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Abstract

In this paper, we consider the schedule-based network localization concept, which does not require synchronization
among nodes and does not involve communication overhead. The concept makes use of a common transmission
sequence, which enables each node to perform self-localization and to localize the entire network, based on noisy
propagation-time measurements. We formulate the schedule-based localization problem as an estimation problem in
a Bayesian framework. This provides robustness with respect to uncertainty in such system parameters as anchor
locations and timing devices. Moreover, we derive a sequential approximate maximum a posteriori (AMAP) estimator.
The estimator is fully decentralized and copes with varying noise levels. By studying the fundamental constraints
given by the considered measurement model, we provide a system design methodology which enables a scalable
solution. Finally, we evaluate the performance of the proposed AMAP estimator by numerical simulations emulating
an impulse-radio ultra-wideband (IR-UWB) wireless network.
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1 Introduction

Localization of nodes in wireless networks is required in
various applications [1]. In many scenarios, it is important
for the nodes to know their own position and the position
of other nodes in the network. As an example, the first
responder situation considered in [2] benefits from self-
localization and localization of other members by each
member of the team.

Research done to address the above issues provides
a variety of practical techniques. Extensive surveys of
such techniques are provided in [3,4]. In time-of-arrival
(TOA)-based systems, in particular, measuring time
delays with the knowledge of anchor positions provides
localization. The common challenges in location estima-
tion are measurement noise, availability of accurate timing
models and anchor uncertainty. Authors in [5-8] have
proposed estimation methods and algorithms which are
robust to anchor and timing uncertainty.

Cooperation between the nodes is used in position esti-
mation solutions, as described in, e.g., [9-13]. Specifically,
in [11], a distributed localization method is presented
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which is based on factor graphs and relies on cooperation
and message-passing between nodes. The method enables
accurate and robust localization in networks which are not
fully connected and its performance is studied in a numer-
ical simulation scenario based on experimental measure-
ments. In [12], a cooperative localization algorithm is
derived, which extends the non-parametric belief prop-
agation (NBP) message-passing method first introduced
in [13]. The method, which is based on approximating
the junction-tree, improves performance with a reduced
number of particles with respect to other NBP algorithms
in the literature. The algorithm is validated by simulation
and by applying it to experimental indoor ranging data
acquired independently by [14].

The concept of schedule-based localization was intro-
duced in [15-17]. It consists in the adoption of a common
transmission sequence, known throughout the network.
This concept achieves cooperative positioning in a decen-
tralized manner even without communication overhead
required for message passing [11-13]. Since the trans-
missions are event-driven, the schedule-based localization
concept provides other advantages, such as asynchronous
operation and high update rate. The concept can be
realized with low complexity hardware [18-21]. The
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importance of removing communication overhead is par-
ticularly high in systems like the tactical locator system,
TOR, described in [22]. In the TOR system, the inter-
agent ranging device is an ‘intelligent sensor’, among oth-
ers, with an internal update rate which is high compared
with the 1-Hz pace of the overall system. Such a system
is employed in polluted RF environments where commu-
nication resources have to be used for voice and video
communication. Therefore, the use of schedule-based
localization is motivated from a robust communication
perspective, because it allows to replace all unnecessary
communication/RF waveforms with predetermined inter-
nal sequences to ensure maximum robustness.

In this paper, we provide a general Bayesian framework
for schedule-based localization which takes into account
uncertainty in anchor location and in timing devices.
The contribution of this paper is the extension of previ-
ous works in [15-17]. Here, we derive a new sequential
estimator that, unlike previous works, is scalable to an
arbitrary number of nodes and can be implemented online
rather than processing large records of collected samples
offline. The estimator also has an inherent robustness
with respect to varying levels of measurement noise. In
addition to this, we provide insight on the fundamen-
tal constraints of the considered problem. Based on this
analysis, we develop a methodology to obtain a scal-
able solution, which achieves identifiability of individual
nodes in a sequential manner. The methodology assists
the formulation of the common transmission sequence.

Moreover, we evaluate the performance of the proposed
estimator by numerical simulations in a case study con-
sisting of a network of wireless nodes. For this scenario,
numerous time-based localization technologies have been
applied in the literature, including commercial communi-
cation infrastructure, such as wireless local area networks
[23] and personal area networks [24,25], as well as spe-
cialized ranging and positioning systems such as chirp
spread spectrum [26]. In this context, the impulse-radio
ultra-wideband (IR-UWB) technology, cf. [27], is widely
studied in the literature and has been considered for the
implementation of cooperative localization methods in
[11,28]. The sub-nanosecond time resolution property of
IR-UWB, in fact, allows for centimeter-level measure-
ment accuracy when applying time-of-arrival methods
[29-31]. The characterization and modeling of the indoor
UWB propagation channel are outside of the scope of
the present paper and have been extensively studied in
[32,33]. The method proposed in this paper is based on
several assumptions that are valid in an IR-UWB set-up,
which is our main interest. Therefore, here, we present
numerical simulation results obtained using a network
of IR-UWB nodes, where we set the parameters of the
network configuration and error based on previous exper-
imental work [18-21]. We highlight however that the
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method is applicable for a plurality of other localization
technologies, mutatis mutandis, yielding varying degrees
of accuracy depending on the ability to resolve time sig-
natures. Furthermore, we compare the performance of
the proposed estimator to the fundamental limitations
provided by a Cramér-Rao bound.

The remainder of this paper is organized as follows:
Section 2 provides the problem formulation. Then, the
sequential AMAP estimator is derived in section 3 along
with a methodology for sequence construction. A numer-
ical evaluation of the AMAP performance is provided in
section 4. Finally, section 5 reports conclusions.

2 Problem formulation

We consider a fully connected wireless network of N — 1
transceiving nodes and an indefinite number of passive
receiving nodes. The transceiving nodes transmit accord-
ing to a given sequence, denoted 7, which is known across
the network. When a node transmits a signal, it is received
by the other nodes, then the next node in the sequence
transmits, making the process event-driven. Delays at all
nodes are assumed to be analog as mentioned in [16-18].
On the basis of observed time intervals between received
signals at an arbitrary node #n, the goal is to achieve
both self-localization and localization of other transceiv-
ing nodes participating in the sequence, 7 at node n
without the need for clock synchronization or additional
communication.

Moreover, for the purposes of this paper, the passive
receiving nodes are defined as non-transmitting nodes,
which therefore do not take part in the transmission
sequence. In this context, the goal of such nodes is self-
localization and localization of the transceiving nodes.

The signals are assumed to have a resolvable temporal
signature that allows for timing events, e.g., pulses, symbol
boundaries, etc. and the propagation velocity c is known.
Let x; € R? denote the position of node i, where d =
2 or 3, and p;; 2 xi — xj|l2 denote the range between
nodes i and j. Figure 1 illustrates the ranges between three
different nodes i,j, and n.

Now suppose node i initiates the transmission sequence
and node j is the next node in the sequence. When it
receives the signal, it transmits in return after a certain
delay §;. The signal events at all nodes are then illustrated
in Figure 2.

Using the relations to the ranges, the observed time
interval at node n can be expressed as [17,34,35]

! 1 1 .
Y =i+ 8+ o — —pin W, (1)

where w(® is modeled as zero-mean Gaussian noise with
unknown variance. The noise may not be stationary or
may be range-dependent [36]. For any given variance, the



Zachariah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:16

http://asp.eurasipjournals.com/content/2014/1/16

p’L,j 4 \
d \
@
\\ \ p.%n
N \
pi,n\\ \
N
NN

Figure 1 Example network setup involving the three nodes i, j,
andn.

additive Gaussian noise model results in the least favor-
able Cramér-Rao bound for parameter estimation. Under
the model, therefore, any estimator that attains the lower
bound can be considered min-max optimal [37].

If the next node in the sequence is denoted k, then the
next observed time interval is

. 1 1 1 i
y(],k) = ;pj,k + 8 + Epk,n - ;pj,n + W(]’k)¢ (2)

which uses one timing measurement from the previous
observation y(i’j). Therefore, there is a correlation between
all consecutive measurements. In addition to the random
noise, the delay §; is subject to uncertainty due to hard-
ware imperfections and is modeled as §; ~ ./\/'(u,;,og),
where w5 is the nominal delay and the standard deviation
os is assumed to be known. To avoid signal collisions, it is
necessary that the delays exceed pmax/c, where pmax is the
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maximum range between any pair of transceivers and can
easily be ensured in any bounded localization scenario.

Prior knowledge about the node positions in the net-
work is modeled as x; ~ A (u;, C;), where the nominal
position u; and error covariance matrix C; is set for all i
[5-7]. With Ci_1 = 0 we can also model complete igno-
rance of a node position.

The goal is to formulate an estimator for any node # that
performs self-localization as well as localization of an arbi-
trary number of transceiving nodes, by processing batches
of observed time intervals sequentially.

3 Proposed estimator
Letd = [xi'—, . ,x;\'}ilx;\'}]—r € RN denote the positions
of all N — 1 transceiving nodes and the position of a
passive receiver node N. Note that a necessary condition
for x to be identifiable is that localization is performed
at node N since, clearly, other nodes cannot localize the
passive receiver nodes. For notational simplicity, let # =
0787]T € RT denote the sought parameters, where &
contains the delays at the N — 1 transceiving nodes and
T=dN+N-1.

We aim to formulate a sequential estimator that pro-
cesses the observations in batches of B samples. The
batches are indexed by b = 1,2, ..., so that we can write

Yo = hy(®) + w, € RE, 3)
where
hy(#) = ¢ 'Spg(). (4)

The nonlinear mapping is g(#) =[p'(0) 8717, where
p(0) contains the N(N — 1)/2 unique ranges p;; in a fixed

node 12

node j

denote reception events.

Figure 2 Timing diagram for the example network setup in Figure 1. Here, the solid black dots denote transmission events, whereas the arrows
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order. Here, the integer matrix S; is determined by the
transmission sequence 7 for batch b, cf. (1). The noise
follows wj, ~ N'(0,R,) and

1,1 2,1
2,1 122 123
R, = 723 33 134 (5)
TB,B—1
'BB-1 TBB

is an unknown band-diagonal matrix, as consecutive sam-
ples are correlated.

In the next subsection, we derive an estimator # which
solves an approximate MAP problem using the obser-
vation model in (3). Subsequently, in subsection 3.3,
we provide a schedule construction approach to achieve
parameter identifiability. In this subsection, we will also
discuss how the sequential formulation of the estimation
problem allows for robustness to random link failures in
the network.

3.1 Approximate sequential MAP estimator

Suppose that, at batch b, we have a prior estimate Byt
We model the errors of 19;,,1 as zero-mean Gaussian
with error covariance matrix Py,_;. For b = 1, ﬁo =
(1], myis1T]T and Py = diag(Cy, - - -, Cn, 05 In-1)-
The maximum a posteriori estimator of # and R, is given
by the maximization of

J(#,Ry) £ Inp(y,|9,Rp) + Inp(Ry) + Inp()
1 1 )
= =5 In[Ry| +Inp(Ry) — Iy — hh(")”Rb—l (6)
1 -
— ¥y — B2, +K,
SIBpm1 =Bl +

where K is a constant. For tractability, we approximate
R, =~ O';IB. Using a noninformative prior, we have
PRy = p(abz) x l/ab2 [38]. Then the approximated
log-posterior is

B+2 1
J @0} =——"Ino} — oz lve = h, ()13

2
1 b (7)
— Py — P>, + K,
Sl =21+

where the maximizing noise variance is 53 = |lyp —
h;,(t?)||%/ (B + 2). Inserting the estimate back into (7),
the approximate MAP estimator, denoted AMAP, can be
written as
ﬁb = argmin Vj(#), 8)
PeRb
where
1 )/71 "
Ve(@) £ = Inlly, = by )15 + 21251 = 250 O)
b-1

and y, = B+ 2.
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After solving (8), the estimate # » can be used for the
next batch b + 1. An approximate error covariance matrix
P, can be derived using the information matrix A, =
Pb_1 > 0. Then using the approximation R, =~ 0513,
the information is additive A, = Ap_1 + 0, Zaﬁh;faﬁhb
[39]. Inserting the estimates, the latter term becomes
6, G} Gp, where G, = ¢'S,I'(#,) and T(#) 2 dyg(D).
Then we have the recursive update of the approximate
error covariance matrix

-1
Py = (As1+5,°G, Gy)

T (52 T\ !
=Py, — Py_1G] (ah I+ Gbe_le> G,Py_ 1.
(10)

3.2 Iterative solution
To solve (8) iteratively, we linearize g(#) around an ini-

~ (L ~(l -
tial estimate 19;), ie, g =~ g(l?,(j)) + T'¢?, where

N = ~ (L
I, = F(#Z )) and the increment is denoted # £ ¢ — ﬂz)

for notational simplicity. Then the cost function (9) is
approximated by

-1
~ 1 ~ Y, -

0) Y = -1 2 b 2

Vv, (@) = 3 In|lype — ¢ SpT e |5 + 5 llze — ﬂllpz_ll,

(11)

NG A NG
where ¥, = yp — c‘lsbg(ﬂz)) and zy = #)_1 — 02).

The initial estimate is updated by the optimal increment
NS NGO
Y Z 50 1,

To compute the optimal #, we find a stationary point of

Vlgo(ﬁ) using the gradient
55V," (@) =k L3)G, G} — kLG Ve 1)
+yy P (0 —z),

where «x(#) £ 1Ys,e — c_lsbl"u}H%. Holding xk(#) fixed
we solve d3 Vlfz)({?) = 0, and update « () resulting in a
fixed-point iteration

~ ~ ~ -1
¥ = (DG DG + 7, Py )
x (kT )G Yo+, Pyl be)
~ -1
=20+ 7Py 16/ (1GePy 1G] + k(D))

X (Yp,e — Gezy).
(13)

Starting with # = 0, we converge to a stationary point.
As a standard analysis of the convergence properties does
not appear to be tractable, we provide a numerical evalu-
ation of convergence in a practical scenario in section 4.
The sequential estimator is summarized in Algorithm 1.
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Note that when B is small, the computational complexity
of processing a batch is low as the computation of i only
involves the nodes participating in the batch b and there-
fore Gy is a sparse matrix. Further, the matrix inversion on
Line 12 in Algorithm 1 scales with the size of the batch B
rather than the total number of nodes N.

Algorithm 1 Sequential approximate MAP estimator

1: Input: yp, ﬁb_l, Py_1
: Setl:=—1, y :B+2and1§2 = 19;,_1
repeat
L:=0+4+1
Yoo =Yb — C’lsbg(ﬁi)
&  Gy=c ST (P))
Zy = 79b—1 — 19?
Repeat (13) until convergence
N T
10: until ||1§||2 <e€
11: 67 = llyy — ¢S85 13/
12 Pp = Py_y — Py 1G] (6215 + GePy 1G/)  GePj_;
13: Output: 1%, P,

A

3.3 Sequence construction

To achieve identifiability, it is required that a subset of
the transceiving nodes have highly informative priors. We
denote such nodes as anchors. The other transceiving
nodes are denoted as auxiliary nodes.

We propose a strategy to localize sequentially an arbi-
trary number of auxiliary nodes at node n. First, we exploit
the anchors to enable self-localization of node n. Sub-
sequently, we devote each batch to the localization of
one auxiliary node at a time. To achieve it, we interleave
the transmissions of the auxiliary node with those of the
anchors.
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As an example, assume that nodes 1, 2, and 3 are anchors
and node N as a passive receiving node. Then, given the
sequence 71 = {1,2,3,1}, the proposed estimator oper-
ation is described in Figure 3 for batch sizes B = 1 and
B = 2, where the cost function Vj(#) in (9) is plot-
ted. From the figures, it can be seen that, when B =
1, node N cannot perform self-localization unambigu-
ously, based only on the hyperbolic constraint imposed
by a single time-difference measurement of (1), cf. time-
difference-of-arrival localization [40,41]. However, when
B = 2, node N can perform self-localization using a sin-
gle batch due to the joint imposition of two hyperbolic
constraints?®.

Now, let us assume that node 4 is an auxiliary node
with a noninformative prior. Then, given the sequence
T, = {1,2,3,1,4,2,4}, the cost function V(#) in (9) is
illustrated in Figure 4. For batch size B = 1, node N
cannot localize auxiliary node 4 unambiguously, based
only on the elliptical constraint imposed by a single time-
difference measurement of (1), cf. [42]. However, as node 4
is interleaved with anchor nodes in the sequence and node
N has self-localized, (1) produces elliptical and hyperbolic
constraints alternatingly depending on whether node i
is an anchor or auxiliary node, respectively. Hence for
B = 3, node N can localize the auxiliary node due to
the joint imposition of two elliptical and one hyperbolic
constraint.

The above example can easily be extended to N, anchor
nodes. Let the anchor nodes be indexed as 1,2, ..., N, and
the auxiliary nodes as N, + 1,N,; + 2, . ... Then a generic
sequence can be constructed on the form

LN, + k2 Na+kooo ),

Te=1{ L2,...,N, ,...,
———

enable self-localization kth auxiliary node localized in this batch

where the kth auxiliary node is localized as long as
it is interleaved by at least two anchor nodes in its

a b
14 14
12 ‘ 12
X X
10 10
*
8 8 ’?
E 6 E &
> >
4 i 4
2 2
X X X X
0 0
-2 -2
-5 0 5 10 15 0 5 10 15
x[m] x[m]
Figure 3 Cost function Vj, (#) with respect to variables xy, using sequence 77 = {1, 2, 3, 1}. Anchor nodes are denoted by crosses and the
passive receiving node N is denoted by an asterisk. (a) Batch size B = 1, batch index b = 1. (b) Batch size B = 2, batch index b = 1.




Zachariah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:16

http://asp.eurasipjournals.com/content/2014/1/16

Page 6 of 12

y[m]

-5 0 5 10 15
x[m]

Batch size B = 3, batch index b = 2.

b
14
12
X
10
*
8
E 6
>
4
2
X
0
-2
-5 0 5 10 15
x [m]

Figure 4 Cost function V,, (#) with respect to variables x4, using sequence T; = {1, 2, 3, 1, 4, 2, 4}. Here, anchor nodes are denoted by crosses,
the auxiliary node 4 is denoted by a triangle, and the passive receiving node N is denoted by an asterisk. (a) Batch size B = 1, batch index b = 4. (b)

corresponding batch. Thus, for a given batch size B, the
sequence T, will be padded by interleaving anchor nodes
to fulfill this constraint. Once all auxiliary nodes have been
localized, the sequence is simply repeated which improves
the estimates in the next round of measurements.

Finally, note that the sequential nature of the estima-
tor allows for robustness to random link failures. In fact,
in the event of a lost measurement, the corresponding
batch is discarded and the estimator proceeds with the
subsequent batches.

4 Numerical results

In this section, we provide a numerical performance eval-
uation of the estimator derived in section 3. As a case
study, we consider the two-dimensional localization of
nodes in an IR-UWB wireless sensor network [11,18,28].
In such a scenario, the timing information is obtained by
measuring the propagation time of subnanosecond UWB
pulses. The measurement noise is generated according to
numerical values that are consistent with this scenario, i.e.
subnanosecond- to nanosecond-order standard deviation,
based on the experimental characterization in [18-21].

We analyze the localization of all nodes in the network
performed at a passive receiver node. The analysis is appli-
cable in a straightforward manner to any transceiver node
which participates in the sequence.

Reproducible research: Code for reproducing results in
this section is provided at the webpage of KTH Signal
Processing, under ‘reproducible research’ http://www.kth.
se/en/ees/omskolan/organisation/avdelningar/sp/research
/reproducibleresearch-1.433797.

4.1 Setup
We consider a fully connected network of N nodes con-
sisting of N, = 4 anchors and N, = N — N, unknown

position nodes. The latter includes one passive receiver
node, which we denote as self-localizing node, and N, — 1
auxiliary nodes, i.e., transceiver nodes with noninforma-
tive prior which participate in the transmission sequence.
We assume that the anchors are deployed according to
nominal positions affected by a Gaussian error with a
known covariance Py, = 02Iyy,. The remaining nodes
have noninformative priors, i.e., P, 1 — 0, and the delay
8; has a nominal value of us = 10~° s with known error
variance 052.

In the numerical simulations, we consider a total of M
samples. Except where otherwise indicated, the noise is
generated as w ~ A (0,02Q), where

a1 1/3
1/3 q» 1/3
.13
1/3 qum
andgq; = 1, Vi.

The transmission sequence 7 is constructed by inter-
leaving the transmissions from the auxiliary nodes with
those of anchors, according to the approach described
in section 3.3. Furthermore, the batch length is set to
B = 7, which enables localization using all N, = 4-anchors
within the same batch.

We initialize the AMAP estimator of Algorithm 1 with
= [ﬂlT e ILJT[a [_Lir e ﬁ]—\r,u /LBII[_I]T, where p;s are the
nominal anchor positions and it; = (1/N,) Zj\[z“l W is the
centroid of the nominal anchor positions. Furthermore,
we set the termination criterion ¢ = 10~2N,, except where
otherwise indicated.


http://www.kth.se/en/ees/omskolan/organisation/avdelningar/sp/research/reproducibleresearch-1.433797
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The average RMSE of the position and delay estimates is
given by

RMSE; 2 Nié urfCel,

where & can be either 8, in which case Ny = Ny, or §, and
Ng = N—1.Here C; is the MSE matrix of §. We estimated

the RMSE from 10° Monte Carlo iterations.

4.2 Cramér-Rao bound

The mean square error when using the complete set of
M samples, y = h(#) + w € RM, is constrained by
the Cramér-Rao bound [39]. Here we derive the bound
when the noise covariance matrix equals 0>Q as of (14)
[17]. Note, however, that the covariance structure Q is not
given in the AMAP estimator; hence, the bound is opti-
mistic and may not be attainable. Nevertheless, the bound
provides a benchmark for evaluating the performance of
the proposed estimator.

Letp & 07 8" 62]T € RT*!, then we treat the param-
eters with noninformative priors as deterministic quan-
tities. Suppose 7 be any estimator that is conditionally
unbiased with respect to the deterministic parameters.
Then its mean square error (MSE) matrix is constrained
by the hybrid Cramér-Rao bound (HCRB) [43], C; = J, L
where J,, = ]? + ]5 e RI+DX(T+D),

Here, ]? =E; P (n)] is the expected Fisher information
matrix, where 7 denotes the subset of parameters that are
modeled as random quantities and

c2ag’ .. 0 M 902 3o
DP@)liy= 5 S-H QH- S 4 20
0% on; onj  20% dn; dn;

as given in [39]. As the expectation does not have a closed
form solution, we evaluate it by the Monte Carlo simula-
tion. If a subset of node positions, 8, and the noise level,
o2, are treated as deterministic and unknown parame-
ters, and the remaining parameters, 6, and §, are random

Gaussian, then the prior information matrix is given by

P,’o 0 0
1P 00 0 0 c RIT+Dx(T+1)
" 0 00;2Iy_1 0 ’
00 0 0

where Py, is the covariance matrix of 6,. In the follow-
ing, we use this division between deterministic and ran-
dom parameters to study practical configurations where
we lack prior knowledge on the position of a subset of
nodes.
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4.3 Error analysis

We analyze the node deployment shown in Figure 5,
where the nominal positions of the anchors are the cor-
ners of a 10 x 10 m? area. The positions of the five
auxiliary nodes and of the self-localizing nodes are ran-
domly generated according to a uniform distribution
within this area. Here, N, = 6 and we use a transmission
sequence 7 with [T] = 71.

The performance of the proposed estimator is com-
pared with the HCRB by means of error ellipses. For visual
clarity, the sizes of the ellipses have been scaled to corre-
spond to 99% confidence ellipses of a zero-mean Gaussian
distribution [16].

In Figure 5, a highly informative prior on the anchor
positions, of centimeter level, is used. Further, in Figure 6,
a relatively less informative prior is employed, ie., a
decimeter-level prior, to model uncertainty in the deploy-
ment of the anchors in a practical scenario. It can be seen
that the proposed AMARP estimator is close to the HCRB
in both cases. In both cases, the gap between the average
RMSE and the HCRB is less than 2 cm. Thus, the esti-
mator is inherently robust with respect to anchor position
uncertainty.

In Figures 5 and 6, the ellipses related to the self-
localizing node are considerably smaller than those of
the auxiliary nodes, and are of the same order of mag-
nitude as the prior on the anchor positions. Further,
the minor axes of the ellipses of the auxiliary nodes are
approximately aligned along the direction connecting to

< - X

0

10

y [m]
(o))

o ; ; é o
0 2 4 6 8 10 12
X [m]

Figure 5 True node positions and error ellipses for all nodes
estimated at self-localizing node indicated by an asterisk. The
anchor nominal positions are indicated by crosses, the auxiliary nodes
by triangles and the centroid of the nominal anchor positions by a
square. The solid black ellipses indicate the HCRB and the dashed red
ellipses indicate the MSE performance of the proposed AMAP
estimator. Here, o0, = 3 cm and o = 1 ns. The average RMSE of the
position estimate is 7.3 cm and the HCRB is 6.2 cm.
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10

y [m]
[0)}

0 2 4 6 8 10 12
x [m]
Figure 6 True node positions and error ellipses for the same
node deployment as that in Figure 5. Here, 0, = 30 cm and

o = 1 ns. The average RMSE of the position estimate is 13.2 cm and
the HCRBis 11.5 cm.

the self-localizing node. This phenomenon, previously
observed in [16], is due to the fact that the self-localizing
node performs an independent measurement of its own
distance to a generic node i every time node i transmits.
Therefore, the self-localization performance is improved
at every measurement, and the error variance of the posi-
tion estimate for node i is reduced along the direction
connecting it to the self-localizing node.

Moreover, from the magnified comparison for an aux-
iliary node in Figure 7, it is possible to visually analyze

56

x[m]

Figure 7 Error ellipses of a single auxiliary node in the scenario of
Figure 5, under two different values of priors of anchor positions.
The solid black ellipse is the HCRB for o = 3 cm whereas the dashed
red ellipse indicates the performance of the AMAP estimator in the
same scenario. The larger dash-dotted black ellipse and the dotted
red ellipse indicate the HCRB and the performance of the AMAP
estimator, respectively, in the o4 = 30 cm case. Here, o0 = 1 ns.

10°

u
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)
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0 0.5 1 15 2 25 3
o [s] X 10—9

Figure 8 Average RMSE of the position estimate vs noise level

under different anchor position priors. Here, g5 = 100 ps.

the effect of the anchor position priors on the perfor-
mance. In particular, the ratio between the major and
minor axes of both the HCRB and MSE ellipses decreases
when the the prior becomes less informative. This is due
to the increased error in the estimate of the self-localizing
node position, which causes poorer performance in the
direction connecting every auxiliary node and the self-
localizing node.

4.4 Error statistics

We now provide a statistical performance evaluation of
the position and delay estimates as a function of the noise
level, which is parameterized by . The simulation results,
obtained using the same network configuration as that
of Figure 5, are shown in Figures 8, 9, 10, and 11, where

°
%)
1]
[9))]
s . . . .
T ———— HCRB, 5, =3cm
— 6 — AMAP,ca: 3cm
—>—— HCRB, G, = 30 cm
— B — AMAP,c =30cm
-10
10 : : : : : '
0 0.5 1 15 2 2.5 3
G [s] " 10-9

Figure 9 Average RMSE of the delay estimate vs noise level
under different anchor position priors. Here, g5 = 100 ps.
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Figure 10 Average RMSE of the position estimate vs noise level
under different delay priors. Here, o, = 3 cm.

different priors for the anchor positions and the delay are
used.

Specifically, in Figures 8 and 9, the uncertainty of the
anchor positions, parameterized by o,, is varied from
centimeter-level to decimeter-level. It is possible to notice
that, in low noise conditions, the RMSE of the position
estimation is of the same order of magnitude as the uncer-
tainty of the anchor positions. Also, as shown in Figure 9,
the delay estimator achieves a performance close to the
HCRB, and is robust with respect to parameter uncer-
tainty in the anchor positions.

Moreover, the parameter o, related to the uncertainty
in the delay, is varied over two orders of magnitude in
Figures 10 and 11. The results show that the proposed

-7
10
g frrm
10
@ 49
210
(2=}
%)
= 10_10 S S Y ST ;
o — +—— HCRB, 0, = 100ps :
PR SRR — © — AMAP,G, =100ps |-
10 ———— HCRB, 5, =10ns
lllllllllllllll — B8 — AMAP,sé: 10ns
-12
10 - - . - - -
0 0.5 1 15 2 25 3
S -9
olsl x 10
Figure 11 Average RMSE of the delay estimate vs noise level
under different delay priors. Here, 6, = 3 cm.
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AMAP estimator is also robust with respect to uncertainty
in the delay.

The behavior of the estimator with respect to the length
of the transmission sequence is shown in Figure 12.
The different sequence lengths in the figure are obtained
by repeating 7. Two values of the batch length B are
reported. As expected, the performance improves as
the length of the sequence increases. It can also be
noticed that the performance of the proposed AMAP
estimator improves as the batch length increases, given
a fixed sequence length. This improvement establishes a
performance trade-off since it comes at the expense of a
reduced update rate of the system.

4.5 Convergence evaluation

In order to analyze the convergence behavior of the pro-
posed estimator, we evaluate simulation results obtained
in the loose-prior scenario of Figure 6, where we set the
termination threshold ¢ = 107°N,,. Figure 13a shows
the behavior of the proposed estimator in a realization of
the transmission sequence 7. It can be noticed that the
error decreases at each batch within the sequence, as each
auxiliary node is successfully localized.

Furthermore, Figure 13b shows a sample realization of
the iteration at line 3 of Algorithm 1 during the first batch.
The error decreases monotonically with the number of
iterations £.

A histogram of the number of iterations until conver-
gence for the first batch is shown in Figure 14a. The aver-
age number of iterations is 5.54. With ¢ = 10—2N,,, which
yields negligible RMSE performance loss, the histogram
is shown in Figure 14b and we observe an average num-
ber of iterations of 3.71. Finally, simulation results show
that the inner loop of line 8 in Algorithm 1 exhibits a fast

0.08 T - -
o O RMSE, B =7
0.07p t RMSE, B = 15 |
g — HCRB
__ 0067
£
& 0.05}
=
o
0.04
0.03}
0.02 - - -
0 200 400 600 800
sequence length [number of transmissions]
Figure 12 Average RMSE of the position estimate vs sequence
length, in number of transmissions. Each point represents one
repetition of a sequence.
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Figure 13 Error behavior of proposed AMAP estimator, in sample
realization. With respect to (a) batch index b within sequence T and
(b) iteration index £ for b = 1. Here, the average error is defined as
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Figure 14 Convergence behavior for two values of stopping
criterion €: (a) e = 107°Ny. (b) € = 1072N,,.
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convergence behavior with an average of approximately
1.23 iterations.

4.6 Large-scale setup

In order to provide insight on the scalability of the pro-
posed estimator, we present an extensive scenario in
Figure 15. We consider N = 29 nodes, including N, = 4
anchors in the same nominal positions as the previous sce-
nario of Figure 5, and N,, = 25 unknown position nodes.
The positions of the latter are generated by adding noise
uniformly distributed in a square region with an area of
1 m? to a fixed 5 x 5 grid of evenly distributed nodes.
A transmission sequence 7, with |7'/ | = 337 is used,
and the batch size is set to B = 7. The figure shows that
the proposed method is capable of localizing 24 auxiliary
nodes with an accuracy of the same order of magnitude as
the considered anchors position prior.

4.7 Noise outliers

To evaluate the effect of varying noise levels on the
proposed AMAP estimator, we generate noise as w' ~
N(0,0%Q), where Q is fixed and given by (14), but in
which we set

1 with probability 0.9 )
qi = . - Vi (15)
100 with probability 0.1
Such a noise model is equivalent to randomly picking 10%
of the observations and assigning a standard deviation
ooutl = 100 to the noise affecting those observations. As

10}~

@
Q
E ¢ S
{88 Se
- Q
2
v S
0 2 810 12

Figure 15 Large-scale setup on a5 x 5 grid of unknown position
nodes. Each of the nominal positions is randomized by adding a
random variable which is uniformly distributed in a square region
with an area of 1 m%. Here, o = 1ns, 0, = 3 cm, and o5 = 100 ps.
The average RMSE is 3.8 cm and the HCRB is 3.3 cm.
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timing error [ns]

0 20 40 60 80 100
Sample index m
Figure 16 Realization of Gaussian noise having a standard

deviation of o = 1 ns, which is affected by 10% of outliers with
Ooutl = 100.

an illustrative example, one realization of w’ is shown in
Figure 16.

Figure 17 shows the behavior of the AMAP estimator
when the outlier measurement noise model is considered,
whereas a magnification of the error ellipses for one auxil-
iary node is shown in Figure 18. The results show that the
proposed estimator is still operational and capable of pro-
viding accurate results even in the presence of relatively
large outliers.

5 Conclusion

We considered the schedule based network localization
concept, proposed in [15-17]. This concept does away
with the need for synchronization among nodes and does

< - - X

73

10}~

y [m]
o

0 2 4 6 8 10 12
x[m]

Figure 17 HCRB and MSE ellipses in the presence of outliers.
The RMSE of the proposed AMAP estimator is 9.3 cm and the HCRB

is4.7 cm.

6.8

26 28 3 32 34 36 38
x [m]
Figure 18 Error ellipses of single auxiliary node. Ellipses show
effect of error outliers on HCRB and AMAP performance in scenario of
Figure 5. Solid black and dashed red ellipses and for the outliers case,
dash-dotted black ellipse and dotted red ellipse.

not involve communication overhead. It utilizes a com-
mon transmission sequence, which enables each node
to perform joint self- and network localization, based
on noisy propagation time measurements. The schedule-
based localization problem has been posed as an esti-
mation problem with probabilistic prior information. We
derived a sequential estimator, AMAP, which is fully
decentralized and copes with varying noise levels. The
estimator is robust with respect to uncertainty in anchor
locations and delay.

The measurement model we considered contains well-
established constraints in the positioning literature, i.e.,
circular, hyperbolic, and elliptical constraints. The analy-
sis of such constraints provides a schedule design method-
ology which enables a scalable solution. Specifically,
the system can localize a large number of transceiving
nodes with unknown positions by building transmission
sequence batches in which such nodes are interleaved
with anchor nodes. Numerical results in an IR-UWB net-
work scenario show that AMAP provides localization
accuracy close to a HCRB matched to the problem. Fur-
thermore, AMAP is shown to be robust with respect to
noise outliers.

Endnote

2If node N is participating in the sequence, it also gives
rise to circular constraints which are analogous to those
provided by the two-way TOA technique [29].

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
Parts of this work have been funded by The Swedish Agency for Innovation
Systems (VINNOVA).




Zachariah et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:16

http://asp.eurasipjournals.com/content/2014/1/16

Author details

' ACCESS Linnaeus Centre, Signal Processing Lab, KTH Royal Institute of
Technology, Stockholm, Sweden. 2Current address: Department of
Information Technology, Uppsala University, Uppsala, Sweden. 3Current
address: Department of Electronic and Information Engineering, University of
Perugia, Perugia, Italy.

Received: 30 May 2013 Accepted: 15 January 2014
Published: 6 February 2014

References

1.

20.

N Patwari, J Ash, S Kyperountas, A Hero Ill, R Moses, N Correal, Locating
the nodes: cooperative localization in wireless sensor networks. IEEE
Signal Process. Mag. 22(4), 54-69 (2005)

J Rantakokko, J Rydell, P Stromback, P Handel, J Callmer, D Tornqvist,

F Gustafsson, M Jobs, M Grudén, Accurate and reliable soldier and first
responder indoor positioning: multisensor systems and cooperative
localization. Wireless Commun. IEEE. 18(2), 10-18 (2011)

H Liu, H Darabi, P Banerjee, J Liu, Survey of wireless indoor positioning
techniques and systems. [EEE Trans. Syst., Man, Cybernet,, Part C: Appl.
Rev. 37(6), 1067-1080 (2007)

G Mao, B Fidan, B Anderson, Wireless sensor network localization
technigues. Comput. Netw. 51(10), 2529-2553 (2007)

K Lui, WK Ma, H So, F Chan, Semi-definite programming algorithms for
sensor network node localization with uncertainties in anchor positions
and/or propagation speed. IEEE Trans. Signal Process.

57(2), 752-763 (2009)

G Shirazi, M Shenouda, L Lampe, Second order cone programming for
sensor network localization with anchor position uncertainty, in
Proceedings on Workshop on Positioning Navigation and Communication
(WPNC) (Dresden, Germany, 7-8 April 2011), pp. 51-55

J Zheng, YC Wu, Joint time synchronization and localization of an
unknown node in wireless sensor networks. IEEE Trans. Signal Process.
58(3), 1309-1320 (2010)

M Gholami, S Gezici, E Strom, TDOA based positioning in the presence of
unknown clock skew. [EEE Trans. Commun. 61(6), 2522-2534 (2013)

M Win, A Conti, S Mazuelas, Y Shen, W Gifford, D Dardari, M Chiani,

Network localization and navigation via cooperation. IEEE Commun. Mag.

49(5), 56-62 (2011)

Y Shen, M Win, Fundamental limits of wideband localization - Part I: A
general framework. IEEE Trans. Inform. Theory 56(10), 4956-4980 (2010)
H Wymeersch, J Lien, M Win, Cooperative localization in wireless
networks. Proceedings of IEEE. 97(2), 427-450 (2009)

V Savic, S Zazo, Nonparametric generalized belief propagation based on
pseudo-junction tree for cooperative localization in wireless networks.
EURASIP J. Adv. Signal Process. 2013, 16 (2013)

AT Ihler, JW Fisher Ill, RL Moses, AS Willsky, Nonparametric belief
propagation for self-localization of sensor networks. Select. Areas
Commun. IEEE J. 23(4), 809-819 (2005)

N Patwari, AO Hero lll, M Perkins, NS Correal, RJ O'dea, Relative location
estimation in wireless sensor networks. Signal Process., IEEE Trans.
51(8), 2137-2148 (2003)

S Dwivedi, A De Angelis, P Handel, Scheduled UWB pulse transmissions
for cooperative localization, in Proceedings of the IEEE Int. Conf.
Ultra-Wideband (ICUWB) (Syracuse, New York, 17-20 Sept. 2012), pp. 6-10
S Dwivedi, D Zachariah, A De Angelis, P Handel, Cooperative
decentralized localization using scheduled wireless transmissions.

IEEE Commun. Lett. 17(6), 1240-1243 (2013)

D Zachariah, A De Angelis, S Dwivedi, P Handel, Self-localization of
asynchronous wireless nodes with parameter uncertainties. IEEE Signal
Process. Lett. 20(6), 551-554 (2013)

A De Angelis, S Dwivedi, P Handel, Characterization of a flexible UWB
sensor for indoor localization. IEEE Trans. Instrum. Meas.

62(5),905-913 (2013)

A De Angelis, S Dwivedi, P Handel, Development of a radio front end for a

UWB ranging embedded test bed, in Proceedings of IEEE Int. Conf.

Ultra-Wideband (ICUWB) (Syracuse, New York, 17-20 Sept. 2012), pp. 31-35

A De Angelis, S Dwivedi, P Handel, Development of a test bed for UWB
radio indoor localization of first responders, in IEEE/ION Position Location
and Navigation Symposium (PLANS) (Grande Dunes, Myrtle Beach, SC,
23-26 April 2012), pp. 1106-1110

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 12 of 12

A De Angelis, J Nilsson, | Skog, P Handel, P Carbone, Indoor positioning by
ultrawide band radio aided inertial navigation. Metrol. Meas. Syst.

17(3), 12 (2010)

JO Nilsson, D Zachariah, | Skog, P Handel, Cooperative localization by dual
foot-mounted inertial sensors and inter-agent ranging. EURASIP Journal
on Advances in Signal Processing. 2013, 164 (2013)

M Ciurana, Arroyo Barcelo-F, F Izquierdo, A ranging method with IEEE
802.11 data frames for indoor localization, in Proceedings on IEEE Wireless
Comm. and Networking Conf. (WCNC) (Hong Kong, China, 11-15 March
2007), pp. 2092-2096

G Santinelli, R Giglietti, A Moschitta, Self-calibrating indoor positioning
system based on ZigBee devices, in IEEE Instrumentation and Measurement
Technology Conference, I2MTC (Singapore, 5-7 May 2009), pp. 1205-1210
M Pichler, S Schwarzer, A Stelzer, M Vossiek, Multi-channel distance
measurement with IEEE 802.15. 4 (ZigBee) devices. IEEE J. Select. Topics
Signal Process. 3(5), 845-859 (2009)

JWang, Q Gao, Y Yu, H Wang, M Jin, Toward robust indoor localization
based on Bayesian filter using chirp-spread-spectrum ranging. Industrial
Electron., IEEE Trans. 59(3), 1622-1629 (2012)

M Win, R Scholtz, Impulse radio: how it works. [EEE Commun. Lett.
2(2),36-38(1998)

A Conti, M Guerra, D Dardari, N Decarli, MZ Win, Network
experimentation for cooperative localization. IEEE J. Select. Areas
Commun. 30(2), 467-475 (2012)

S Gezici, Z Tian, G Giannakis, H Kobayashi, A Molisch, H Poor, Z Sahinoglu,
Localization via ultra-wideband radios: a look at positioning aspects for
future sensor networks. IEEE Signal Process. Mag. 22(4), 70-84 (2005)

S Gezici, H Poor, Position estimation via ultra-wide-band signals.
Proceedings of IEEE. 97(2), 386-403 (2009)

D Dardari, A Conti, U Ferner, A Giorgetti, M Win, Ranging with ultrawide
bandwidth signals in multipath environments. Proceedings of the IEEE.
97(2), 404-426 (2009)

D Cassioli, M Win, A Molisch, The ultra-wide bandwidth indoor channel:
from statistical model to simulations. [EEE J. Select. Areas Commun.
20(6), 1247-1257 (2002)

A Molisch, Ultra-wide-band propagation channels. Proceedings of the
IEEE. 97(2), 353-371 (2009)

G Garcia, L Muppirisetty, H Wymeersch, On the trade-off between
accuracy and delay in UWB navigation. IEEE Commun. Lett.

17,39-42 (2013)

M Gholami, S Gezici, E Strom, Improved position estimation using hybrid
tw-toa and tdoa in cooperative networks. IEEE Trans. Signal Process.
60(7),3770-3785 (2012)

E Larsson, Cramér-Rao bound analysis of distributed positioning in sensor
networks. IEEE Signal Process. Lett. 11(3), 334-337 (2004)

S Park, E Serpedin, K Qarage, Gaussian assumption: the least favorable but
the most useful [Lecture Notes]. IEEE Signal Process. Mag. 30(3),

183-186 (2013)

GCTiao, A Zellner, On the Bayesian estimation of multivariate regression.
JR. Stat. Soc. Series B. 26(2), 277-285 (1964)

SM Kay, Fundamentals of Statistical Signal Processing: Estimation Theory,
vol. 1 (Prentice Hall, Englewood Cliffs, 1993)

P Stoica, J Li, Lecture notes: source localization from range-difference
measurements. IEEE Signal Process. Mag. 23(6), 63-66 (2006)

A Beck, P Stoica, J Li, Exact and approximate solutions of source
localization problems. IEEE Trans. Signal Process. 56(5), 1770-1778 (2008)
Y Zhou, CL Law, YL Guan, F Chin, Indoor elliptical localization based on
asynchronous UWB range measurement. [EEE Trans. Instrumentation
Meas. 60, 248-257 (2011)

H Van Trees, Optimum Array Processing (Wiley-Interscience,

New York, 2002)

doi:10.1186/1687-6180-2014-16

Cite this article as: Zachariah et al.: Schedule-based sequential localization
in asynchronous wireless networks. EURASIP Journal on Advances in Signal
Processing 2014 2014:16.




	Abstract
	Keywords

	1 Introduction
	2 Problem formulation
	3 Proposed estimator
	3.1 Approximate sequential MAP estimator
	3.2 Iterative solution
	3.3 Sequence construction

	4 Numerical results
	4.1 Setup
	4.2 Cramér-Rao bound
	4.3 Error analysis
	4.4 Error statistics
	4.5 Convergence evaluation
	4.6 Large-scale setup
	4.7 Noise outliers

	5 Conclusion
	Endnote
	Competing interests
	Acknowledgements
	Author details
	References

