for
the sake of convenience. Similarly, any (N ×N) unit upper
triangular matrix U whose (i, j)-th component is equal to
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ui,j (i < j) can be factorized as a product of elementary
upper triangular matrices as follows:

U =
∏
i∈I2

∏
j∈J2(i)

U(i,j)(ui,j) (15)

where I2 and J2(i) are two sets of indices, defined by
I2={N−1,N−2, . . . , 1} andJ2(i)= {N ,N−1, . . . , i+1}.

Lemma 2. Any (N × N) orthonormal matrix Q can be
factorized as the following product of N(N − 1)/2 Givens
rotation matrices [52, Chapter 14]:

Q =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j) (16)

whereI2 andJ2(i) are defined in Lemma 1.

For any nonsingular matrix B ∈ �N×N , the LU matrix
factorization decomposes it as B = LU��, where L ∈
�
N×N is a unit lower triangular matrix, U ∈ �

N×N is
a unit upper triangular matrix, � ∈ �N×N is a diagonal
matrix, and � ∈ �

N×N is a permutation matrix. B also
admits the QR matrix factorization as B = QR�, where
Q ∈ �N×N is an orthonormal matrix, R ∈ �N×N is a
unit upper triangular matrix, and � ∈ �N×N is a diagonal
matrix. Due to the indeterminacies of the JDC problem,
the global minimum of (11), say B, can be expressed as
B = LU and B = QR without loss of generality. More-
over, by incorporating Lemma 1 and Lemma 2, we obtain
the two following elementary factorizations of B:

B =
∏
j∈J1

∏
i∈I1(j)

L(i,j)(�i,j)
∏
i∈I2

∏
j∈J2(i)

U(i,j)(ui,j) (17)

B =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j)
∏
i∈I2

∏
j∈J2(i)

U(i,j)(ui,j) (18)

As a consequence, theminimization of (11) with respect
to B is converted to the estimate of N(N − 1) parameters:
�i,j and ui,j for the LU decomposition (17), or θi,j and ui,j
for the QR decomposition (18). Instead of simultaneously
computing the N(N − 1) parameters, we propose two
Jacobi-like procedures which perform N(N − 1) sequen-
tial optimizations. This yields two new algorithms: i) the
first algorithm based on (17), named JD+

LU, estimates each
�i,j and ui,j successively, and ii) the second one based on
(18), called JD+

QR, estimates each θi,j and ui,j sequentially.
Now, the difficulty is how to estimate four kinds of

parameter, namely L(i,j)(�i,j) and U(i,j)(ui,j) for JD+
LU, and

Q(i,j)(θi,j) and U(i,j)(ui,j) for JD+
QR. Two points should be

noted here: i) L(i,j)(�i,j) and U(i,j)(ui,j) belong to the same
category of matrices; therefore, they can be estimated by
the same algorithmic procedure just with an emphasis on
the relation between the i and j indices (i < j forU (i,j)(ui,j)
and j < i for L(i,j)(�i,j)); ii) for both JD+

LU and JD+
QR algo-

rithms, the procedure of estimatingU(i,j)(ui,j) is identical.

Consequently, the principal problem is reduced to esti-
mating two kinds of parameters, namely U(i,j)(ui,j) and
Q(i,j)(θi,j).

Minimization with respect to the elementary upper
triangular matrix U(i,j)(ui,j)
In this section, weminimize (11) with respect toU(i,j)(ui,j)
with 1 ≤ i < j ≤ N . Let Ã and B̃ denote the cur-
rent estimate of A and B before estimating the parameter
ui,j, respectively. Let Ã(new) and B̃(new) stand for Ã and
B̃ updated by U(i,j)(ui,j), respectively. Furthermore, the
update of B̃ is defined as follows:

B̃(new) = B̃U (i,j)(ui,j) (19)

In order to compute the parameter ui,j, a typical way
is to minimize the criterion (11) with respect to ui,j by
replacing matrix B̃ by B̃(new). For the sake of convenience,
we denote J(ui,j) instead of J

(
B̃(new)

)
. Then, J(ui,j) can be

expressed as follows:

J(ui,j) =
K∑

k=1

∥∥∥∥∥off
{[(

B̃(new)
)�2
]T

C(k,−1)
[(

B̃(new)
)�2

]}∥∥∥∥∥
2

F

(20)

The expression of the Hadamard square of the update
B̃(new) is shown in the following proposition:

Proposition 1. Ã(new) =
(
B̃(new)

)�2 =
(
B̃U(i,j)(ui,j)

)�2

can be expressed as a function of ui,j as follows:

Ã(new) =
(
B̃(new)

)�2 = B̃�2U(i,j)
(
u2i,j
)

+ 2ui,j
(
b̃i � b̃j

)
eTj

(21)

where b̃i and b̃j denote the i-th and j-th columns of B̃,
respectively, and ej is the j-th column of the identity matrix
IN .

Inserting (21) into the cost function (20), we have:

J(ui,j) =
K∑

k=1

∥∥∥off(C̃(k,new)
)∥∥∥2

F
=

K∑
k=1

∥∥∥∥∥∥∥∥∥∥
off

⎛
⎜⎜⎜⎜⎝U(i,j)

(
u2i,j
)
TC̃(k)U(i,j)

(
u2i,j
)

︸ ︷︷ ︸
1©

+ ui,jU(i,j)
(
u2i,j
)
T c̃(k,1)eTj︸ ︷︷ ︸

2©
+ ui,jejc̃(k,2)U(i,j)

(
u2i,j
)

︸ ︷︷ ︸
3©

+u2i,j c̃
(k,3)ejeTj︸ ︷︷ ︸
4©

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥

2

F

(22)

where C̃(k) = ÃTC(k,−1)Ã, c̃(k,1) = 2 ÃTC(k,−1)
(
b̃i � b̃j

)
,

c̃(k,2) = 2
(
b̃i � b̃j

)
T × C(k,−1)Ã, and c̃(k,3) = 4
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(
b̃i � b̃j

)
TC(k,−1)

(
b̃i � b̃j

)
are a (N×N) constant matrix,

a (N × 1) constant column vector, a (1×N) constant row
vector, and a constant scalar, respectively. The term 1© in
(22) transforms the j-th column and the j-th row of C̃(k).
The term 2© in (22) is a zero matrix except its j-th column
containing non-zero elements, while the term 3© contains
non-zero entries only on its j-th row. The term 4© is a
zero matrix except its (j, j)-th component being non-zero.
In addition, C̃(k,new) = 1© + 2© + 3© + 4© is a (N × N)

symmetric matrix. Hence, (22) shows that only the j-th
column and j-th row of C̃(k,new) involve the parameter ui,j,
while the other elements remain constant. Therefore, the
minimization of the cost function (20) is equivalent to
minimizing the sum of the squares of the j-th columns of
C̃(k,new) except their (j, j)-th elements with k ∈ {1, · · · ,K}.
The required elements of C̃(k,new) can be expressed by the
following proposition.

Proposition 2. The elements of the j-th column except
the (j, j)-th entry of C̃(k,new) is a second-degree polynomial
function in ui,j as follows, for every value n different of j:

C̃(k,new)
n,j = C̃(k)

n,i u
2
i,j + c̃(k,1)n ui,j + C̃(k)

n,j (23)

where C̃(k)
n,i and C̃(k)

n,j are the (n, i)-th and (n, j)-th com-

ponents of matrix C̃(k), respectively, and c̃(k,1)n is the n-th
element of vector c̃(k,1).

The proof of this proposition is straightforward. Indeed,
we can show that the elements of the j-th column except
the (j, j)-th entry of the term 1© in (22) can be expressed
by C̃(k)

n,i u
2
i,j + C̃(k)

n,j with 1 ≤ n ≤ N and n 	= j, and those
elements of the term 2© in (22) are equal to c̃(k,1)n ui,j with
1 ≤ n ≤ N and n 	= j. The sum of these elements directly
leads to (23). The terms 3© and 4© do not need to be con-
sidered, since they do not affect the off-diagonal elements
in the j-th column. Proposition 2 shows that the mini-
mization of the cost function (20) can be expressed in the
following compact matrix form:

J(ui,j) =
K∑

k=1

∥∥∥E(k)ui,j
∥∥∥2
F

= uTi,jQEui,j (24)

where QE = ∑K
k=1(E(k))TE(k) is a (3 × 3) symmetric

coefficient matrix. E(k) is a ((N − 1) × 3) matrix defined
as follows: the first column contains the i-th column of
C̃(k) without the j-th element, the second column contains
vector c̃(k,1) without the j-th entry, and the third column
contains the j-th column of C̃(k) without the j-th compo-
nent. ui,j =

[
u2i,j, ui,j, 1

]
T is a three-dimensional parameter

vector.

Equation (24) shows that J(ui,j) is a fourth-degree poly-
nomial function. The global minimum ui,j can be obtained
by computing the roots of its derivative and selecting the
one yielding the smallest value of (24). Once the optimal
ui,j is computed, B̃(new) is updated by (19) and the joint

diagonalizer Ã(new) is updated by computing
(
B̃(new)

)�2
.

Then, the same procedure is repeated to compute the next
ui,j with another (i, j) index.
Theminimization of (11) with respect to the elementary

lower triangular matrix L(i,j)(�i,j) with 1 ≤ j < i ≤ N
can be computed in the same way. Proposition 2 is also
valid for the parameter �i,j when 1 ≤ j < i ≤ N . The
detailed derivation is omitted here. The processing of all
the N(N−1) parameters ui,j and �i,j is called a LU sweep.
In addition, for estimating L(i,j)(�i,j), the (i, j) index obeys
the following order:

(2, 1), (3, 1), . . . ,(N , 1), (3, 2), (4, 2), . . . , (N , 2), . . . ,
(N − 1,N − 2), (N ,N − 2), (N ,N − 1)

(25)

Regarding U(i,j)(ui,j), the (i, j) index varies according to
the following sequence:

(N−1,N), (N−2,N), (N−2,N−1), . . . ,
(2,N), (2,N−1), . . . , (2, 3), (1,N), (1,N−1), . . . , (1, 2)

(26)

The proposed JD+
LU algorithm is comprised of several

LU sweeps.

Minimization with respect to the Givens rotation matrix
Q(i,j)(θi,j)

Now we minimize (11) with respect to Q(i,j)(θi,j) with 1 ≤
i < j ≤ N . By abuse of notation, in this section, we con-
tinue to use Ã and B̃ to denote the current estimate of A
and B, respectively, before estimating the parameter θi,j.
Also, let Ã(new) and B̃(new) stand for Ã and B̃ updated
by Q(i,j)(θi,j), respectively. The update of B̃ is defined as
follows:

B̃(new) = B̃Q(i,j)(θi,j) (27)

Similarly, for computing the parameter θi,j, we can min-
imize the criterion (11) with respect to θi,j by replacing
matrix B̃ by B̃(new). We denote J(θi,j) instead of J

(
B̃(new)

)
for convenience purpose. Then, J(θi,j) can be expressed as
follows:

J
(
θi,j
) =

K∑
k=1

∥∥∥∥∥off
{[(

B̃(new)
)�2

]T
C(k,−1)

[(
B̃(new)

)�2
]}∥∥∥∥∥

2

F

(28)
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The Hadamard square of the update B̃(new) now can be
rewritten as shown in the following proposition.

Proposition 3. Ã(new) =
(
B̃(new)

)�2 =
(
B̃Q(i,j)(θi,j)

)�2

can be written as a function of θi,j as follows:

Ã(new) =
(
B̃(new)

)�2 = B̃�2 (Q(i,j)(θi,j)
)�2

+ sin(2θi,j)
(
b̃i � b̃j

) (
eTi − eTj

) (29)

where b̃i and b̃j denote the i-th and j-th columns of B̃,
respectively, and ei and ej are the i-th and j-th columns of
the identity matrix IN , respectively.

Inserting (29) into the cost function (28), we obtain:

J(θi,j) =
K∑

k=1

∥∥∥off(C̃(k,new))∥∥∥2
F
=

K∑
k=1

∥∥∥∥∥∥∥∥∥∥∥∥
off

⎛
⎜⎜⎜⎜⎜⎜⎝
[(
Q(i,j)(θi,j)

)�2
]T

C̃(k)(Q(i,j)(θi,j)
)�2

︸ ︷︷ ︸
1©

+ sin(2θi,j)
[(

Q(i,j)(θi,j)
)�2

]T
c̃(k,1)

(
eTi − eTj

)
︸ ︷︷ ︸

2©

+ sin(2θi,j)
(ei−ej

)c̃(k,2)
(
Q(i,j)(θi,j)

)�2

︸ ︷︷ ︸
3©

+ sin2(2θi,j)c̃(k,3)
(ei−ej

)(eTi −eTj
)

︸ ︷︷ ︸
4©

⎞
⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥

2

F

(30)

where C̃(k) = ÃTC(k,−1)Ã, c̃(k,1) = ÃTC(k,−1)
(
b̃i � b̃j

)
,

c̃(k,2) =
(
b̃i � b̃j

)T
C(k,−1)Ã, and c̃(k,3) =

(
b̃i � b̃j

)
T

C(k,−1)
(
b̃i � b̃j

)
are a (N ×N) constant matrix, a (N ×1)

constant column vector, a (1×N) constant row vector, and
a constant scalar, respectively. The term 1© in (30) trans-
forms the i-th and j-th columns and the i-th and j-th rows
of C̃(k). The term 2© in (30) is a zero matrix except its i-
th and j-th columns containing non-zero elements, while
the term 3© contains non-zero entries only on its i-th and
j-th rows. The term 4© is a zero matrix except its (i, i)-th,
(j, j)-th, (i, j)-th, and (j, i)-th components being non-zero.
C̃(k,new) = 1©+ 2©+ 3©+ 4© is a (N×N) symmetric matrix.
Hence, (30) shows that only the i-th and j-th columns and
the i-th and j-th rows of C̃(k,new) involve the parameter θi,j,
while the other components remain constant. It is note-
worthy that the (i, j)-th and (j, i)-th components are twice
affected by the transformation. Considering the symmetry
of C̃(k,new), we propose tominimize the sum of the squares
of the (i, j)-th entries of the K matrices C̃(k,new), instead
of minimizing all the off-diagonal entries. Although min-
imizing this quantity is not equivalent to minimizing the

global cost function (28), such a simplified minimization
scheme is commonly adopted in many algorithms, such
as [20,31]. We denote this local minimization by J̃(θi,j).
The (i, j)-th component of C̃(k,new) is expressed in the
following proposition.

Proposition 4. The (i, j)-th entry of C̃(k,new) can be
expressed as a function of θi,j as follows:

C̃(k,new)
i,j = − sin2(2θi,j)c̃(k,3)

+sin2(θi,j)
(
C̃(k)
i,i cos2(θi,j) + C̃(k)

j,i sin2(θi,j)
)

+cos2(θi,j)
(
C̃(k)
i,j cos2(θi,j) + C̃(k)

j,j sin2(θi,j)
)

+sin(2θi,j)
(̃
c(k,1)i cos2(θi,j) + c̃(k,1)j sin2(θi,j)

)
−sin(2θi,j)

(̃
c(k,2)j cos2(θi,j) + c̃(k,2)i sin2(θi,j)

)
(31)

where C̃(k)
i,i , C̃

(k)
j,j , C̃

(k)
i,j , and C̃(k)

j,i are the (i, i)-th, (j, j)-th,

(i, j)-th, and (j, i)-th components of matrix C̃(k), respec-
tively. c̃(k,q)i and c̃(k,q)j are the i-th and j-th elements of vector
c̃(k,q) with q ∈ {1, 2}, respectively.

It is straightforward to show that the (i, j)-th
entry of the term 1© in (30) can be expressed by
sin2(θi,j) cos2(θi,j)

(
C̃(k)
i,i + C̃(k)

j,j

)
+sin4(θi,j)C(k)

j,i +cos4(θi,j)

C̃(k)
i,j , the (i, j)-th element of the term 2© is sin(2θi,j)(
cos2(θi,j)c̃(k,1)i +sin2(θi,j)c̃(k,1)j

)
, the (i, j)-th component

of the term 3© is equal to − sin(2θi,j)
(
sin2(θi,j) c̃(k,2)i +

cos2(θi,j)c̃(k,2)j

)
, and that of the term 4© is − sin2(2θi,j)

c̃(k,3). Then, Proposition 4 can be proved.
In order to simplify the notation of (31), we resort to the

Weierstrass change of variable: ti,j = tan(θi,j). Then, we
obtain:

sin(2θi,j) = 2ti,j
1 + t2i,j

, cos(2θi,j) = 1 − t2i,j
1 + t2i,j

, sin2(θi,j)

= t2i,j
1 + t2i,j

, cos2(θi,j) = 1
1 + t2i,j

(32)

By substituting (32) into (31), we obtain an alterna-
tive expression of the (i, j)-th entry of C̃(k,new) which is
described in the following proposition. Then, the mini-
mization of J̃(θi,j) transforms to J̃(ti,j).
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Proposition 5. The (i, j)-th entry of C̃(k,new) can be
expressed by a rational function of ti,j as follows:

C̃(k,new)
i,j = f (k)

4 t4i,j + f (k)
3 t3i,j + f (k)

2 t2i,j + f (k)
1 ti,j + f (k)

0(
1 + t2i,j

)2
(33)

where f (k)
4 = C̃(k)

j,i , f
(k)
3 = −2c̃(k,1)i , f (k)

2 = C̃(k)
i,i + C̃(k)

j,j +
2c̃(k,2)j − 4c̃(k,3), f (k)

1 = 2c̃(k,2)i − c̃(k,1)j , and f (k)
0 = C̃(k)

j,j .

Eq. 33 easily shows that the sum of the squares of the
(i, j)-th entries of the K matrices C̃(k,new), is a rational
function in ti,j, namely J̃(ti,j), where the degrees of the
numerator and the denominator are 8 and 8, respectively.
J̃(ti,j) can be expressed in the following compact matrix
form:

J̃(ti,j) =
K∑

k=1

∥∥∥(f (k)
)
Tτ i,j

∥∥∥2
F

= τ T
i,jQF τ i,j (34)

where QF = ∑K
k=1 f (k)

(
f (k)
)T

is a (5 × 5) symmet-

ric coefficient matrix, f (k) =
[
f (k)
4 , f (k)

3 , f (k)
2 , f (k)

1 , f (k)
0

]T
is

a five-dimensional vector, and τ i,j is a five-dimensional
parameter vector defined as follows:

τ i,j = 1(
1 + t2i,j

)2 [t4i,j, t3i,j, t2i,j, ti,j, 1]T (35)

The global minimum ti,j can be obtained by computing
the roots of its derivative and selecting the one yielding
the smallest value of J̃(ti,j). Once ti,j is obtained, θi,j can
be computed from the inverse tangent function θi,j =
arctan(ti,j). It is noteworthy that the found θi,j cannot
guarantee to decrease the actual cost function (28). If θi,j
leads to an increase of (28), we reset θi,j = 0. Otherwise,
B̃(new) is updated as described in (27) and the joint diag-

onalizer Ã(new) is updated by computing
(
B̃(new)

)�2
. The

same procedure will be repeated to compute θi,j with the
next (i, j) index. The order of the (i, j) indices is defined in
Eq. 26. The processing of all the N(N −1)/2 parameters
θi,j and also the other N(N−1)/2 parameters ui,j is called
a QR sweep. Several QR sweeps yield the proposed JD+

QR
algorithm.
Both of the JD+

LU and JD+
QR algorithms can be stopped

when the value of cost function (11) or its relative change
between two successive sweeps fall below a fixed small
positive threshold. Such a stopping criterion is guaranteed
to be met since the cost function is non-increasing in each
Jacobi-like sweep.

Practical issues
In practice, we observe that if each frontal slice of the
three-way array C is almost exactly jointly diagonal-
izable due to a high signal-to-noise ratio (SNR), the
classical non-constrained JDC methods can also give a
nonnegative A with high probability. In this situation,
the explicit nonnegativity constraint could be unnecessary
and could increase the computational burden. There-
fore, we propose to relax the nonnegativity constraint
by directly decomposing A into elementary LU and QR
forms, respectively, instead of using the decompositions of
B as follows:

A =
∏
j∈J1

∏
i∈I1(j)

L(i,j)(�i,j)
∏
i∈I2

∏
j∈J2(i)

U(i,j)(ui,j) (36)

A =
∏
i∈I2

∏
j∈J2(i)

Q(i,j)(θi,j)
∏
i∈I2

∏
j∈J2(i)

U(i,j)(ui,j) (37)

where the index setsI1(j),J1,I2, andJ2(i) are defined
in Lemma 1. By inserting (36) and (37) into the cost func-
tion (9), the ways of estimating the two sets of parameters
{�i,j, ui,j} and {θi,j, ui,j} are identical to those of Afsari’s
LUJ1D and QRJ1D methods [26], respectively. Therefore,
in practice, in order to give an automatically SNR-adaptive
method, for JD+

LU, in each Jacobi-like iteration, we sug-
gest to compute ui,j by LUJ1D first. If all the elements in
the j-th column of ÃU(i,j)(ui,j) have the same sign ε, the
update Ã(new) = εÃU(i,j)(ui,j) is adopted. Otherwise, ui,j
is computed by minimizing (20) and Ã(new) is updated by
computing (21). Each �i,j is computed similarly. Further-
more, the proposed JD+

QR and QRJ1D are combined in the
same manner.
Afsari reported in [26] that if the rows of matrices C̃(k)

(k ∈ {1, · · · ,K}) are not balanced in their norms, the com-
putation of the parameter could be inaccurate. In order
to cope with this effect, we apply Afsari’s row balancing
scheme every few sweeps. Such a scheme updates each
C̃(k,new)) by C̃(k,new) = �C̃(k)

� and Ã(new) by Ã(new) =
Ã� using a diagonal matrix � ∈ �

N×N+ , whose diagonal
elements are defined as follows:

�n,n = 1√∑K
k=1

∥∥∥C̃(k)
n,:

∥∥∥2
, n ∈ {1, 2, · · · ,N} (38)

where C̃(k)
n,: denotes the n-th row of C̃(k).

In ICA, when a non-square matrix A ∈ �
N×P+ with

N > P is encountered, the invertibility assumption of
the frontal slices C(k) does not hold. In this situation, we
can compress A by means of a nonnegative matrix W+ ∈
�
P×N+ such that the resulting matrix Ā = W+A is a non-

negative square matrix. Then, the JD+
LU and JD+

QR algo-
rithms can be used to compute the compressed loading
matrix Ā. W+ can be computed by using the nonnegative
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compression algorithm (NN-COMP) that we proposed in
[53]. More precisely, given a realization of an observation
vector, we obtain the square root of the covariance matrix,
denoted by ϒ ∈ �N×P. The classical prewhitening matrix
is computed by W = ϒ� ∈ �

P×N where � denotes the
pseudo inverse operator [47]. Then, the NN-COMP algo-
rithm computes a linear transformation matrix � ∈ �P×P

such thatW+ = �W has nonnegative components. Once
Ā is estimated, the original matrixA is obtained as follows:

A = W ��−1Ā = ϒ�−1Ā (39)

It should be noted that generally A does not need to be
computed in such an ICA problem, since the sources can
be estimated directly by means of Ā.

Numerical complexity
The numerical complexities of JD+

LU and JD+
QR are ana-

lyzed in terms of the number of floating point operations
(flops). A flop is defined as a multiplication followed by
an addition. In practice, only the number of multiplica-
tions, required to identify the loading matrix A ∈ �N×N+
from a three-way arrayC ∈ �N×N×K , is considered, which
does not affect the order of magnitude of the numerical
complexity.
For both algorithms, the inverses C(k,−1) (k ∈

{1, · · · ,K}) of the frontal slices of C cost N3K flops, the
initialization of C̃(k)

ini = ÃT
iniC(k,−1)Ãini requires 2N3K

flops, and at each sweep, the calculation of parameters
ui,j needs N(N − 1)(5N2 + 12N − 8)K/2 flops. In addi-
tion, in the case of the JD+

LU algorithm, the calculation
cost of Ã(new), B̃(new), and C̃(k,new), with k ∈ {1, · · · ,K},
is N(N − 1)(4N + (4N + 1)K) flops, and the numerical
complexity of computing the parameters �i,j is equal to
that of ui,j. Regarding the JD+

QR algorithm, for each sweep,
the complexity of calculating the parameters θi,j is equal
to N(N − 1)(5N2 + 3N + 29)K/2 flops, and the estima-
tion of Ã(new), B̃(new), and C̃(k,new), with k ∈ {1, · · · ,K},
costs N(N − 1)(5N + (12N + 20)K/2) flops. In practice,
the proposed JD+

LU and JD+
QR techniques are combined

with LUJ1D and QRJ1D [26], respectively, leading to the
magnitude of global numerical complexities of JD+

LU and
JD+

QR being betweenO(N3K) andO(N4K). A recent non-
negative JDC method called ACDC+

LU [41] is also based
on a square change of variable and LU matrix factoriza-
tion. It minimizes the cost function (4) with respect to A
and D alternately, leading to a higher numerical complex-
ity. By means of the reformulation of the cost function,
the proposed methods avoid the estimation of D, there-
fore achieving a lower complexity compared to ACDC+

LU.
The explicit expressions of the overall complexity of JD+

LU,
JD+

QR, and ACDC+
LU [41], as well as those of four clas-

sical JDC algorithms, namely ACDC [23], FFDIAG [25],
LUJ1D [26], and QRJ1D [26], are listed in Table 1. One

can notice that numerical complexities of the proposed
JD+

LU and JD+
QR methods are at most one order of mag-

nitude higher than those of the four JDC algorithms and
still lower than that of ACDC+

LU. Moreover, JD+
LU is less

computationally expensive than JD+
QR.

Simulation results
This section is twofold. In the first part, the performance
of the proposed JD+

LU and JD+
QR algorithms is evalu-

ated with simulated semi-nonnegative semi-symmetric
three-way arrays C. Several experiments are designed to
study the convergence property, the influence of SNR, the
impact of the third dimension K of C, the effect of the
coherence of the loading matrix D, and the influence of
the condition number of the diagonal matrices D(k). We
also evaluate the proposed methods for estimating a non-
square matrix A. The proposed algorithms are compared
with four classical nonorthogonal JDC methods, namely
ACDC [23], FFDIAG [25], LUJ1D [26], QRJ1D [26], and
the nonnegative JDC method ACDC+

LU [41]. In the sec-
ond part, the source separation ability of the proposed
algorithms is studied through a BSS application. In this
context, the JD+

LU and JD+
QR are used to jointly diago-

nalize several matrix slices of the fourth-order cumulant
array [40] of the observations and compared with several
classical ICA [47,54,55] and NMF [56] methods.

Simulated semi-nonnegative INDSCALmodel
The synthetic semi-nonnegative semi-symmetric three-
way array C = [[A,A,D]]∈ �

N×N×K of rank N is
generated randomly according to the semi-nonnegative
INDSCAL model (3). When used without further

Table 1 Numerical complexities of seven JDC algorithms in
terms of flops

Numerical complexity

ACDC (13/3N3K + 3N4 + 2N2K + N3 + N2)Ns

FFDIAG (2N3K + N3 + 2N2K + 4N(N − 1))Ns

LUJ1D (4NK + N − 2K)N(N − 1)Ns

QRJ1D (6NK + 2.5N + 1.5K)N(N− 1)Ns

ACDC+
LU ((15N2 + 4N)KN(N − 1) + 4/3N2K + N3 + N2)N1

s

+((33N2 + 7N)KN(N − 1) + 4/3N2K + N3 + N2)N2
s

JD+
LU 3N3K + (4NK + N − 2K)N(N − 1)N1

s

+((5N2 + 16N − 7)K + 4N)N(N − 1)N2
s

JD+
QR 3N3K + (6NK + 2.5N+ 1.5K)N(N − 1)N1

s

+((5N2 + 15.5N+ 21)K + 7N)N(N − 1)N2
s

(N, N, K): the dimensions of the three-way array C. For ACDC, FFDIAG, LUJ1D,
and QRJ1D, Ns is the number of total sweeps. For ACDC+LU, JD

+
LU, and JD+

QR, N
1
s is

the number of sweeps without nonnegativity constraint; N2
s is the number of

sweeps with explicit nonnegativity constraint.
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specification, all the algorithms aremanipulated under the
following conditions:

i) Model generation: The loading matrix A ∈ �N×N+ is
randomly drawn from a uniform distribution on the
interval [0, 1]. The loading matrix D ∈ �K×N is
drawn from a Gaussian distribution with a mean of 1
and a deviation of 0.5. The pure array C is perturbed
by a residual INDSCAL noise array V . The loading
matrices of V are drawn from a zero-mean
unit-variance Gaussian distribution. The resulting
noisy three-way array can be written as follows:

CN = C
‖C‖F + σN

V
‖V‖F (40)

where σN is a scalar controlling the noise level. Then,
the SNR is defined by SNR = −20 log10 (σN ).

ii) Initialization: In each Monte Carlo trial, all the
algorithms are initialized by a same random matrix
whose components obey the uniform distribution
over [0, 1].

iii) Afsari’s row balancing scheme: The LUJ1D, QRJ1D,
JD+

LU, and JD+
QR algorithms perform the row

balancing scheme once per run of five sweeps.
iv) Stopping criterion: All the algorithms stop either

when the relative error of the corresponding
criterion between two successive sweeps is less than
10−5 or when the number of sweeps exceeds 200. A
sweep of ACDC includes a full AC phase and a DC
phase.

v) Performance measurement: The performance is
measured by means of the error between the true
loading matrix A and the estimate Ã, the numerical
complexity, and the CPU time. We define the
following scale-invariant and permutation-invariant
distance [40]:

α(A, Ã) = 1
N

N∑
n=1

min
(n,n′)∈I2n

d(an, ãn′) (41)

where an and ãn′ are the n-th column of A and the
n′-th column of Ã, respectively. I2n is defined
recursively by I21 = {1, · · · ,N} × {1, · · · ,N}, and
I2n+1 = I2n − J2n where J2n = argmin(n,n′)∈I2n d(an, ãn′).
In addition, d(an, ãn′) is defined as the
pseudo-distance between two vectors [13]:

d(an, ãn′) = 1 −
∥∥aTn ãn′

∥∥2
‖an‖2‖ãn′ ‖2 (42)

The criterion (41) is an upper bound of the optimal
permutation-invariant criterion. It avoids the
burdensome computation of all the permutations. A
small value of (41) means a good performance in the
sense that Ã is close to A.

vi) Test environment: The simulations are carried out in
Matlab v7.14 on Mac OS X and run on Intel
Quad-Core CPU 2.8 GHz with 32 GB memory.
Moreover, we repeat all the experiments with 500
Monte Carlo trials.

Convergence
In this experiment, the convergences of the JD+

LU and JD+
QR

algorithms are compared to those of ACDC, FFDIAG,
LUJ1D, QRJ1D, and ACDC+

LU. The dimensions of the
three-way array CN ∈ �

N×N×K are set to N = 5
and K = 15. The performance is assessed under three
SNR conditions: SNR = −5, 10, and 25 dB, respec-
tively. Figure 1 shows the convergence curves measured
in terms of the cost function as a function of sweeps.
It shows that FFDIAG, LUJ1D, and QRJ1D exhibit fast
convergence behavior. They converge in less than 20
sweeps. ACDC+

LU decreases the cost function (4) quasi-
linearly. ACDC and ACDC+

LU do not converge in a max-
imum of 200 sweeps. The proposed JD+

LU algorithm con-
verges in about 100 sweeps when SNR = 25 dB and
SNR = 10 dB, and it converges in about 40 sweeps when
SNR = −5 dB. Regarding JD+

QR, it reduces the cost
function (11) to the values relatively higher than those
achieved by JD+

LU and converges in about 50 sweeps what-
ever the SNR is. It seems that FFDIAG, LUJ1D, and
QRJ1D achieve the fastest convergence rate. It should be
noted that while an algorithm may converge to a point
in which the value of the cost function is close to zero,
such a point could be a local minimum far from the
desired matrix A as shown in Figure 2. The top picture
in Figure 2 shows the convergence curves measured in
terms of the estimating error α(A, Ã) as a function of
sweeps when SNR = 25 dB. It shows that the solutions
of FFDIAG, LUJ1D, and QRJ1D are still far from opti-
mum. ACDC and ACDC+

LU give better estimations of A
than the previous three methods. The best results are
achieved by the proposed JD+

LU and JD+
QR methods. The

middle picture in Figure 2 displays the convergence curves
when SNR = 10 dB. It can be observed that ACDC con-
verges to a local minimum which is not the global one
and that the performance of the proposed methods is still
better than that of the five other algorithms. For a low
SNR = −5 dB, as shown in the bottom picture in
Figure 2, both the methods based on alternating opti-
mization, namely ACDC and ACDC+

LU, converge to local
minima which are less desirable. The proposed algorithms
are always able to converge to better results than the clas-
sical methods. The average numerical complexities and
CPU time of all the algorithms over Monte Carlo trials are
shown in Table 2. It is observed that FFDIAG, LUJ1D, and
QRJ1D require a small amount of calculations, whereas
ACDC+

LU requires a large amount of calculations. The
proposed JD+

LU just costs a bit more flops and CPU time
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Figure 1 JDC performance versus sweeps. The average value of the cost function evolution of all the algorithms as a function of the number of
sweeps with various SNR levels. The dimensions of CN are set to N = 5 and K = 15. The SNR values are set to 25 dB (a), 10 dB (b), and −5 dB (c),
respectively.

than ACDC, but it is still much more efficient. Concern-
ing the JD+

QR algorithm, it is more costly than JD+
LU, with

a comparable performance. We can then conclude that
JD+

LU offers the best performance/complexity compromise
in these experiments.

Effect of SNR
In this section, we study the behaviors of the seven
algorithms as a function of SNR. The dimensions of
the three-way array CN are set to N = 5 and K = 15.
We repeat the experiments with SNR ranging from −30
to 50 dB with a step of 2 dB. The top picture in Figure 3
depicts the average curves of α(A, Ã) of the seven algo-
rithms as a function of SNR. The obtained results show
that the performance of all the methods increases as SNR
grows. For the unconstrained methods, generally, ACDC

performs better than FFDIAG, LUJ1D, and QRJ1D. The
nonnegativity constraint obviously helps ACDC+

LU, JD
+
LU,

and JD+
QR to improve the results for lower SNR values.

The performance of ACDC and ACDC+
LU remains stable

for higher SNR values due to the small number of avail-
able sweeps and the lack of good initializations. Generally,
the proposed JD+

LU and JD+
QR algorithms outperform the

others when SNR is between −20 and 30 dB and per-
form similar to FFDIAG, LUJ1D, and QRJ1D when SNR is
above 45 dB. The average numerical complexity and CPU
time at each SNR level of all the methods in this experi-
ment are shown in the bottom of Figure 3. It shows that
the proposedmethods achieve better estimations ofA and
cost less flops and CPU time than ACDC+

LU. The JD+
LU

gives the best performance/complexity trade-off for all the
considered SNR values.
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Figure 2 JDC performance versus sweeps. The average error α(A, Ã) evolution of all the algorithms as a function of the number of sweeps with
various SNR levels. The dimensions of CN are set to N = 5 and K = 15. The SNR values are set to 25 dB (top), 10 dB (middle), and −5 dB (bottom),
respectively.

Effect of dimension K
In ICA, the third dimension K of the three-way array
CN ∈ �N×N×K corresponds to the number of covariance
matrices at different lags, or the number of matrix slices
derived from a cumulant array. In this section, we study
the influence of K on the performance of the seven algo-
rithms. The first and second dimensions of CN are set to
N = 5. The SNR value is fixed to 10 dB. We repeat the
experiment with K ranging from 3 to 55. The top picture

in Figure 4 shows the average curves of α(A, Ã) of all the
algorithms as a function of K. For the five existing meth-
ods, ACDC, ACDC+

LU, FFDIAG, LUJ1D, and QRJ1D, their
performance is quite stable with respect to K. The perfor-
mance of the proposedmethods progresses as K increases
and then practically stabilizes for high values of K. It indi-
cates that after some point (e.g., K ≥ 20), the additional
information brought by an increase of K does not fur-
ther improve the results. The proposed JD+

LU and JD+
QR

Table 2 Average numerical complexities (in flops) and computation time (in seconds) of the convergence experiment

SNR= 25 dB SNR= 10 dB SNR= −5 dB

Complexity Time Complexity Time Complexity Time

ACDC 2.1708× 106 1.1357 2.0338× 106 1.0535 1.6800× 106 0.8761

FFDIAG 1.1001× 105 0.0331 1.0878× 105 0.0327 9.4380× 104 0.0287

LUJ1D 2.8903× 105 0.0660 2.3126× 105 0.0526 1.4199× 105 0.0325

QRJ1D 2.2158× 105 0.0383 2.4445× 105 0.0421 2.6989× 105 0.0468

ACDC+
LU 2.4462× 107 2.6735 2.7498× 107 2.8034 2.9646× 107 2.9119

JD+
LU 2.8487× 106 0.8107 4.9684× 106 1.1098 7.1434× 106 1.2938

JD+
QR 3.0766× 106 1.0455 5.0554× 106 1.1932 8.2185× 106 1.3026
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Figure 3 JDC performance versus SNR. The dimensions of CN are set to N = 5 and K = 15. Top: the average error α(A, Ã) evolution of all the
algorithms as a function of SNR. Bottom: the average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

algorithms maintain competitive advantages through all
the K values. The two images in the bottom of Figure 4
present the average numerical complexity and CPU time
of all the algorithms in this experiment, respectively. It
shows that the numerical complexity of JD+

LU and JD+
QR

is between that of ACDC and ACDC+
LU. The JD+

LU and
JD+

QR methods seem to be the most effective algorithms
compared to the other methods.

Effect of coherence of D
In this experiment, the effect of the coherence of the third
loading matrix D of the three-way array C =[[A,A,D]]
is evaluated. Let dn and dm denote the n-th and m-th
columns of D, respectively. The angle ψn,m between dn
and dm can be derived by using the following Euclidean
dot product formula dT

n dm = ‖dn‖‖dm‖ cos(ψn,m). Then,
the coherence ρ of D is defined as the maximum absolute
cosine of angle ψn,m between the columns of D as follows:

ρ = max
n,m
n 	=m

| cos(ψn,m)| with cos(ψn,m) = dT
n dm

‖dn‖‖dm‖
(43)

The quantity ρ is also known as the modulus of unique-
ness of JDC [43]. By its definition (43), ρ falls in the

range of [0, 1]. The JDC problem is considered to be ill-
conditioned when ρ is close to 1. Such an ill-conditioned
problem can be met in ICA when A has nearly collinear
column vectors. For example, in order to perform ICA,
provided that all the sources are non-Gaussian, which is
often the case in practice, we can build a three-way array C
by stacking the matrix slices of the fourth-order cumulant
array of the observation data. Then, the loading matrix D
can be expressed as follows:

D = (A � A)C4,{s} (44)

where C4,{s} = diag
[C1,1,1,1,{s}, · · · , CN ,N ,N ,N ,{s}

]
is a (N ×

N) diagonal matrix with Cn,n,n,n,{s} being the fourth-order
cumulant of the n-th source, n ∈ {1, · · · ,N}, and where
� denotes the Khatri-Rao product. It can be observed
that the coherence of the columns of A will influence
the coherence of the matrix D. In the following test, the
dimensions of the three-way array CN are set to N = 5
and K = 15. The SNR value is fixed to 10 dB. In order
to control ρ, firstly, we randomly generate an orthogo-
nal matrix D ∈ �

15×5 so that ρ = 0 by orthogonalizing
a (15 × 5) random matrix. Secondly, we rotate its five
columns such that all the internal angles between any
columns are equal to a predefined value ψ . Therefore, ρ
is only controlled by the angle ψ and equals to | cos(ψ)|.
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Figure 4 JDC performance versus dimension K . The first and second dimensions of CN and the SNR value are set to N = 5 and SNR = 10 dB,
respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of dimension K. Bottom: the average numerical complexities
(left) and the CPU time (right) of all the algorithms, respectively.

We repeat the experiment with the angle ψ ranging from
0 to π/2 with a step of π/60. A small ψ value means a
large ρ value. The top picture in Figure 5 displays the aver-
age curves of α(A, Ã) of all the algorithms as a function
of ψ . It shows that the nonnegativity constrained meth-
ods ACDC+

LU, JD
+
LU, and JD+

QR, outperform the uncon-
strained ones ACDC, FFDIAG, LUJ1D, and QRJ1D. The
proposed algorithms are more efficient, particularly when
the coherence level is high. The average numerical com-
plexity and CPU time displayed in the bottom of Figure 5
indicate that the JD+

LU algorithm provides the best perfor-
mance/complexity compromise, while the JD+

QR algorithm
is also competitive with regard to ACDC+

LU.

Effect of condition number of D(k)

When the JDC problem is considered, a diagonal matrix
D(k) could contain some diagonal elements which, despite
being non-zero, are many orders of magnitude lower than
some other elements, leading to an ill-conditioned matrix
C(k). For the proposed methods, the inverse of such a
matrix C(k) would contain numerical errors. In this exper-
iment, we study the performance of the seven algorithms
as a function of the condition number of one of the diago-
nal matrices D(k). The dimensions of the three-way array

CN are set to N = 5 and K = 15. The SNR value is
set to 10 dB. We vary the condition number of the first
diagonal matrix D(1) from 1 to 1,000 by fixing the ratio
of its largest diagonal element to its smallest diagonal ele-
ment. The top picture in Figure 6 displays the average
curves of the estimating error α(A, Ã) of the seven algo-
rithms as a function of the condition number of D(1).
The results reveal that a highly ill-conditioned diagonal
matrix D(1) has a clear negative effect on the estima-
tion accuracy of all the algorithms. The nonnegativity
constrained methods ACDC+

LU, JD
+
LU, and JD+

QR outper-
form the classical algorithms ACDC, FFDIAG, LUJ1D,
and QRJ1D whatever the condition number is. The pro-
posed JD+

LU and JD+
QR algorithms maintain advantages

when the condition number is less than 100. Regarding
the cases of larger condition numbers, ACDC+

LU is more
superior since it does not need to invert the highly ill-
conditioned matrix. It is worthy pointing out that in prac-
tice, we can choose these sufficiently well-conditioned
matrices C(k) for the proposed methods, whose condi-
tion numbers are below a predefined threshold. In addi-
tion, a weighted cost function for which weights would
depend on the condition number of each matrix can be
considered. On the other hand, the performance of the
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Figure 5 JDC performance versus coherence. The dimensions of CN and the SNR value are set to N = 5, K = 15, and SNR = 10 dB, respectively.
Top: the average error α(A, Ã) evolution of all the algorithms as a function of internal angle ψ between any two columns ofD. Bottom: the average
numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

classical methods can also be improved by choosing a
particular subset of available matrices [57] and by properly
weighting the cost functions [49]. In order to give a fair
comparison, all the algorithms operate on the same set of
matrices in all the experiments of this paper. In addition,
the average numerical complexity and CPU time at each
condition number of all the methods in this experiment
are shown in the bottom of Figure 6. It shows that the
proposed methods give the best performance/complexity
trade-off compared to ACDC+

LU whatever the condition
number is.

Test with a non-squarematrix A
As described in the section of practical issues, when a
non-square matrix A ∈ �

N×P+ with N > P is met in
ICA, we propose to compress it by a nonnegative com-
pression matrix W+ ∈ �P×N+ [53], such that the resulting
matrix Ā = W+A is a (P × P) nonnegative square matrix.
Then, the proposed methods can be applied to estimate
Ā. Similar to the classical prewhitening, the nonnegative
compression step could introduce numerical errors. In
this experiment, we compare our methods to ACDC and
ACDC+

LU through a simulated ICAmodel. The latter algo-
rithms can directly estimate a non-square matrix A from

the fourth-order cumulant matrix slices. The ICA model
is established as follows:

x[ f ]= As[ f ]+ν[ f ] (45)

where x[ f ]= [
x1[ f ] , · · · , xN [ f ]

]T is the (N × 1) obser-
vation vector, s[ f ]= [

s1[ f ] , s2[ f ] , s3[ f ]
]T is the (3 × 1)

zero-mean unit-variance source vector whose elements
are independently drawn from a uniform distribution over[
−√

3,
√
3
]
, ν = [ν1[ f ] , · · · , νN [ f ] ]T is the (N × 1) zero-

mean unit-variance Gaussian noise vector, and A is the
(N × 3) nonnegative mixing matrix whose components
are independently drawn from a uniform distribution over
[0, 1]. In this context, the SNR is defined by:

SNR = 20 log10(‖{As[ f ]}‖F/‖{ν[ f ]}‖F) (46)

For the proposed JD+
LU and JD+

QR algorithms, the
given realization of {x[ f ]} is compressed by means of
a matrix W+ ∈ �

3×N+ computed using the method
proposed in [53], leading to a three-dimensional vec-
tor {x̄[ f ]}. We compute the fourth-order cumulant array
of {x̄[ f ]} and choose the first three matrix slices in
order to build a three-way array. Hence, JD+

LU and
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Figure 6 JDC performance versus condition number. The dimensions of CN and the SNR value are set to N = 5, K = 15, and SNR = 10 dB,
respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of the condition number of one of the diagonal matrices
D(k) . Bottom: the average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

JD+
QR decompose a (3 × 3 × 3) array. Once the com-

pressed mixing matrix Ā is estimated, the original
mixing matrix is obtained by Eq. 39. Regarding ACDC
and ACDC+

LU, the fourth-order cumulant array of {x[ f ]} is
directly computed without compression.We apply ACDC
and ACDC+

LU on two three-way arrays with different third
dimensions. The first array of dimension (N × N × 3)
is built by choosing the first three matrix slices from the
fourth-order cumulant array, while the second array of
dimension (N × N × N) is built using the first N matrix
slices. We study the impact of the number of observations
N on the performance of the JDC algorithms, by varying
N from 4 to 24. The SNR value is fixed to 5 dB. The num-
ber of samples used to estimate the cumulants is set to
103. Figure 7 shows the average curves of the estimating
error α(A, Ã) of all the algorithms as a function of N. As
it can be seen, when N ≤ 15, the larger the value of N,
the more accurate estimation of A is achieved.WhenN >

15, the further increase of N does not bring significant
improvement in terms of the estimation accuracy. ACDC
and ACDC+

LU give better results when the array with a
larger third dimension is considered. Their results on (N×
N × N) arrays outperform the proposed methods when

N = 4. ACDC+
LU also gives the best estimation on (N ×

N × N) arrays with N = 5. It suggests that the numerical
errors introduced by the compression step limit the per-
formance of the proposed methods when only a small
number of observation is available. Such a negative effect
can be partially compensated by using a large number of
observations, since the proposed JD+

LU and JD+
QR methods

maintain the highest performance in terms of estimation
accuracy when N ≥ 6. The performance ACDC and
ACDC+

LU can be further improved by using a (N×N×N2)
array, which contains all the N2 fourth-order cumulant
matrix slices. However, it leads to a higher numerical com-
plexity especially for a large value of N. Regarding the
proposed JD+

LU and JD+
QR methods, their performance can

also be improved by using all the nine matrix slices of
the fourth-order cumulant array of the compressed obser-
vation vector. Nevertheless, the experimental result has
already shown that by using only a small number of matrix
slices, JD+

LU and JD+
QR can maintain lower numerical com-

plexities than ACDC and ACDC+
LU, while achieving better

estimation results, when a large value of N is considered.
Therefore, despite the negative influence of the nonneg-
ative compression, the proposed methods still offer a



Wang et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:150 Page 18 of 23
http://asp.eurasipjournals.com/content/2014/1/150

Figure 7 JDC performance on an ICAmodel versus number of observations. The number of sources P and the SNR value are set to P = 3 and
SNR = 5 dB, respectively. Top: the average error α(A, Ã) evolution of all the algorithms as a function of the number of observations N. Bottom: the
average numerical complexities (left) and the CPU time (right) of all the algorithms, respectively.

good performance/complexity compromise to estimate a
non-square matrix A.

BSS application on MRS data
In this section, we aim to illustrate the potential capability
of the proposed JD+

LU and JD+
QR algorithms for solving a

real-life BSS problem by an application carried on simu-
lated MRS data.
MRS is a powerful non-invasive analytical technique

for analyzing the chemical content of MR-visible nuclei
and therefore enjoys particular advantages for assess-
ing metabolism. The chemical property of each nucleus
determines the frequency at which it appears in the MR
spectrum, giving rise to peaks corresponding to specific
metabolites [58]. Therefore, the MRS observation spectra
can be modeled as the mixture of the spectrum of each
constitutional source metabolite. More specifically, it can
be written as the noisy linear instantaneous mixing model
described in Eq. 45, where x[ f ]∈ �N is the MRS observa-
tion vector, s[ f ]∈ �P is the source vector representing the
statistically quasi-independent source metabolites, ν ∈

�N is the instrumental noise vector, and A ∈ �
N×P+ is

the nonnegative mixing matrix containing the positive
concentrations of the source metabolites. SNR is defined
as in Eq. 46. In this experiment, two simulated MRS
sourcemetabolites {s1[ f ]} and {s2[ f ]}, namely the Choline
(Cho) and Myo-inositol (Ins) (see Figure 8b), are gener-
ated by Lorentzian and Gaussian functions [59]. Each of
the sources contains 103 samples. The observation vector
x[ f ] is generated according to (45). The components of
the (N × 2) mixing matrix A are randomly drawn from
a uniform distribution. The additive noise ν[ f ] is mod-
eled as a zero-mean unit-variance Gaussian vector. The
ICAmethods based on the proposed JD+

LU and JD+
QR algo-

rithms, namely JD+
LU-ICA and JD+

QR-ICA, consist of four
steps: i) compressing {x[ f ]} by means of a matrix W+ ∈
�
2×N+ [53], ii) estimating the fourth-order cumulant array

of the compressed observations and stacking all the cumu-
lant matrix slices in a three-way array, iii) decomposing
the resulting three-way array by means of JD+

LU and JD+
QR,

respectively, and iv) reconstructing the sources. The JD+
LU-

ICA and JD+
QR-ICA are compared to four state-of-the-art
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Figure 8 BSS results on MRS data. An example of the results of blind separation of two simulated MRSmetabolites. The number of observations N
is set to 32, and the SNR value is 10 dB. (a) Cho and Ins source metabolites. (b) Two of the observations. (c-h) Separated metabolites by JD+

LU-ICA,
JD+

QR-ICA, CoM2, SOBI, NNICA, and NMF, respectively.
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BSS algorithms, namely two efficient ICA methods CoM2
[54] and SOBI [47], the nonnegative ICA (NNICA)
method with a line search along the geodesic [55], and
the NMF method [56] based on alternating nonnegativity
least squares. The performance is assessed bymeans of the
error α

({s[ f ]}T, {s̃[ f ]}T) between the true source s[ f ] and
its estimate s̃[ f ], the numerical complexity, and the CPU
time. To find out the detailed analysis of the numerical
complexity of the classical ICA algorithms, the reader can
refer to the book chapter [60]. Figure 8 shows an example
of the separation results of all the methods with N = 32
observations and a SNR of 10 dB. Regarding CoM2, SOBI,
NNICA, and NMF, there are some obvious disturbances
presented in the estimated metabolites. As far as JD+

LU-
ICA and JD+

QR-ICA are concerned, the estimated source
metabolites are quasi-perfect. Furthermore, the compre-
hensive performance of all the methods will be studied by
the following experiments with 200 independent Monte
Carlo trials.
In the first experiment, the effect of the number of

observations N is evaluated. The SNR is fixed to 10 dB.
The six methods are compared with N ranging from 4
to 116 with a step of 4. The average curves of error

α
({s[ f ]}T, {s̃[ f ]}T) as a function of N are shown in the

left image of Figure 9. It can be seen that the estimating
errors of all the methods improve as N increases. It sug-
gests that in noisy BSS contexts, using more sensors often
yields better results. The proposed JD+

LU-ICA and JD+
QR-

ICA methods maintain the competitive advantages. The
average curves of the numerical complexities of this exper-
iment are shown in the bottom left picture of Figure 9.
We can notice that the numerical complexities of all the
methods increase with N. The complexities of JD+

LU-ICA
and JD+

QR-ICA seem identical in the logarithmic scaled
plot, which is because theoretically their complexities are
mainly dominated by the computation of the nonnegative
compression step and of the cumulants. Indeed, JD+

LU-
ICA is more computationally efficient than JD+

QR-ICA in
the step of CP decomposition of the cumulant array. This
can be verified by the average CPU time of those meth-
ods, shown in the bottom right image of Figure 9. We can
observe that JD+

LU-ICA is slower thanCoM2, but it is faster
than NNICA, SOBI, and NMF.
In the second experiment, we study the influence of SNR

on the performance of the six methods. The number of
observations N is set to 32. SNR is varied from 0 to 50 dB

Figure 9 BSS performance on MRS data versus the number of observations. Average results of blind separation of two simulated MRS
metabolites. The SNR value is set to 10 dB. Left: the average error α

({s[ f ]}T, {s̃[ f ]}T) evolution of all the algorithms as a function of the number of
observations. Right: the average numerical complexities (top) and the CPU time (bottom) of all the algorithms, respectively.
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with a step of 2 dB. The average curves of the estimating
error α

({s[ f ]}T, {s̃[ f ]}T) as well as those of the numeri-
cal complexities and CPU time as a function of SNR of
all the six methods are shown in Figure 10. The proposed
JD+

LU-ICA and JD+
QR-ICA methods provide the best esti-

mation results with moderate computational complexities
and CPU time. Generally speaking, the JD+

LU-ICA algo-
rithm offers the best performance/complexity trade-off in
this BSS experimental context.

Conclusions
We have proposed two methods, called JD+

LU and JD+
QR,

in order to achieve the CP decomposition of semi-
nonnegative semi-symmetric three-way arrays. The non-
negativity constraint is imposed on the two symmetric
modes of three-way arrays by means of a square change
of variable, giving rise to an unconstrained joint diagonal-
ization by congruence problem. Therefore, the nonneg-
ative loading matrix can be estimated by computing the
joint diagonalizer. We consider the elementary LU and
QR parameterizations of the Hadamard square root of
the nonnegative joint diagonalizer, leading to two Jacobi-

like optimization procedures. In each Jacobi-like iteration,
the optimization is formulated into a minimization of a
polynomial or rational function with respect to only one
parameter. In addition, the numerical complexity for each
algorithm has been analyzed.
The performance of the proposed JD+

LU and JD+
QR algo-

rithms is evaluated with simulated semi-nonnegative
semi-symmetric three-way arrays. Four classical
nonorthogonal JDC methods without nonnegativity
constraints including ACDC [23], FFDIAG [25], LUJ1D
[26], and QRJ1D [26] and one nonnegative JDC method
ACDC+

LU [41] are tested as reference methods. The
performance is assessed in terms of the matrix esti-
mation accuracy, the numerical complexity, and the
CPU time. The convergence property, the influence of
SNR, the impact of dimension, the effect of coherence,
and the influence of condition number are extensively
studied by Monte Carlo experiments. The obtained
results show that the proposed algorithms offer better
estimation accuracy by means of exploiting the nonneg-
ativity a priori. The JD+

LU algorithm provides the best
performance/complexity compromise.

Figure 10 BSS performance onMRS data versus SNR. Average results of blind separation of two simulated MRS metabolites. The number of
observations is set to N = 32. Left: the average error α

({s[ f ]}T, {s̃[ f ]}T) evolution of all the algorithms as a function of SNR. Right: the average
numerical complexities (top) and the CPU time (bottom) of all the algorithms, respectively.
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The proposed algorithms are suitable tools for solv-
ing the ICA problems where a nonnegative mixing
matrix is considered, such as in MRS. In this case, the
three-way array built by stacking the matrix slices of a
HO cumulant array fulfills the semi-nonnegative semi-
symmetric structure. We proposed two ICA methods,
namely JD+

LU-ICA and JD+
QR-ICA, based on CP decom-

position of the fourth-order cumulant array using JD+
LU

and JD+
QR, respectively. The source separation ability of

the proposed algorithms is verified through a BSS appli-
cation carried out on simulated MRS data. The JD+

LU-
ICA and JD+

QR-ICA are compared to one NMF method
[56], one nonnegative ICA method [55], and two clas-
sical ICA methods, namely CoM2 [54] and SOBI [47].
The performance is comprehensively studied as a func-
tion of the number of observations and of SNR. The
experimental results demonstrate the improvement of
the proposed methods in terms of the source estimation
accuracy and also show that exploiting the two a pri-
ori of the data, namely the nonnegativity of the mixing
matrix and the statistical independence of the sources,
allows us to achieve better estimation results. The JD+

LU-
ICA algorithm provides the best performance/complexity
trade-off.
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