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Abstract

We propose a novel image contrast enhancement method via non-convex gradient fidelity-based (NGF) variational
model which consists of the data fidelity term and the NGF regularization. The NGF prior assumes that the gradient of
the desired image is close to the multiplication of the gradient of the original image by a scale factor, which is
adaptively proportional to the difference of their gradients. The presented variational model can be viewed as a
data-driven alpha-rooting method in the gradient domain. An augmented Lagrangian method is proposed to address
this optimization issue by first transforming the unconstrained problem to an equivalent constrained problem and
then applying an alternating direction method to iteratively solve the subproblems. Experimental results on a number
of images consistently demonstrate that the proposed algorithm can efficiently obtain visual pleasure results and
achieve favorable performance than the current state-of-the-art methods.
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1 Introduction
Image enhancement is an important issue in many fields
like computer vision, pattern recognition, and medical
image processing. It aims to make the resultant quality
better than the original image for a specific application
or a set of objectives, where the source of degradation
may be unknown. Many images such as medical images,
remote sensing images, electron microscopy images, and
even real life photographic pictures suffer from poor con-
trast. Therefore, it is necessary to enhance the contrast to
obtain a more visually pleasing image [1].

1.1 Related work
Many image contrast enhancement techniques are
available which can be roughly be classified into two
categories, i.e., spatial-domain algorithm and transform-
domain algorithm.
Spatial-domain techniques such as the power law trans-

form and histogram equalization (HE) [1] directly deal
with the image pixels by manipulating them to achieve
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the desired enhancement. This category of algorithms is
particularly useful for directly altering the gray level val-
ues of individual pixels and hence the overall contrast of
the entire image. However, they usually enhance the whole
image in a uniform manner which may produce undesir-
able results in many cases. Since then, several improved
approaches have been developed [2-5]. For instance, by
regarding each sub-histogram as a class, Menotti et al.
[3] developed a local-adaptive method that first parti-
tions the overall histogram into multiple sub-histograms
by minimizing within-class variance and then applies HE
to each sub-histogram separately. As a generalization of
HE, the enhancement process of 2DHE is based on the
observation that contrast of an image can be improved
by increasing the gray-level differences between the pix-
els of an input image and their neighbors [4]. Huang et al.
[5] proposed a hybrid histogram modification method by
combining power law transform and HE.
Transform-domain algorithms are related to the data

domain they are applied, which may be in frequency
domain, discrete cosine transform (DCT) or wavelet
transform [6-9]. Alpha-rooting (AR) algorithm is a sim-
ple but effective technique for image enhancement in the
transform or frequency domain. This algorithm is based
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on the fact that after applying an orthogonal transform
to an image, the high frequency coefficients will have
smaller magnitudes than the low frequency coefficients;
hence, these coefficients may be more amplified to reveal
details [6]. Additionally, contrast enhancement algorithms
in the DCT domain have attracted many researchers
since DCT is adopted in the JPEG compression stan-
dard. However, they often introduce unfavorable block-
ing artifacts, e.g., multi-contrast enhancement method
(MCE) [7,8].
Some approaches treat contrast enhancement as an

optimization problem. For example, the method of flattest
histogram specification with accurate brightness preser-
vation (FHSABP) [10] formulates the transformation of
the input image histogram into the flattest histogram as
a convex optimization, subject to a mean brightness con-
straint. Contrast enhancement in histogram modification
framework (HMF) is also treated as an optimization prob-
lem that minimizes a cost function to address noise and
black/white stretching [3]. The contextual and variational
contrast (CVC) method enhances the image contrast by
constraining a 2D histogram of the input image [11].
A smooth 2D target histogram is obtained by minimiz-
ing the sum of the Frobenius norms of the difference
from the input histogram and the uniformly distributed
histogram. However, it requires a high level of computa-
tion when increasing the gray-level differences between
neighboring pixels. Unlike the above three methods of
formulating optimization with 1D or 2D histogram as
variables, in this paper, we utilize the image gradient as
a optimization variable for contrast enhancement, where
the solution is obtained by minimizing the data fidelity
as well as the sum of norms of the difference from data-
driven weighting-multiplication of the input gradients and
the target gradients.

1.2 Contributions
In previous works, several researchers suggested applying
the gradient fidelity to improve the performance of the
algorithm in image denoising and deblurring [12,13]. Nev-
ertheless, their improvement is limited. In this work, we
refocus on the gradient fidelity and apply it in visual con-
trast enhancement. The main contributions of this paper
are the following:

• For better contrast enhancement, we introduce a
novel image prior, the non-convex gradient fidelity
(NGF), which assumes that the gradient of the desired
image is close to the multiplication of the gradi-
ent of the original image by a scale factor, which is
adaptively proportional to the difference of their gra-
dients. A data-driven variational model for contrast
enhancement is then formulated by combining the
data-fidelity term and this prior.

• The difference between the NGF and the conven-
tional AR is revealed. Compared to the AR that is
usually operated in Fourier and DCT domain and
gives an analytical solution, NGF is data-driven, oper-
ated in gradient domain and its optimal solution is
achieved by minimizing penalty functions.

• An efficient alternating algorithm is developed to
solve the non-linear optimization problem with the
advantage of fast convergence. The adaptive model
and efficient implementation indicate the potential of
the method to be applied in real-time image/video
applications.

2 Non-convex gradient fidelity regularization
In this section, after briefly surveying some previous
results employing gradient fidelity-based prior in image
processing, we state our motivation and subsequently
propose a NGF variational model for efficient contrast
enhancement. Then, the potential relation between NGF
and the traditional AR method is explained and an itera-
tive algorithm is developed to efficiently solve it.

2.1 Proposedmodel NGF
Until recently, there were several works utilizing the gra-
dient fidelity-based prior in image processing [12-15]. In
[14], Fattal et al. presented a method for rendering high
dynamic range (HDR) compression. After manipulating
the gradient field of images by attenuating the magnitudes
of large gradients, they proposed a gradient fidelity-based
functional to reconstruct the result image from the modi-
fied gradient information in the least square sense. In [12],
Didas et al. combined �2 data and gradient fitting in con-
junction with �1 regularization for image denoising, where
the gradient fidelity term is used to compensate for the
loss of edge and undesirable staircase effect introduced by
the resulting higher partial differential equation. In [13],
Xu and Jia used one previously predicted sharp edge gra-
dient as a spatial prior to guide the recovery of a coarse
version of the latent image for robust motion deblurring.
All the methods above could be considered as construct-
ing an image from the specific gradient fields, and their
motivations are quite different to ours. The authors in [12]
aimed to recover the true image by minimizing gradient
fidelity term between the corrupted image and the solu-
tion. The authors in [13] and [14] first used some filters to
produce a guide image and then applied gradient fidelity
term between the guide image and the solution.
Let us turn back to the topic of contrast enhancement.

In this work, unlike the previously proposed gradient
fidelity term which was measured by linear and con-
vex �2-norm, we use the non-convex gradient fidelity as
a primary regularizer and apply it to enhance contrast.
Intuitively, the objective of an enhancement approach is
to produce an output image that looks better than the
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original one by increasing the gray-level differences (i.e.,
the contrast) among pattern objects. To achieve this goal,
the relation (or mapping function) between the gradient
of the input image and the desired solution should be non-
linear. A simple and straightforward assumption is that
the mapping is measured by a weighting function with
regard to the difference of their gradients. Mathematically,
given the degraded image f and the desired solution x, the
objective function we used is modeled as follows:

min
x

⎧⎨
⎩∥∥f − x

∥∥2
2 + η

n2∑
i=1

∥∥ |Di f − Dix|α−1 ⊗ Di f − Dix
∥∥2
2

⎫⎬
⎭
(1)

where η is a weighting factor. For each i, Dix ∈ R2 repre-
sents the first-order finite difference of x at pixel i in both
horizontal and vertical directions. The symbol ⊗ denotes
point-wise multiplication. The first term in the cost func-
tion enforces data fidelity in image-domain. The second
term suggests that the target image and the original image
should be close with a scale factor which is adaptively pro-
portional to the difference of their gradients.When letting
α = 1, then model (1) degrades to the classical gradient
fidelity model as used in [12,13,15]. In the circumstance of
α < 1, the weight matrix wi = |Dif − Dix|α−1 measures
the distance between the blurred and desired clean image
at each pixel i.
Interestingly, the NGF regularization in the proposed

model (1) essentially differs from the classical AR
algorithm [6], which is defined as �xi = |�fi|α−1 ⊗ �fi,
α > 0, � is the Fourier or DCT transform. The NGF
prior differs from AR algorithm at three aspects: (i) NGF
is operated in the gradient domain, while the AR is pre-
viously applied in the frequency or DCT domain; (ii) the
weight |Di f − Dix|α−1 in NGF is the function not only
with respect to the original image but also the desired
image which needs to be solved. Particularly, this mod-
ification introduces two implicit changes. One change is
that |Di f −Dix| rather than |Di f | is a relative value, which

is more adaptive. The other is that the range of α in the
traditional AR method is α > 0, while being extended
to be negative in NGF; and (iii) NGF in model (1) is
heavily non-linear and non-convex, and the solution is
achieved by modeling it as a variational energy, hence no
analytical solution can be directly obtained as that in AR
method. In NGF, the term (ii) focuses on the local adap-
tation and at the same time the term (iii) devotes to the
global constraint.
This data-driven based gradient fidelity prior produces

enhanced gradients and consequently improves visual
contrast. One iteration step of the model (1), which
is derived by employing augmented Lagrangian (AL)
scheme and alternative direction method in the next sub-
section, is illustrated in Figure 1. As expected and shown
in Figure 1b,c,d, after multiplication with the weight pre-
sented in Figure 1c, the gradients in horizontal and ver-
tical directions are more contrast visually near the edge
and texture regions. After several iterations, as seen from
the original image Figure 1a to the intermediated image
Figure 1e obtained by the algorithm, the visual effect is
much more improved.

2.2 Solver
Although the NGF regularized model has exhibited some
appealing properties in model setting, the issues of com-
putational complexity and local optimality have to be
addressed since these issues limit its practical applica-
tion. Therefore, developing an efficient and robust solver
is highly desirable. In this subsection, an AL method is
proposed to solve the problem. AL method is a well stud-
ied optimization algorithm for solving the constrained
problems in mathematical programming community [16].
Recently, it is enjoying a re-popularization mainly due to
the work of Yin et al. [17] and has been used in var-
ious applications of signal/image processing [18,19]. In
this work, we use a combination of the reweighted tech-
nique and AL scheme, which has been successfully used
in [19].

(a)

(b) (c) (d)

(e)

Figure 1 The flow chart of the proposedmodel. (a) The input/original image f . (b) The original gradients Dif in horizontal and vertical directions.
(c) The data-driven weight matrix wi = |Dif −Dix|α−1. (d) Enhanced gradientswi ⊗Dif . (e) The intermediate image enhanced by solving model (1).
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The AL-related methods usually employ the operator
splitting first to transform the original unconstrained
minimization problem to an equivalent constrained prob-
lem, and then the alternating-minimization strategy is
used to iteratively find solutions of the subproblems. Gen-
erally speaking, the AL scheme aims to solve the following
problem:

min
x,y

⎧⎨
⎩∥∥f − x

∥∥2 + η

n2∑
i=1

∥∥ |Di f − yi|α−1 ⊗ Di f − yi
∥∥2

⎫⎬
⎭

s.t. yi = Dix, i = 1, · · · , n2
(2)

where yi ∈ R2, i = 1, · · · , n2 are auxiliary variables.
Problem (2) can be solved via the standard AL method.
Specifically, letting y = [

y1, · · · , yn2
]
, λ = [

λ1, · · · , λn2
]

and starting from λ0 = 0, it solves

(
xk+1, yk+1

)
= argmin

x,y
L

(
x, y, λk

)
= argmin

x,y

⎧⎨
⎩∥∥f − x

∥∥2

+
n2∑
i=1

(
η

∥∥|Di f −yi|α−1 ⊗ Di f −yi
∥∥2+β

∥∥∥yi−Dix − λki /β
∥∥∥2)

⎫⎬
⎭

(3)

at the k-th iteration for
(
xk+1, yk+1), then updates the

multipliers λ by the formula

λk+1 = λk − β
(
yk+1 − Dxk+1

)
(4)

The sub-problem (3) involves non-convex optimization.
In this work, we apply iteratively reweighted method at
each AL iteration as used in [19]. Specially at Equation 3,
the term |Di f − yi|α−1 is approximated by its latest value

wk
i = |Di f − yki |α−1. Consequently, the AL function (3) is

reduced to

(
xk+1, yk+1

)
= argmin

x,y

⎧⎨
⎩∥∥f −x

∥∥2
2+

n2∑
i=1

(
η

∥∥∥wk
i ⊗ Dif −yi

∥∥∥2

+ β

∥∥∥yi − Dix − λki /β
∥∥∥2)

⎫⎬
⎭

(5)

Since solving (5) for x and y simultaneously can be dif-
ficult, an alternative choice is the alternating direction
method (ADM) [18,19] that minimizes it with respect to
one variable at a time while fixing the other variables at its
latest value.

• x-subproblem
By extracting the objective term in Equation 5 with

respect to x, it yields

min
x

∥∥f − x
∥∥2
2 + β

n2∑
i=1

∥∥∥yi − Dix − λk/β
∥∥∥2 (6)

By taking the derivative of Equation 6 with respect to x
and setting it to be zero,(

βDTD + 1
)
x = βDT

(
yk+1 − λk/β

)
+ f (7)

We can get the following update rule:

xk+1 = F−1
(
F

(
βDT (

yk+1 − λk/β
) + f

)
βF(D)� ⊗ F(D) + 1

)
(8)

where F represents the two-dimensional discrete Fourier
transform. The symbol � denotes complex conjugacy.
Both the ⊗ and the division signs are component-wise
operations.

• y-subproblem
The minimization of Equation 5 with respect to y can be

computed analytically. Concretely, we obtain the following
optimal solution:

yk+1
i =

(
ηwk

i ⊗ Di f + βDixk + λk
)

/ (η + β) (9)
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(a) (b)
Figure 2 The plot of function values vs iteration number and intermediate enhancement images at different iterations. (a) Objective value
evolution. (b) The original image and intimidate images obtained by NGF at first, fourth, 8th, and 16th iterations.
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Figure 3 The effect of varying parameters. The results are obtained
by varying parameters, where parameter η takes 5,100 and 5,000 from
top to bottom, and α takes 0.5, 0, and −0.5 from left to right.

In summary, the whole NGF method is summarized as
follows:

Algorithm 1 Algorithm NGF
1: for k = 0 to K − 1 do do
2: update wk

i and yk+1 according to Equation 9
3: update xk+1 according to Equation 8
4: update λk+1 according to Equation 4
5: end for

2.3 Computation cost, convergence, and parameter
setting

At each iteration, the computational cost of Equation 9 is
linear with respect to problem size, namely O(n2). Addi-
tionally, the main cost for solving Equation 8 is two fast
Fourier transforms (FFTs) (including one inverse FFT),
and each is at a cost of O(n2log(n)), hence the method
enables real-time processing. When working on the color
images such as in the standard RGB domain, the variable

x ∈ Rn2 will be extended to x = [
xr ; xg ; xb

] ∈ R3n2 . This
extension is the same as that in [20].
The convergence property of the algorithm was numer-

ically presented in Figure 2a. It can be observed that the
objective function values are almost the same after eight
iterations. This may depend on the fact that the ADM-
based optimization can decrease the objective func-
tion rapidly, as mentioned in many references [18-20].
Figure 2b displays the intermediate enhanced images
obtained at the 1-th, 4-th, 8-th, and 16-th iteration. We
can find that NGF quickly enhances the image in the first
few iterations, indicating the effectiveness of the alternat-
ing strategy adopted by our method. It only requires a
small number of simple arithmetic operations and is thus
suitable for real-time applications.
As for the convergence, because of the non-convexity

and non-linearity of the problem, the global solution may
not be found easily. Nevertheless, since the iterative pro-
cedure is updated by AL scheme combined with weighted
strategy, local minimum is expected to be attained. Both
the value of the objective function and the norm of the
reconstruction difference between successive iterations
can be chosen as the stopping criterion. Admittedly, pro-
viding convergence proof of the proposed algorithm is
very difficult. We are still working on the theoretic ground
of this deeper issue.
In practice, wk

i = |Di f − yki |α−1 was modified to
wk
i = 1/[ |Di f − yki |1−α + ε], 0 < ε < 0.5 to prevent

the denominator to be zero. In our work, the algorithm
was initialized by letting w0

i = 1/ε, x0 = f , λ0 = 0.
It runs k iterations until the relative tolerance satisfies∥∥xk+1 − xk

∥∥
2 /

∥∥xk+1∥∥
2 ≤ ζ with ζ = 10−3. The set-

ting of parameter β can be referred according to [20]. We
empirically choose β = 100 in all the experiments of this
article.

3 Experiments
In this section, the performance of the proposed method
is demonstrated on a variety of images, which show wide
variations in terms of average image intensity and con-
trast. We used a data set comprising standard test images
from [21-23] to evaluate and compare the proposed algo-
rithm with HEa [1], 2DHEa [4], ARb (alpha rooting in
DCT domain [6]), and MCEb [7]. The parameter set-
ting of the four algorithms were according to [4,8]. When

(a) (b) (c) (d) (e) (f)

Figure 4 Contrast enhancement results for image Plane. (a) Original image. (b) HE. (c) 2DHE. (d) AR. (e)MCE. (f) NGF.
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(a) (b) (c) (d) (e) (f)

Figure 5 Contrast enhancement results for image Tank. (a) Original image. (b) HE. (c) 2DHE. (d) AR. (e)MCE. (f) NGF.

extending the gray-level algorithms to color images, HE
and 2DHE first transform the input RGB image to CIE
L�a�b� color space, while AR and MCE first transform
RGB to be YCbCr space. As analyzed in subsection 2.3,
NGF is directly employed in the RGB space.
In the experiments, the performances of these algo-

rithms are investigated in terms of visual quality and
quantitative measures. As discussed in a number of
papers, the assessment of image enhancement is not an
easy task, and there is no any accepted objective cri-
terion that gives meaningful results for every image.
Therefore, we choose multiple measures to quantify the
improved perception between input image f and output
image x as done in [4]. The quantitative measures used
in this work include the following: normalized absolute
mean brightness error AMBEN

(
f , x

)
, normalized discrete

entropy DEN, and normalized edge-based contrast mea-
sure CMN

(
f , x

)
. The range of all the three measures is

in the interval [0, 1]. In general, the higher the value of
AMBEN, the better is the brightness preservation, and vice
versa. Similarly, higher DEN value indicates an estimate
image with richer details, and higher CMN value indicates
an image with higher contrast.

3.1 Parameter adjustment
There are two parameters η and α in the proposed
NGF regularized model. One is used for measuring the
level of gradient regularization and the other is for the
weighting factor. Therefore, the selection of parameters
(η,α) consists of a two-dimension parameter space, which

(a) (b) (c)

(d) (e) (f)
Figure 6 Contrast enhancement results for image Cessna.
(a) Original image. (b) HE. (c) 2DHE. (d) AR. (e)MCE. (f) NGF.

enables to produce various image style determined by the
user.
The effect of varying parameters is demonstrated in

Figure 3. The parameter η takes 5,100 and 5,000 from
top to bottom, and α takes 0.5, 0, and −0.5 from left to
right. When η = 0 or α = 1, the optimal solution of
model (1) is the original image itself. We can see that the
results with smaller η and higher α parameters approx-
imate to the original image (i.e., η → 0 or α → 1).
On the other hand, as parameters η increasing or/and α

decreasing, the contrast in result image is observed to
be more and more obvious. In summary, by using dif-
ferent parameters, NGF can achieve different levels of
contrast enhancement. In the following experiments, we
choose one image with the maximum value according
to the discrete entropy and contrast measure (DECM)
(i.e., DECMN

(
f , x

) = 2/
[
1/DEN

(
f , x

) + 1/CMN
(
f , x

)]
defined in [4]) from the estimates obtained in finite ranges
of (η,α) as our final result.

3.2 Comparison on standard test images
Some contrast enhancement examples resulted from dif-
ferent algorithms for gray-scale images and color images
are shown in Figures 4, 5, 6 and 7, respectively.
The original Plane image in Figure 4a shows a low-

contrast image comprising light and dark regions corre-
sponding to ground, plane, and shadow. HE has darkened
the image considerably to increase the contrast between
regions. Although this method has increased the con-
trast between different regions of the input image, the

(a) (b) (c)

(d) (e) (f)

Figure 7 Contrast enhancement results for image Beach.
(a) Original image. (b) HE. (c) 2DHE. (d) AR. (e)MCE. (f) NGF.
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Table 1 Quantitative measurement results of AMBEN, DEN, and CMN methods

AMBEN DEN CMN

HE 2DHE AR MCE NGF HE 2DHE AR MCE NGF HE 2DHE AR MCE NGF

Plane 0.0260 0.3269 0.5087 0.4998 0.6340 0.4920 0.4990 0.5598 0.6399 0.7693 0.5540 0.5264 0.5010 0.5108 0.5334

Tank 0.4928 0.0360 0.5079 0.4998 0.6207 0.4880 0.4950 0.5972 0.6929 0.8120 0.5556 0.5351 0.5017 0.5232 0.5577

Cam 0.0944 0.0473 0.5074 0.4957 0.4995 0.4458 0.4812 0.4957 0.4953 0.5490 0.5128 0.5158 0.5015 0.5322 0.5173

Baboon 0.3618 0.1276 0.5079 0.4972 0.4989 0.4572 0.4802 0.4928 0.5058 0.7982 0.5422 0.5266 0.5027 0.5667 0.5362

Cessna 0.0197 0.5973 0.5072 0.5013 0.6877 0.4623 0.4815 0.4916 0.4968 0.4991 0.5220 0.5103 0.4776 0.5060 0.5006

Light 0.1141 0.0973 0.5052 0.5033 0.5043 0.4502 0.4866 0.4941 0.5554 0.5963 0.5348 0.5192 0.5014 0.5311 0.5365

Beach 0.0198 0.0245 0.5064 0.5011 0.4193 0.4528 0.4767 0.4937 0.5571 0.6130 0.5305 0.5164 0.5009 0.5135 0.5427

Island 0.2495 0.1873 0.5048 0.5016 0.5056 0.4532 0.4670 0.4897 0.6152 0.6748 0.5256 0.5234 0.5015 0.5257 0.5449

Average 0.1723 0.1805 0.5069 0.5000 0.5463 0.4627 0.4830 0.5143 0.5698 0.6640 0.5347 0.5217 0.4985 0.5262 0.5337

The best among each results are in italics.

contrast within each region of the image is considerably
reduced. For example, the texture on the plane is not iden-
tifiable. 2DHE produces a brighter image which has better
visual quality and contrast than the result of HE. How-
ever, the ahead ground results in a slightly brighter output
image. Since AR and MCE are conducted in small DCT
blocks, their results do not change the overall contrast
of the image well, although it can be observed that some
details on the plane are enhanced in the MCE result. Our
method improves the overall contrast while preserving the
image details. In Figure 4e, it is easy to identify the ground
texture as well as the plane.
Figure 5 displays the results of theTank image. In theHE

result shown in Figure 5a, the contrast between the tank
and its surrounding is significantly increased. However,
the details in the darker area of the tank body are barely
noticeable. 2DHE alleviates the drawback of HE by consid-
ering the contextual information in the image when pro-
ducing the 2D histogram, which makes the details of the
tank body better perceived. However, it produces a higher
contrast image but brighter image overall, especially on
the ground. AR leads to an image that is almost similar to
its original, and hence contrast has been poorly improved.
MCE retains more detail than the image obtained with
AR. However, the photometric difference between the
tank and its surrounding is still limited. The output of
NGF is visually pleasing and the contrast between the tank
and its surrounding is high enough to reveal details on
both areas.
The image Cessna in Figure 6a shows a plane on a grass

field against a background of sky. The image consists of
bright (i.e., the sky) and dark (i.e., shadow and grass)
regions. Therefore, it is difficult to discriminate the details
on the plane and its surrounding. HE generates an output
image with high image degradation, where the sky region
with original orange tint has been changed to noticeable
layers of colored regions ranging from dark orange to light
gray. HE also darkens the input image, making its details

difficult to be observed. 2DHE generates an improved
output image in the area below the plane with no degra-
dations in the sky. NGF also provides an output image
with no image degradation in the sky, and furthermore,
the details on the plane are better visible. In particular, the
shadow below the plane in our result is much smaller than
that in the result of 2DHE. Besides, many block effect-like
artifacts are observed in the MCE result.
For the input Beach image as shown in Figure 7a, a dark-

ening effect on the couple and the distant hill occurred
in the results of the HE and 2DHE methods, which make
details not identifiable. MCE and our proposed NGF con-
siderably increase the overall contrast by making the col-
ors in the image richer and enabling image details to be
identified.
The computed quantitative measures AMBEN, DEN,

and CMN are showed in Table 1. The average AMBEN
values show that NGF outperforms all other algorithms
in brightness preservation. The DEN values show that the
proposed algorithm outperforms all the other algorithms.
In particular, HE provides the lowest DEN value because
it groups bins and thus reduces the overall entropy of
the output image. The high average value of DEN and
AMBEN shows that the proposed NGF is successful in
preserving the contextual information while improving
the visual quality. It is worth noting that although HE

(a) (b) (c)
Figure 8 Contrast enhancement results for image Cameraman.
(a) Original. (b) HE. (c)MCE.
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Table 2 Average quantitative measurement results on 300
test images from BSDS dataset [23]

Method AMBEN DEN CMN

HE 0.1034 0.4496 0.5253

2DHE 0.2052 0.4822 0.5263

AR 0.4986 0.4296 0.5290

MCE 0.4982 0.4624 0.5636

NGF 0.5051 0.6862 0.5405

The best among each results are in italics.

and MCE attain high CMN values, it does not necessarily
mean that they produce visually pleasuring images [4].
Figure 8 shows one example, where HE makes the sky
over-whitened and MCE introduces much blocking arti-
facts near the arm. In order to be convenient for the
readers to better judge the effect of these algorithms visu-
ally, more supporting numerical illustrations are provided
in Additional file 1.

3.3 Comparison on image database
In order to evaluate the performance of the five algo-
rithms for a wide range of images, they were applied to
300 test images from Berkeley images dataset [23]. The
average measurement values of AMBEN, DEN, and CMN
are reported in Table 2. Similar to the presented results in
Table 1, NGF outperforms the other algorithms in terms
of the average AMBEN and DEN values. Meanwhile, NGF
achieves the second in terms of average CMN value. It
not only protects the content of the image better than
the other algorithms but also exhibits good brightness
preservation. More visual comparison examples of these
algorithms are included in the Additional file 1.

3.4 Extension by combining detail enhancement
As we know, classical unsharp masking techniques aiming
at enhancing sharpness/detail of the image usually suf-
fer from the halo effect. Recently, a number of edge-
preserving filters like weighted least squares (WLS)
[24] have been proposed to alleviate this drawback and
achieved impressive performances. As discussed in [25],

enhancement of the overall contrast and sharpness of the
image are two related but different tasks. On one hand,
contrast enhancement does not necessarily lead to sharp-
ness enhancement. On the other hand, when enhancing
the sharpness of an image, the noise is also enhanced as
well. Hence, combined methods can be attained by inte-
grating NGF and WLS into a unified framework. One
possible choice is that after decomposing an image by
WLS, we use NGF to level the contrast of its base layer and
then combine the remaining detail layers with boosted
coefficients (denoted as combined 1). Another choice is to
employ NGF first and then use WLS to tackle the inter-
mediate image (denoted as combined 2). These combined
strategies may improve the visual quality.
Figure 9 shows one example for demonstrating the supe-

rior performance of the combined strategies. Our NGF
enhances the contrast locally and globally. WLS attains
comparable result with better detail enhancement but
introducing little noise. The results from combined meth-
ods shown in Figure 9d,e gain better visually pleasing
effects. More numerical illustrations are provided in the
Additional file 1.

4 Conclusions
This work presents the non-convex gradient fidelity term
as a regularizer for contrast enhancement. Following the
straightforward model and simple implementation, the
experimental results obtained for various types of images
are highly encouraging and illustrate that our method is
superior to the state-of-the-art enhancement techniques.
The approach is found to be computationally efficient in
producing visually pleasing images.
Since our model is in a variational formulation, fur-

ther extension is to extend our proposed model by
incorporating other penalty priority for some specific
applications. For example, by combining the �0 gradi-
ent minimization prior [26], the compound model has
the potential to simultaneously enhancing and denoising.
Furthermore, it is very desirable to integrate the pro-
posed NGF prior with the recently popular dictionary
learning-based sparse representation model [27,28] for
texture-enhanced image denoising, as demonstrated in

(a) (b) (c) (d) (e)

Figure 9 Contrast or/and sharpness enhancement results for image 22013.jpg. (a) Original. (b) NGF. (c)WLS. (d) Combined 1. (e) Combined 2.



Liu et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:154 Page 9 of 9
http://asp.eurasipjournals.com/content/2014/1/154

[27] that a gradient histogram preservation algorithm was
presented to enhance the texture structures while remov-
ing noise. Applying NGF prior in the trained filters [29]
or learned transforms [30] will also be considered in the
further study.

Endnotes
aThe codes of HE and 2DHE are available at http://

www.sciencedirect.com/science/article/pii/
S0031320312001525.

bThe codes of AR and MCE are available at http://
www.facweb.iitkgp.ernet.in/~jay/CES/.

Additional file

Additional file 1: Comparison with state-of-the-art algorithms and
the extension. The supplementary material contains three parts. Pages 2
to 24 consist of comparison on test images from [1] and [2]. Pages 25 to 50
consist of comparison on test images from [3]. Finally, pages 51 to 55
involves the extension of our method by combining detail enhancement
and the comparison with WLS [4] and EAW [5].

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was partly supported by the National Natural Science Foundation of
China under grant numbers 61261010, 61362001, 61365013, 61340025, and
51165033, the Natural Science Foundation of Jiangxi province
(20132BAB211030, 20121BBE50023, 20122BAB211015), the international
scientific and technological cooperation projects of Jiangxi Province (No.
20141BDH80001), the Technology Foundation of the Department of Education
in Jiangxi Province (Nos. GJJ13061, GJJ13376, GJJ14196), and the Young
Scientist Training Program of Jiangxi province (No.20142BCB23001). The
authors are indebted to two anonymous referees for their useful suggestions
and for having drawn the authors’ attention to additional relevant references.

Author details
1Department of Electronic Information Engineering, Nanchang University,
Nanchang 330031, China. 2Paul C. Lauterbur Research Center for Biomedical
Imaging, SIAT, Chinese Academy of Sciences, Beijing 518055, China. 3Faculty
of Geo-Information Science and Earth Observation-ITC, University of Twente,
Enschede, The Netherlands.

Received: 3 July 2014 Accepted: 4 September 2014
Published: 10 October 2014

References
1. RC Gonzalez, RE Woods, Digital Image Processing (3rd Edition).

(Prentice-Hall, Inc., Upper Saddle River, 2006)
2. SS Agaian, B Silver, KA Panetta, Transform coefficient histogram-based

image enhancement algorithms using contrast entropy. IEEE Trans.
Image Process. 16(3), 741–758 (2007)

3. D Menotti, L Najman, J Facon, A De Araujo, Multi-histogram equalization
methods for contrast enhancement and brightness preserving. IEEE
Trans. Consum. Electron. 53(3), 1186–1194 (2007)

4. T Celik, Two-dimensional histogram equalization and contrast
enhancement. Pattern Recognit. 45(10), 3810–3824 (2012)

5. S Huang, F Cheng, Y Chiu, Efficient contrast enhancement using adaptive
gamma correction with weighting distribution. IEEE Trans. Image Process.
22(3), 1032–1041 (2013)

6. S Aghagolzadeh, OK Ersoy, Transform image enhancement. Opt. Eng.
31(3), 614–626 (1992)

7. J Tang, E Peli, S Acton, Image enhancement using a contrast measure in
the compressed domain. IEEE Signal Process. Lett. 10(10), 289–292 (2003)

8. J Mukherjee, SK Mitra, Enhancement of color images by scaling the DCT
coefficients. IEEE Trans. Image Process. 17(10), 1783–1794 (2008)

9. R Fattal, Edge-avoiding wavelets and their applications. ACM Trans.
Graph. (TOG) 28(3), 1–10 (2009)

10. C Wang, J Peng, Z Ye, Flattest histogram specification with accurate
brightness preservation. IET Image Process. 2(5), 249–262 (2008)

11. T Celik, T Tjahjadi, Contextual and variational contrast enhancement. IEEE
Trans. Image Process. 20(12), 3431–3441 (2011)

12. S Didas, S Setzer, G Steidl, Combined �2 data and gradient fitting in
conjunction with �1 regularization. Adv. Comput. Math. 30(1), 79–99
(2009)

13. L Xu, J Jia. Two-phase kernel estimation for robust motion deblurring, in
Proceedings of European Conference on Computer Vision, (2010),
pp. 157–170

14. R Fattal, D Lischinski, M Werman, Gradient domain high dynamic range
compression. ACM Trans. Graph. (TOG) 21(3), 249–256 (2002)

15. P Bhat, CL Zitnick, M Cohen, B Curless, Gradientshop: a gradient-domain
optimization framework for image and video filtering. ACM Trans. Graph.
(TOG) 29(2), 1–14 (2010)

16. RT Rockafellar, Augmented lagrangians and applications of the proximal
point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116
(1976)

17. W Yin, S Osher, D Goldfarb, J Darbon, Bregman iterative algorithms for
�1-minimization with applications to compressed sensing. SIAM J.
Imaging Sci. 1(1), 143–168 (2008)

18. MV Afonso, JM Bioucas-Dias, MA Figueiredo, An augmented lagrangian
approach to the constrained optimization formulation of imaging inverse
problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)

19. Q Liu, S Wang, J Luo, Y Zhu, M Ye, An augmented lagrangian approach to
general dictionary learning for image denoising. J. Vis. Commun. Image
Representation. 23(5), 753–766 (2012)

20. M Tao, J Yang, Alternating direction algorithms for total variation
deconvolution in image deconstruction. Optimization Online (2009)

21. The USC-SIPI Image Database. http://sipi.usc.edu/database/
22. Kodak Lossless True Color Image Suite. http://r0k.us/graphics/kodak/
23. D Martin, C Fowlkes, D Tal, J Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics, in Proceedings of IEEE International
Conference on Computer Vision, vol. 2, (2001), pp. 416–423

24. Z Farbman, R Fattal, D Lischinski, R Szeliski, Edge-preserving
decompositions for multi-scale tone and detail manipulation. ACM Trans.
Graph. (TOG) 27(3), 67–77 (2008)

25. G Deng, A generalized unsharp masking algorithm. IEEE Trans. Image
Process. 20(5), 1249–1261 (2011)

26. L Xu, C Lu, Y Xu, J Jia, Image smoothing via �0 gradient minimization.
ACM Trans. Graph. (TOG) 30(6), 174–185 (2011)

27. W Zuo, L Zhang, C Song, D Zhang. Texture enhanced image denoising via
gradient histogram preservation, in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, (2013), pp. 1203–1210

28. R Yan, L Shao, Y Liu, Nonlocal hierachical dictionary learning using
wavelets for image denoising. IEEE Trans. Image Process. 22(12),
4689–4698 (2013)

29. L Shao, H Zhang, G De Haan, An overview and performance evaluation of
classification-based least squares trained filters. IEEE Trans. Image Process.
17(10), 1772–1782 (2008)

30. L Shao, R Yan, X Li, Y Liu, From heuristic optimization to dictionary
learning: a review and comprehensive comparison of image denoising
algorithms. IEEE Trans. Cybern. 44(7), 1001–1013 (2014)

doi:10.1186/1687-6180-2014-154
Cite this article as: Liu et al.: A non-convex gradient fidelity-based
variational model for image contrast enhancement. EURASIP Journal on
Advances in Signal Processing 2014 2014:154.

http://www.sciencedirect.com/science/article/pii/S0031320312001525
http://www.sciencedirect.com/science/article/pii/S0031320312001525
http://www.sciencedirect.com/science/article/pii/S0031320312001525
http://www.facweb.iitkgp.ernet.in/~jay/CES/
http://www.facweb.iitkgp.ernet.in/~jay/CES/
http://www.biomedcentral.com/content/supplementary/1687-6180-2014-154-S1.zip
http://sipi.usc.edu/database/
http://r0k.us/graphics/kodak/

	Abstract
	Keywords

	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Non-convex gradient fidelity regularization
	2.1 Proposed model NGF
	2.2 Solver
	2.3 Computation cost, convergence, and parameter setting

	3 Experiments
	3.1 Parameter adjustment
	3.2 Comparison on standard test images
	3.3 Comparison on image database
	3.4 Extension by combining detail enhancement

	4 Conclusions
	Endnotes
	Additional file
	Additional file 1

	Competing interests
	Acknowledgements
	Author details
	References

