
Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161
http://asp.eurasipjournals.com/content/2014/1/161
RESEARCH Open Access
Real-time parallel implementation of Pulse-Doppler
radar signal processing chain on a massively
parallel machine based on multi-core DSP and
Serial RapidIO interconnect
Abdessamad Klilou1*, Said Belkouch1, Philippe Elleaume2, Philippe Le Gall2, François Bourzeix3

and Moha M'Rabet Hassani1
Abstract

Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper
to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of
two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO)
bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel
machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler
radar signal processing chain. This model provides low latency, but communication inefficiency limits system
performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a
straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal
processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental
results show that the parallel efficiency of the proposed parallel machine is about 90%.

Keywords: Parallel computing; Real-time processing; Pulse-Doppler radar; Digital signal processor; Serial RapidIO
interconnect
1 Introduction
Radar is an object detection system. It transmits pulses of
radio waves or microwaves which bounce off any object in
their path, and based on the received echo, range, altitude,
direction, or speed of objects can be determined.
Radar systems can be classified into two main categories

depending on the used technology: primary radars or sec-
ondary radars. Primary radar transmits high-frequency sig-
nals which are reflected by the target and then received by
the same radar. The reflected echoes will be processed to
extract target information. Secondary radar, in addition to
primary radar characteristics, uses a transponder on the
target for responding to interrogation by transmitting a
coded reply signal. We can distinguish between different
techniques in primary radars. Continuous wave primary
* Correspondence: a.klilou@ced.uca.ma
1Ecole Nationale des Sciences Appliquees - Marrakech, University of Cadi
Ayyad, Marrakech, Morocco
Full list of author information is available at the end of the article

© 2014 Klilou et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
radar transmits and receives continuously high-frequency
signals, and a spatial separation between transmission and
reception must be present. Pulse-Doppler radars transmit
short pulses at a certain repetition frequency, and the re-
ceiver and the transmitter share the antenna using a du-
plexer [1].
The radar studied in this paper is Pulse-Doppler radar

containing a network of uniform linear antenna and using
beamforming to control the field of view of the radar. The
signal processing chain applied to the received echo re-
quires high-computing power to extract target informa-
tion in real time [2]. A massively parallel machine with
multiple processing elements that operate concurrently
has been proposed in this paper to implement the totality
of the signal processing chain in real-time fashion.
The parallel machine presented in this paper consists of

a multi-core DSP as a basic processing element and SRIO
as an inter-processor communication bus. We studied the
distribution of the Pulse-Doppler radar signal processing
Open Access article distributed under the terms of the Creative Commons
g/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
roperly credited.

mailto:a.klilou@ced.uca.ma
http://creativecommons.org/licenses/by/4.0


Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 2 of 22
http://asp.eurasipjournals.com/content/2014/1/161
chain algorithm on the proposed parallel machine. We
used a straightforward model to distribute the processing
on the parallel machine. The straightforward partitioning
method provides low latency but generate communication
inefficiency associated with the large communication
group [3]. This limits the parallel efficiency of the system.
The goal of this paper is to propose optimizations that re-
duce the inter-processor communication in the straight-
forward model and improves the parallel efficiency of the
system.
We have chosen the multi-core C6678 DSP, as the basic

processing element, for its low power consumption and
high-performance fixed/floating point calculations [4].
C6678 DSP is an eight-core device; each core can run up
to 1.25 GHz. It provides a peak performance of 160
GFLOP for a floating point and 320 GMAC for a fixed
point for only 10 watts. It has been used recently by many
research communities to build high-performance and low
power real-time signal processing systems [2,5-11]. Add-
itionally, SRIO is integrated in the C6678 DSP as a periph-
eral device.
To have good performances in a multi-processor envir-

onment, processors must communicate with an efficient
inter-processor communication bus. This communication
bus must belong to the processor-to-processor category
and not to the processor-to-IO category like USB, PCI, or
PCIe; it must have a high data rate and a good efficiency.
Following our previous research works [12], the SRIO
protocol is proposed to interconnect between DSPs in the
proposed parallel machine. SRIO is a high-performance,
packet-switched, interconnect technology. It was devel-
oped to address the embedded industry's need in terms of
faster bus speeds; increased bandwidth and reliability in
an intra-system interconnect. SRIO allows chip-to-chip
and board-to-board communications at performance
levels scaling from 1 gigabit per second per link up to
20 Gbps [13].
We proposed an experimental platform with two C6678

DSPs, each with eight DSP cores, interconnected by SRIO,
and a use case of the Pulse-Doppler radar signal processing
chain to illustrate and validate the proposed optimizations.
The remainder of this paper is organized as follows.

Section 2 presents recent research about SRIO and map-
ping methods of radar algorithms on multi-processor
systems, including a brief description of our previous
work with SRIO. Section 3 introduces Pulse-Doppler
radar. Section 4 describes the experimental platform.
We will give an overview of the C6678 DSP, the RapidIO
protocol, and the SRIO version implemented in the
C6678 DSP. Then, we present the performance evalu-
ation studies of SRIO. In Section 5, experiments and re-
sults are presented. We will start by describing the
straightforward model used to map the Pulse-Doppler
radar processing chain on the parallel machine. Then we
will present all optimizations performed to the straight-
forward model to improve the parallel efficiency of the
system. Finally, a conclusion is provided in Section 6.

2 Related works
In recent years, many research communities were inter-
ested in studying the SRIO interconnect to develop high-
performance computing systems.
Adams et al. [14] have done a simulation analysis of a

high-performance processing architecture based on Rapi-
dIO. Two network topologies were simulated: a simple net-
work consisting of an 8-port switch and 8 processing
nodes and a more extensive network consisting of five 8-
port switches and 24 processing nodes. Results indicate
that latencies as low as 92 ns for a remote 64-bit read re-
quest/response transaction may be achieved in an unloaded
single-switch system.
X Zhang et al. [15] were interested in developing high-

performance technologies to meet the demanding require-
ment of future real-time signal processing applications. A
universal, flexible, and high-performance signal processing
module based on the TMS320C6455 DSP and RapidIO
interconnect were developed for a next-generation, scal-
able, modular, and adaptable signal-processing system such
as radar jamming system. X Zhang et al. [16] have also de-
veloped two kinds of flexible signal processing modules
based on high-performance ADC and heterogeneous pro-
cessors. They used RapidIO as an interconnect technology.
The receiver module mainly consists of two 10bit 2Gsps
ADCs, one TMS320C6455 DSP and one XC5V95T field-
programmable gate array (FPGA). The processing module
is composed of four TMS320C6455 DSPs and one
XC4VSX55 FPGA. The constructed system shows the ap-
plication of a multi-channel receiver, and it is scalable in
resources and application.
Changrui et al. [17] have designed a high-performance

heterogeneous embedded signal processing system based
on the SRIO interconnection for radar systems applica-
tion. The system consists of three modules which are
high-speed AD module, heterogeneous processing mod-
ule including FPGA and central processing unit (CPU),
and RapidIO switch module. The developed system has
achieved a high-performance computation with up to
550 MHz on FPGA and up to 1.5 GHz on a CPU. The
system is scalable and allows future enhancements.
Y Zhang et al. [18] have developed a flexible and high-

performance signal-processing module based on the SRIO
interconnect and Advanced Mezzanine Card (AMC) mod-
ules to meet the requirements of scalability, adaptability,
and computational capability of next-generation signal-
processing systems. A prototype of 12 modules was intro-
duced, and an application of this computing system in a
MIMO-OFDM system was covered. They claimed that
their system, which also include three kinds of interconnect



Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 3 of 22
http://asp.eurasipjournals.com/content/2014/1/161
methods (gigabit Ethernet, SRIO, and RocketIO), can be
adopted as a hardware platform for radars.
J Zhang et al. [19] have done experiments on SRIO.

They have used four C6455 DSPs interconnected point-
to-point by SRIO. They have measured the data rate of the
communication by SRIO in direct IO mode. Experimental
results show that the read and write operation can stably
work at 3.125 Gbps per channel between different DSPs.
The data rate obtained is up to 275 MB/s when the baud
rate is 3.125 Gbps.
Xue et al. [20] have proposed a new implementation

platform for parallel fast Fourier transform (FFT) called
multi-core DSPs. They have used SRIO to achieve DSP-
to-DSP communication and enhanced direct memory
access (EDMA) to perform core-to-core communication.
The proposed implementation has improved the effi-
ciency of parallel FFT, especially for large points; the
speed-up obtained is about 2.95 when the FFT is distrib-
uted on four DSP cores.
Our previous research work [12] was addressing the

performance optimization of the SRIO interconnect. We
have used an experimental test bed composed of two
multi-core C6474 DSPs connected by two links of SRIO
V1.3. We have measured the data rate of different trans-
actions proposed by SRIO in the Direct IO mode. We
have also proposed three methods to transfer a data
stream greater than 4 KB. Experimental results show
that Nwrite and Swrite transactions achieve more perfor-
mances than Nwrite_R and Nread transactions. We have
determined that in order to transfer a data stream, the
interrupt method is the simplest. In addition, it increases
transfer robustness. The performance difference between
the interrupt method and method of the EDMA in syn-
chronized mode is tolerable.
Bueno et al. [3,21-25] were interested in using the

RapidIO embedded interconnect in system architectures
for space-based radar. They have studied two algorithms:
ground moving target indicator (GMTI) and synthetic
aperture radar (SAR). Their work focused on the model-
ing and the simulation of RapidIO hardware and related
applications using MLDesigner [26]. They have devel-
oped a RapidIO test bed using Xilinx Virtex II Pro FPGA
chips and boards, and a Tundra 4-port 250 MHz parallel
RapidIO switch [21]. This test bed was used to calibrate
the simulation models and provide the means for more
complex simulation experiments using RapidIO hard-
ware and advanced algorithms running on the FPGAs
and/or embedded PowerPCs. The simulation work also
concerned the RapidIO space systems network fault tol-
erance. They have presented in [3,22] simulation results
of mapping a parallel GMTI application on an embed-
ded multi-processor satellite processing system using a
RapidIO interconnection. Three partitioning methods of
the real-time GMTI algorithm have been studied. These
methods are a straightforward approach, a staggered ap-
proach, and a parallel-pipelined approach. These methods
were executed on simulated systems of different sizes and
topologies. In [21,23,24], they explored considerations for
systems capable of executing both GMTI and SAR in real
time on an embedded multi-processor satellite system
equipped with a RapidIO interconnection network. In
[25], they have studied chip level issues associated with
the interfacing of a RapidIO network with reconfigurable
processing elements through a shared SDRAM interface.
They concluded that RapidIO is a promising and viable
platform for space-based radar in either GMTI or SAR,
with capabilities far exceeding those of traditional bus-
based systems.
To our best knowledge, Bueno et al. [3,21-25] works are

the closest to our research study. They have worked on
the modeling and simulation of a multi-processor system
based on multiple ASICs processing nodes interconnect
by RapidIO bus. The system that we have proposed in this
paper consists of two C6678 DSPs, each with eight DSP
cores, interconnected with Serial RapidIO bus. Both sys-
tems consist of different processing nodes, but both have
the same architecture and use RapidIO protocol as an
inter-processor communication bus. Also, Bueno et al.
[3,21-25] have studied a radar application that has con-
straints similar to ours in terms of high-processing power
and harsh real-time needs. Finally, they have studied a
straightforward approach to distribute the radar process-
ing. Simulation results show that this approach provides
the best performance on a RapidIO system. It produces
the lowest latency, but the parallel efficiency obtained does
not exceed 40% as reported in [3]. By using the straight-
forward approach, data must be reorganized between
processing stages (corner turn). In each corner turn, all
processing elements must exchange data between each
other which implies all-to-all communications. This limits
the parallel efficiency of the system. We have used the
same approach to distribute Pulse-Doppler radar signal
processing chain algorithm on the proposed parallel
machine. The major contributions of this paper are the
optimization of the inter-processor communication gener-
ated by the straightforward model in the corner turn
stages and the improvement of the parallel efficiency of
the system.

3 Background information on Pulse-Doppler radar
In this section, we provide backgrounds on the Pulse-
Doppler radar. All processing stages of the Pulse-Doppler
radar signal processing chain will be described.

3.1 Introduction
The radar model studied in this paper is Pulse-Doppler
radar. This type of radar transmits a high-frequency im-
pulse signal of high power, followed by a longer break



Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 4 of 22
http://asp.eurasipjournals.com/content/2014/1/161
during which the echoes can be received, before a new
transmitted signal is sent out. The transmission and the
reception are alternatively managed by the same antenna
using a duplexer [1]. The radar model studied in this
paper is running at S band at about the frequency of 3
GHz and using beamforming to control the field of view
of the radar. Typical targets of these radars are airplanes,
ships, helicopters, and even missiles.
The radial speed and the distance or the height of a

target can be determined from the position of the an-
tenna and the propagation time.
Pulse-Doppler radar studied in this paper includes the

following:

� A network of uniform linear antenna which converts
electrical energy into electromagnetic wave when it
is used as a transmitter, or collects an
electromagnetic wave from a given direction to
convert it into electrical energy when it is used as a
receiver. A duplexer manages alternating
transmitting and receiving modes.

� A signal processing chain is applied to the received
echo to extract target information and differentiate
the echo coming from a reflection on the ground,
clouds, or vegetation.

The signal processing chain of Pulse-Doppler radar
consists of two successive processing stages (Figure 1).
The first is the coherent processing, which has as goal to
maximize the signal-to-noise ratio (SNR) by focusing on
the energy. The second is the post-processing which has
as goal to detect and recognize targets.

3.2 Coherent processing
Coherent processing consists of three steps: beamform-
ing, pulse compression, and Doppler filtering. The goal
of coherent processing is to maximize the SNR by focus-
ing on the energy.

3.2.1 Beamforming
Conventional antennas need to move mechanically in
order to favor a direction. Antennas with a sensor network
can select a field of view by applying beamforming to the
received signals [27,28]. The input signal composed by the
Figure 1 Pulse-Doppler radar processing chain.
signals received by each sensor is filtered to focus energy
on a given angular direction. It is then necessary to gener-
ate multiple beams, and therefore several filters to de-
scribe the number of desired angular directions, and thus,
obtain the desired field of view.
The beamforming is done by acting on the amplitude

and the phase at each sensor. An operation of ‘delay and
sum’ is commonly used; delaying incoming signals and
summing them together after a multiply operation with
a defined weight (Figure 2).
Beamforming algorithm can be illustrated as a com-

plex matrix multiplication: Y =C X. The C matrix is
composed of the beamforming complex coefficients,
reflecting phase-shifting, and weighting operations. X is
the input matrix composed by the received signal values
from nc sensors (x1, x2,…, xnc). Y is the output matrix
that will contain the formed beams (y1, y2,…, ynb) [2].

3.2.2 Pulse compression
To detect a target, the radar must emit pulses with a
large amount of energy. To meet this need, pulses are
very short and have high peak power. This type of signal
is generated by tube amplifiers which are the only com-
ponents able to ensure this power constraint in the
microwave range. The disadvantages of this solution are
the cost and the durability. Solid state transistors over-
come those two drawbacks but do not provide a high
peak power. The solution of this problem is to extend
the emission time of the pulse and to reduce its peak
power while maintaining the same amount of energy
contained in each pulse. However, this extension of
emission time brings up another problem which is reso-
lution [29].
The detection is obtained by cross-correlation between

the transmitted pulse and the received wave [30]. If the
pulse sent by the radar is sinusoidal, two closely targets
can be confused (Figure 3). To overcome this problem,
the transmitted pulse is linearly frequency modulated.
The signal thus obtained is called ‘Chirp’ (Figure 4). This
improves the range resolution of the radar. Detection of
two closely targets is possible (Figure 5).
Concretely, the cross-correlation is performed in the

frequency domain. It is done by performing the product
of the FFT of the two signals followed by the inverse fast



Figure 2 Beamforming structure.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 5 of 22
http://asp.eurasipjournals.com/content/2014/1/161
Fourier transform (IFFT) to return to the time domain
(Figure 6).
3.2.3 Doppler filtering
Based on the Doppler effect, which specifies that the fre-
quency shift of a wave between the transmission and re-
ception is proportional to the speed of the target, this
measurement is carried between successive pulses that
have a significant phase shift [1]. Each Doppler filter
maximizes the SNR on a single Doppler frequency. De-
tection will then specify this Doppler frequency of the
target and measure its radial speed.
Following the same principle as in beamforming, Doppler

filtering consists on matrix multiplication: Y =C X. The C
matrix is composed of the Doppler complex coefficients.
X is the input matrix composed by the received pulses
values from each sensor (x1, x2,…, xnp). Y is the output
matrix that will contains the formed Doppler filters (y1,
y2,…, ynd).
Figure 3 Detection of two closely targets.
3.2.4 Corner turn
The corner turn is an important operation in the signal
processing chain of Pulse-Doppler radar. Its goal is to
reorganize data between processing tasks in the coherent
processing. In order to increase the locality of memory
accesses within any given computational stage of the sig-
nal processing chain, it is desirable to reorganize the
data in memory according to the dimension that the
next processing stage will operate along [31].
The corner turn constitutes the only inter-processor

communications associated with the algorithm of the sig-
nal processing chain of Pulse-Doppler radar. Once all data
is organized properly for a given stage of signal processing
chain, processing may proceed at each processing element
independent of one another in an embarrassingly parallel
fashion.

3.3 Post-processing
The goal of post-processing is to take decision and de-
tect targets. The post-processing consists of three steps:



Figure 4 Chirp structure.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 6 of 22
http://asp.eurasipjournals.com/content/2014/1/161
Module/Log, constant false alarm rate (CFAR), and de-
tection. The mapping of the post-processing will not be
studied in this paper.
3.4 Data flow and real-time constraint
The input data processed by Pulse-Doppler radars is or-
ganized as a cube of three dimensions (Figure 7). It is
called a burst. The first is the space dimension consist-
ing of all antenna sensors of the radars. The second is
the range dimension which represents the time dimen-
sion. The third is the Doppler dimension consisting of
the number of pulses sent by each sensor.
Parameters of the burst that we have used in our use

case are the following:

� Space axis : Nc =32 channels, Nb =16 beams
� Range axis : Nr =512 ranges
� Doppler axis : Np =16 pulses, Nd =16 Doppler

filters

Each element in the burst is a complex number coded
in 8 bytes as floating number (4 bytes for real part and 4
Figure 5 Detection using the pulse compression.
bytes for imaginary part). The size of the input burst is
equal to 2 MB.
The bursts arrive from sensors as a stream. The time be-

tween the reception of each burst is equal to: TBurst =1.64
ms (TBurst = Nr ×Np × 200 ns and the sampling frequency
used is equal to 5 MHz (200 ns). The TBurst is the real-
time constraint for the system.

4 Description of the proposed parallel machine
and the experimental platform
This section describes the experimental platform se-
lected for this research work. We describe the parallel
machine architecture; we give an overview about the
multi-core C6678 DSP and its evaluation module. Then
we describe the RapidIO embedded systems intercon-
nect and the SRIO implemented like a peripheral device
in the C6678 DSP. Finally, we provide results of SRIO
performances studies performed to define the best way
to use this interconnect.

4.1 Parallel machine's architecture
The experimental platform proposed in this paper was
composed of three multi-core C6678 DSPs connected by
SRIO through the SRIO Development Platform Gener-
ation 2 (SRDP2) (Figure 8). The processing was distrib-
uted on two DSPs (16 DSP cores). One core from the
third DSP was dedicated for synchronizing, sending, and
receiving bursts.

4.2 C6678 DSP overview
The multi-core C6678 DSP provided by Texas Instru-
ment (TI) is a low power and a high-performance fixed/
floating point DSP based on TI's keystone multi-core
architecture. It integrates eight C66x DSP cores. Each
C66x DSP core can run up to 1.25 GHz. The C66x DSP



Figure 6 Cross-correlation between time and frequency
domain.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 7 of 22
http://asp.eurasipjournals.com/content/2014/1/161
core is based on a very long instruction word (VLIW)
architecture. The instruction set also includes single input
multiple data (SIMD) operating up to 128-bit vectors. In
our test bed, each core run at 1 GHz and dissipates 10 W
of power. With eight cores running at 1GHz, the C6678
DSP has a peak performance of about 128 single precision
GFLOPS (12.8 GFLOPS/watt). Figure 9 shows the func-
tional block diagram of the device [4].
There are three levels of on-chip memory. Each core

has a 32-KB of level 1 for program (L1P) and 32-KB of
level 1 for data (L1D). The level 1 is the nearest, and it
is usually used as cache memory. Additionally, each core
has a local level 2 memory; it is slower than level 1, and
its size is 512 KB. The level 3 or multi-core shared
memory (MSM) is shared and is concurrently accessed
by eight cores; its size is 4 MB. In addition to that, up to
8-Gbyte external DDR3 RAM can be accessed by the
C6678 DSP through a 64-bits bus. The evaluation mod-
ule EVMC6678 that we have contains 512 Mbytes of
DDR3 RAM [32].
The C6678 DSP integrates several high-performance

peripherals. It contains three EDMAs to transfer data
between memories of the DSP without involving CPU;
its bandwidth is about 15 GBPS. It also contains four
lanes of the high-performances intercommunication bus
SRIO Gen 2 with a baud rate up to 5 Gbps per lane, two
Figure 7 Burst structure.
lanes of PCIe Gen2 with a baud rate up to 5 Gbps per
lane, and two lanes of gigabit Ethernet.
The EVM6678 evaluation module used in our test bed is

a standalone development platform. It has a single-wide
equivalent connectors PICMG® AMC.0 R2.0 AdvancedMC
module [32] (Figure 10). It contains one TI multi-core
C6678 DSP, 512 Mbytes of DDR3-1333 memory, 64 Mby-
tes of NAND flash, and 16 MB SPI NOR flash. The four
lanes of SRIO on the C6678 DSP are connected to the
AMC port.

4.3 Description and performance evaluation of SRIO
interconnect
4.3.1 RapidIO standard
The RapidIO interconnect is an open standard con-
trolled by the RapidIO Trade Association. It is a high-
performance, packet-switched protocol that was developed
to address the embedded industry's need for faster bus
speeds, increased bandwidth, reliability, cost effectiveness,
and scalability. The RapidIO interconnect allows chip-to-
chip, board-to-board, and chassis-to-chassis communica-
tions at performance levels scaling from 1 gigabit per
second per link up to 20 Gbps [13].
The RapidIO standard is defined as a three layer archi-

tectural hierarchy (Figure 11): logical, transport, and
physical. The physical layer specifies electrical signaling
and link level handshaking mechanism. The transport
layer defines how packets are routed in the switched fab-
ric. The logical layer defines packet type and function.

Physical specification
Currently, there are two physical layer specifications rec-
ognized by the RapidIO Trade Association: 8/16 LP-LVDS
and 1×/4× LP-Serial. The 8/16 LP-LVDS specification is a
point-to-point synchronous clock-sourcing DDR interface.
The 1×/4× LP-Serial specification is a point-to-point, AC
coupled, clock-recovery interface. The two physical layer
specifications are not compatible.

Transport specification
The transport layer is used to define how packets are rou-
ted in a RapidIO switch fabric. In RapidIO protocol, de-
vices are assigned an 8 or 16 bits device ID. This device ID
is integrated in the RapidIO packet as part of a header
field. RapidIO switches look at an incoming packet's de-
vice ID and determine the correct output port based on
internal lookup table.

Logical specification
The RapidIO logical layer defines the packet types that are
supported. Actually, there are three main logical layer
specifications: I/O systems, message passing, and global
shared memory.



Figure 9 Functional block diagram of the C6678 DSP.

Figure 8 Parallel machine's architecture.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 8 of 22
http://asp.eurasipjournals.com/content/2014/1/161



Figure 11 RapidIO architectural hierarchy.

Figure 10 C6678 DSP evaluation module.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 9 of 22
http://asp.eurasipjournals.com/content/2014/1/161



Figure 12 SRIO performances in direct I/O mode with one lane at the baud rate 5 Gbps.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 10 of 22
http://asp.eurasipjournals.com/content/2014/1/161
The I/O systems specification defines packet types and
transactions used for direct memory access (DMA) type
transactions. Packet types include operations such as read,
write, write-with-response, streaming write, maintenance,
and atomic operations. This mode of intercommunication
is an extension to a processor's internal DMA. In the I/O
systems mode, RapidIO packet contains the specific ad-
dress where the data should be stored or read in the des-
tination device. Because of that, the I/O systems mode
requires that a RapidIO source device keep a local table of
addresses for memory within the destination device.
Message passing specification implements a data push

model, where data is always written. In this mode, the
local device receives a packet and transfers the payload
to its memory system.
RapidIO global shared memory logical layer supports

cache coherent non-uniform memory access (CC-NUMA)
systems [33].
Table 1 Execution time on a single DSP core

Processing stage Execution time
measured before
optimization (μs)

Execution time
measured after
optimization (μs)

Beamforming 4 088 4 261

Corner turn 1 5 377 0

Pulse compression 5 907 5 907

Corner turn 2 1 060 1 060

Doppler Filtering 2 524 2 697

Corner turn 3 5 373 0

Total 24 329 13 925
4.3.2 SRIO implemented in C6678 DSP
The C6678 DSP includes SRIO like a peripheral device.
It implements the RapidIO Interconnect Specification
REV2.1.1 compliant. The physical layer supported is the
LP-Serial Specification REV2.1.1 compliant [34]; it uses
SerDes technology to perform clock recovery from the
data stream and incorporates 8-bits/10-bits encoding.
The C6678 DSP integrates four lanes of SRIO. These

lanes can operate as one 4× port, two 2× port, and four 1×
ports. Each 1x port can run at frequency of 1.25, 2.5,
3.125, and 5 Gbps. Due to the 8-bits/10-bits encoding
overhead, the effective data bandwidth per differential pair
is 1.0, 2.0, 2.5, and 4 Gbps.
The C6678 DSP implements two specifications of the
RapidIO logical layer: I/O systems and message pass-
ing; global shared memory is not implemented. The
I/O systems mode implemented in the C6678 DSP is
called direct I/O.
Direct I/O mode defines six basic I/O operations:

Nwrite, Swrite, Nread, Nwrite_R, Atomic, and mainten-
ance RapidIO transaction. In this paper, we were inter-
ested in Nwrite, Swrite, Nread, and Nwrite_R. These four
transactions can be separated into two groups: posted
transactions and non-posted transactions. Posted transac-
tions are Nwrite and Swrite. They are called posted trans-
actions because they do not have responses or receipt
confirmation. The Nwrite and Swrite transactions are
write and streaming-write operations. The Swrite transac-
tion is a double-word-only version of the Nwrite transac-
tion that has fewer headers. Non-posted transactions are
Nread and Nwrite_R. They are called non-posted transac-
tions because they have responses. These responses may



Figure 13 EDMA performance.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 11 of 22
http://asp.eurasipjournals.com/content/2014/1/161
contain data as in the case of a reading transaction or not
in the case of a write transaction. The Nread transaction is
a read operation. The Nwrite_R transaction is a write-
with-response operation.

4.3.3 SRDP2 overview
The SRDP2 from Integrated Device Technology (IDT) is
a flexible test platform for SRIO Gen2 switches. It con-
tains two SRIO switches (CPS1848 and SPS1616), three
AMC connectors, two SFP + connectors, one QSFP con-
nector, four InfiniBand/CX4 connectors, and many SMA
arrays [35].
Each AMC connector of the SRDP2 contains four

lanes of SRIO from the CPS1848 switch. By connecting
three evaluation modules EVM6678 to the three AMC
port of the SRDP2, the four lanes SRIO of each C6678
DSP will be connected to the CPS1848 switch (Figure 8).

4.3.4 SRIO performances optimization
SRIO proposes various communication modes and trans-
action types in its logical layer. Because of that it was
Figure 14 Optimization of the use case implementation on a single D
DSP core by integrating corner turn stages 1 and 3 to the processing.
necessary to evaluate the performances of the intercon-
nect and to define the best way to use it.
We have done a series of measurements to evaluate the

SRIO performances in direct I/O mode. We have measured
performances of posted transactions (Swrite and Nwrite)
and non-posted transactions (Nread and Nwrite_R) by
sending several packets from one C6678 DSP to another
through the CPS1848 SRIO switch using the SRDP2. The
transfer was done with different sizes using one SRIO lane
at the maximal baud rate supported which is 5 Gbps. In
direct I/O mode implemented by TI, it is possible to trans-
fer up to 1 MB of data using a single transaction.
Results presented in Figure 12 show that posted transac-

tions achieve better performances than non-posted trans-
actions when the size of the transferred data is less than
64 KB. This result is due to the fact that non-posted trans-
actions require waiting for a response. But when size of
the transferred data is greater than 64 KB, performances
of posted and non-posted transactions are very close. This
result can be explained by an implementation improve-
ment, performed by TI to optimize the SRIO on the C66x
SP core. Optimization of the use case implementation on a single



Figure 15 Data flow in the straightforward model.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 12 of 22
http://asp.eurasipjournals.com/content/2014/1/161
DSP family, that allow better throughput for non-posted
transactions with higher packet size.
The Swrite transaction is a little more efficient than

the Nwrite transaction. Its header is smaller than the
Nwrite transaction. The Swrite transaction achieves a
maximal data rate of 3.70 Gbps while the Nwrite trans-
action achieves a maximal data rate of 3.67 Gbps.
When the size of the transferred data is greater than

256 bytes, the Swrite transaction achieves its maximal
data rate. But when the size of the transferred data is
Figure 16 The six possible data organizations of the input data.
lower than 256 bytes, the Swrite transaction performances
are degraded. This is due to the fact that the minimal pay-
load that can be sent by one SRIO packet is equal to 256
bytes. So to have greater efficiency with SRIO, the trans-
ferred data must be higher than 256 bytes.
By considering the 8-bits/10-bits encoding at the phys-

ical layer and the 20 bytes of overhead added to the pay-
load, the theoretical data rate at the baud rate 5 Gbps is
equal to 3.71 Gbps. The data rate measured with Swrite
transaction is very close to the theoretical data rate.



Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 13 of 22
http://asp.eurasipjournals.com/content/2014/1/161
Following this performance evaluation studies, the Swrite
transaction has been chosen for data transfers greater than
256 bytes between all DSPs at high data rate.

5 Optimization of Pulse-Doppler radar processing
to parallel architecture
In this section, we present our experiments and research
results that we have performed to map the Pulse-Doppler
radar signal processing chain on the proposed parallel ma-
chine. We present mapping results on a single DSP core
to prove the need of parallel processing. Then, we in-
troduce the straightforward model used to distribute the
Pulse-Doppler radar signal processing chain on the paral-
lel machine, and we present all optimizations that we have
proposed to reduce the communication time by SRIO.
Finally, we give implementation results.

5.1 Mapping results of the use case on a single DSP core
We start our mapping study by implementing the use case
processing on a single core of the C6678 DSP. Code devel-
opment has been done using the integrated development
environment (IDE) Code Composer Studio (CCS) provided
by the TI. All optimization levels were active for the TI
Figure 17 Data flow between the beamforming and pulse compressio
compiler (7.3.2 version). Due to the size taken by the input
burst, all input and output bursts have been placed in
MSM memory, while coefficients are in L2 memory. L1 has
been fully activated as cache.
Beamforming and Doppler filtering, which are based on

a matrix product, have been implemented and optimized
using C-intrinsic SIMD instructions. TI C-intrinsic allows
access to low-level assembly and constrains the compiler
to choose specific hardware features. The pulse compres-
sion is based on FFT and IFFT algorithms.
Before optimization, all corner turn stages have been im-

plemented using the EDMA engine. Column 2 in Table 1
shows obtained results. The EDMA controller did not
achieve high-performances to do corner turn stages be-
cause it must move a large amount of small data blocks.
Each small data block consists of 8 bytes: 4 bytes for real
part and 4 bytes for imaginary part. We measured the per-
formance of the EDMA when moving different data sizes
between two memories (Figure 13), and indeed, there is a
performance degradation for a small data size.
We have optimized the use case implementation by inte-

grating the corner turn 1 to beamforming and the corner
turn 3 to Doppler filtering (Figure 14). In each processing
n in the straightforward model before optimization.



Table 2 Communication time between the beamforming and pulse compression before optimization

Parameters Values

Number of SRIO packets to exchange between two DSP cores Nr/16 × Nb

Size of each SRIO packet 8 bytes

Time to send each SRIO packet using one lane (see Section 4.3.4) 560 ns

Communication time between two DSP cores using one SRIO lane Nr/16 × Nb × 560 ns =287 μs

Communication time between one DSP core and the 16 other DSP cores using one SRIO lane 287 μs × 16 = 4.59 ms

Total communication time between the two DSPs using one SRIO lane 4.59 ms × 8 cores =36.72 ms

Total communication time between the two DSPs using the four SRIO lane available 36.72 ms / 4 = 9.18 ms

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 14 of 22
http://asp.eurasipjournals.com/content/2014/1/161
loop iteration of both beamforming and Doppler filtering,
instead of storing the calculated burst elements successively
in the output buffer as an image of the input buffer, we have
added instructions that calculate and store intended final
position of each burst element in the output buffer. Al-
though these added instructions cause an overhead in the
processing time, it is still much lower than performing data
rearrangement by the EDMA. Corner turn 2 cannot be op-
timized nor integrated to the pulse compression because
the latter is based on FFT and IFFT routines, which com-
pute in each iteration a data block of Nr burst elements.
Figure 18 Data flow between the beamforming and pulse compressio
The execution time measured after optimization of all
signal processing chain is equal to 13.9 ms (column 3 of
Table 1). This value is well above the settled use case
real-time constraint of 1.64 ms. Consequently, one single
DSP core of the C6678 DSP is not enough to implement
the use case processing in real-time fashion.

5.2 Straightforward mapping model description and
optimization
In order to distribute the Pulse-Doppler radar signal pro-
cessing chain algorithm on the proposed parallel machine,
n in the straightforward model after optimization.



Table 3 Comparison between data rearrangement
methods

Data
rearrangement
methods

Data
rearrangement
integrated at the
beamforming

Data
rearrangement
using the EDMA

Data
rearrangement
using CPU

Measured time (μs) 12 300 108

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 15 of 22
http://asp.eurasipjournals.com/content/2014/1/161
we have used a straightforward model (Figure 15) [3,21-25].
In this model, incoming data are distributed equally across
each of the DSP cores, and each DSP core performs all
stages of the Pulse-Doppler radar processing chain. The
straightforward partitioning method provides low latency.
The parallel machine must process the entire input data
cube before receiving the next cube.
The algorithm of the Pulse-Doppler radar processing

chain is composed of functions with no inter-processor
communication during each stage. The inter-processor
communication is generated in the corner turn stages.
Since Pulse-Doppler radar algorithm includes three stages
of corner turn, the straightforward mapping model will
contain three stages of inter-processor communications.
In each stage, each DSP core must exchange data with all
other DSP cores which implies an all-to-all communica-
tion between DSP cores. This limits the parallel efficiency
of the system [3]. We proposed several optimizations to
optimize the inter-processor communications by SRIO
and to improve the parallel efficiency of the system.

5.2.1 Optimization of the communications between the
beamforming and pulse compression in the straightforward
model
The parallel machine's memory, which is constituted by
all processing element memories, has a single dimen-
sion. The input data is a three-dimensional cube: Nc in-
dicating the number of the radar antenna sensors, Nr
Figure 19 Straightforward model after optimization of the communic
for ranges axis, and Np indicating the number of pulses
sent by each antenna sensor. To map the input data
cube on the parallel machine's memory, input data must
be aligned along a single dimension. So, there are six
possible data organizations of the input data depending
on which dimension input data will be aligned. For ex-
ample, input data organization 1 is when input data is
aligned along Nc dimension as a level 1, Np dimension
in level 2, and Nr dimension in level 3. Input data
organization 2 is as like input data organization 1: input
data is aligned along Nc dimension as a level 1, but Nr
dimension is in level 2 and Np dimension in level 3
(Figure 16).
In order to efficiently execute the first stage of the

beamforming in the Pulse-Doppler radar signal process-
ing chain, the input data cube must be aligned along Nc
dimension to increase the locality of memory accesses
and avoid making jumps when reading the data from the
memory. Indeed, writing or reading data with jumps
from a DDR memory significantly reduces the band-
width of the DDR memory. Data organizations 3, 4, 5,
and 6 are eliminated.
By choosing the data organization 1 of the data cube

as input to the beamforming, the data flow between the
beamforming and pulse compression is presented in
Figure 17.
Partitioning of the beamforming is done along a range

dimension. Each DSP core will process Nr/16 ranges. The
SRIO communication time calculated between the beam-
forming and pulse compression is about 9.18 ms (Table 2).
After choosing the data organization 2 of the input data

cube, the data flow between the beamforming and pulse
compression will become as presented in Figure 18. In this
case, partitioning of the beamforming is done along pulse
dimension. Each DSP core will process one pulse. After the
beamforming, DSP cores will not have to communicate
ations between the beamforming and pulse compression.



Table 4 Communication time between the pulse compression and Doppler filtering before optimization

Parameters Values

Number of SRIO packets to exchange between two DSP cores Nr

Size of each SRIO packet 8 bytes

Time to send each SRIO packet using one lane (see Section 4.3.4) 560 ns

Communication time between two DSP cores using one SRIO lane Nr × 560 ns =287 μs

Communication time between one DSP core and the 16 other DSP cores using one SRIO lane 287 μs × 16 = 4.59 ms

Total communication time between the two DSPs using one SRIO lane 4.59 ms × 8 cores =36.72 ms

Total communication time between the two DSPs using the four SRIO lane available 36.72 ms / 4 = 9.18 ms

Figure 20 Data flow between the pulse compression and Doppler filtering in the straightforward model before optimization.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 16 of 22
http://asp.eurasipjournals.com/content/2014/1/161



Figure 21 Data flow between the pulse compression and Doppler filtering in the straightforward model after optimization.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 17 of 22
http://asp.eurasipjournals.com/content/2014/1/161
between each other. They have just to rearrange data locally
before starting the pulse compression. Three methods have
been proposed and compared to perform this data re-
arrangement. The first method is to integrate the data re-
arrangement at the end of beamforming, the second
method is to perform this data rearrangement using the
EDMA, and the third one is to achieve it using CPU. From
comparison study presented in Table 3, the most efficient
way to perform this data rearrangement is to integrate it at
the end of beamforming.
As a conclusion, by using the data organization 2 at

the input of the beamforming, communications by SRIO
between the beamforming and pulse compression has
been eliminated (Figure 19).
Table 5 Communication time between the pulse compression

Parameters

Number of SRIO packets to exchange between two DSP cores

Size of each SRIO packet

Time to send each SRIO packet using one lane (see Section 4.3.4)

Communication time between two DSP cores using one SRIO lane

Communication time between one DSP core and the 16 other DSP cores us

Total communication time between the two DSPs using one SRIO lane

Total communication time between the two DSPs using the four SRIO lane a
5.2.2 Optimization of the communications between the
pulse compression and Doppler filtering in the
straightforward model
After choosing the data organization of the input data
cube that optimizes communications between the beam-
forming and pulse compression in the straightforward
model, the data flow between the pulse compression and
Doppler filtering is presented in Figure 20.
Distribution of the pulse compression is done along the

pulse dimension. Each DSP core will process one pulse.
The SRIO communication time calculated between the
pulse compression and Doppler filtering is about 9.18 ms
(Table 4). Data size sent by each SRIO packet is less than
256 bytes; SRIO is not used in an efficient way. To
and Doppler filtering after optimization

Values

1

Nr × 8 bytes =4 KB

9 μs

9 μs

ing one SRIO lane 9 μs × 16 = 144 μs

144 μs × 8 cores =1.15 ms

vailable 1.15 ms / 4 = 288 μs



Figure 22 SRIO communications performed in parallel with processing.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 18 of 22
http://asp.eurasipjournals.com/content/2014/1/161
overcome this limitation and reduce the communication
time by SRIO, we have proposed to add an intermediate
stage between the pulse compression and Doppler fil-
tering (Figure 21). The proposed method separates
communications by SRIO between the pulse compression
and Doppler filtering on two stages. The first stage corre-
sponds to SRIO communications, and the second corre-
sponds to a local data rearrangement.
Communications by SRIO
In this case, the SRIO communication time calculated
between the pulse compression and Doppler filtering is
equal to 288 μs (Table 5). SRIO in the proposed method
is used in an efficient way. The data size sent by each
packet is more than 256 bytes.
SRIO communications between the pulse compression

and Doppler filtering can be overlapped with computation.
It can be started in parallel with the pulse compression
(Figure 22). Each DSP core in the straightforward model
executes the pulse compression of one pulse and Nb
beams. The result of the pulse compression of each beam
can be sent by SRIO to another DSP core without having
to wait the end of the pulse compression. Using this ap-
proach, parallel machine will execute 94% of communica-
tions by SRIO in parallel with the pulse compression.
Table 6 Comparison between data rearrangement
methods

Data
rearrangement
methods

Data
rearrangement
integrated at
the Doppler
filtering

Data
rearrangement
using the EDMA

Data
rearrangement
using CPU

Measured time (μs) 357 300 108
Data rearrangement
The second stage in the proposed method corresponds
to a local data rearrangement on each DSP core. We
have proposed and compared three different methods to
perform this data rearrangement. The first method is to
integrate this rearrangement at the Doppler filtering, the
second method is to achieve it using the EDMA, and the
third one is to achieve it using the CPU.
By executing Doppler filtering of one beam on a single
DSP core, the executing time when input data is well-
arranged is equal to 157 μs. While when input data is
not well-arranged and the data rearrangement is inte-
grated to the processing, the execution time obtained is
equal to 514 μs. This large difference is due to the fact
of cache-coherence mechanisms which do not operate
well when input data is not well-arranged.
As seen before, the C6678 DSP has three EDMA con-

trollers that can operate in parallel. One EDMA can
achieve the data rearrangement of one beam in 73 μs.
Eight beams must be rearranged by each C6678 DSP.
The three EDMA available achieve the data rearrange-
ment of eight beams in 300 μs.
Each DSP core executes data rearrangement of one

beam in 108 μs. Since the eight DSP cores can operate
in parallel, the data rearrangement of eight beams can
be executed in 108 μs.
From this comparison study summarized in Table 6,

the efficient way to perform the data rearrangement of
the second stage in the proposed method is to execute it
using CPU.
As a conclusion, the proposed method which separate

communications by SRIO between the pulse compres-
sion and Doppler filtering into two stages has greatly op-
timized communication time by SRIO.



Table 7 Comparison between data rearrangement
methods

Data
rearrangement
methods

Data
rearrangement
integrated at
the Doppler
filtering

Data
rearrangement
using the EDMA

Data
rearrangement
using CPU

Measured time (μs) 12 300 108

Figure 23 Data flow between the Doppler filtering and the post-processing in the straightforward model.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 19 of 22
http://asp.eurasipjournals.com/content/2014/1/161
5.2.3 Optimization of the communications between the
Doppler filtering and the post-processing in the straightforward
model
The data flow between the Doppler filtering and the post-
processing in the straightforward model after choosing a
data organization that optimizes the post-processing is
presented in Figure 23.
Distribution of the Doppler filtering is done along beam

dimension. Each DSP core will process one beam. After
Doppler filtering, DSP cores will not have to communicate
between each other. They have just to rearrange data lo-
cally before starting post-processing. Three methods have
been proposed and compared to perform this data re-
arrangement. The first method is to integrate the data
rearrangement at the end of the Doppler filtering, the
second method is to perform this data rearrangement
using the EDMA, and the third one is to achieve it using
CPU. From the comparison study presented in Table 7,
the most efficient way to perform this data rearrangement
is to integrate it at the end of the Doppler filtering.



Figure 24 Straightforward model after optimizations.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 20 of 22
http://asp.eurasipjournals.com/content/2014/1/161
5.2.4 Optimization synthesis
The optimizations that we have proposed to reduce inter-
processor communication in the basic straightforward map-
ping model have completely eliminated inter-processor
communication between the beamforming and pulse com-
pression, as well as between the Doppler filtering and the
post-processing (Figure 24). As a result, the processing of
beamforming and pulse compression, as well as the process-
ing of Doppler filtering and the post-processing can be fused
in one single block (Figure 25). The proposed optimizations
have also greatly reduced inter-processor communication
between the pulse compression and Doppler filtering. The
parallel machine executes 94% of inter-processor communi-
cation in parallel with the pulse compression.
The optimizations performed to the straightforward map-

ping model are based on distributing the beamforming and
Figure 25 Straightforward model after fuse result.
pulse compression on DSP cores along pulse dimension
(Np) and distributing the Doppler filtering and the post-
processing on DSP cores along beam dimension (Nb). If
these two parameters change and they are not equal or not
multiple of the numbers of DSP cores, one or multiple DSP
cores will process multiple beams or pulses or it will
stay in idle. Changing of the other parameters of the
Pulse-Doppler radar signal processing chain which are
number of ranges (Nr), number of channels (Nc), and
number of Doppler filters (Nd) does not influence on
optimizations performed to the straightforward model.

5.3 Experiments and results
The implementation results of the Pulse-Doppler radar sig-
nal processing chain use case on the proposed parallel ma-
chine using the straightforward model before optimization



Figure 26 Implementation results before optimization.

Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 21 of 22
http://asp.eurasipjournals.com/content/2014/1/161
are presented in Figure 26. The total processing time ob-
tained is equal to 10 ms. It is much greater than the real-
time constraint of the use case which is about 1.64 ms. The
parallel efficiency is about 9%. The inter-processor commu-
nication by SRIO takes 92% of the total processing time.
The implementation results using the optimized straight-

forward model are presented in Figure 27. The obtained
total processing time is equal to 0.96 ms which is lower
than the real-time constraint. The parallel efficiency ob-
tained is about 90%. Previous work [3,21-25] using the
straightforward model to distribute a radar application on a
parallel machine based on a RapidIO interconnect have
achieved a parallel efficiency that does not exceed 40%.

6 Conclusions
The Pulse-Doppler radars require high-processing power.
A massively parallel machine was presented in this paper
with the aim to implement the Pulse-Doppler radar's sig-
nal processing chain in real-time fashion. It was based on
the C6678 multi-core DSP as the basic processing element
and on SRIO as a high-performance inter-processor com-
munication bus. We used a straightforward model to
distribute the processing on the parallel machine. This
model produces low latency but generates communication
Figure 27 Implementation results after optimization.
inefficiency which limits the performance of the system.
The major contributions of this paper are to propose opti-
mizations that reduce the inter-processor communication
generated by the straightforward model in the corner turn
stages and to improve the parallel efficiency of the system.
A use case of Pulse-Doppler radar signal processing chain
and an experimental platform of a parallel machine with 16
DSP cores interconnected by SRIO have been proposed to
illustrate and validate the concept of the proposed mapping
model.
The proposed optimizations have greatly reduced

inter-processor communication in the parallel machine.
Communications between the beamforming and pulse
compression, as well as between the Doppler filtering
and the post-processing have been completely elimi-
nated. As a result, the processing of beamforming and
pulse compression, as well as the processing of Doppler
filtering and the post-processing has been fused in one
single block. In addition, the parallel machine executes
94% of inter-processor communication between the
pulse compression and Doppler filtering in parallel with
the pulse compression.
Experimental results show that the proposed parallel ma-

chine and all optimizations performed to the straightforward



Klilou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:161 Page 22 of 22
http://asp.eurasipjournals.com/content/2014/1/161
mapping model have allowed processing the Pulse-Doppler
radar signal processing chain use case in real-time fashion.
The parallel efficiency obtained is about 90%, which is much
greater than 40% found in the previous work.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research is sponsored in part by a research and development contract
from Thales Air Systems and the Moroccan Foundation for Advanced
Science, Innovation, and Research.

Author details
1Ecole Nationale des Sciences Appliquees - Marrakech, University of Cadi
Ayyad, Marrakech, Morocco. 2Thales Air Systems, Paris, France. 3Moroccan
Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.

Received: 13 June 2014 Accepted: 28 October 2014
Published: 8 November 2014

References
1. DC Schleher, MTI and Pulsed Doppler Radar (Artech House, Inc, Norwood, MA, 1991)
2. M Bahtat, S Belkouch, P Elleaume, P Le Gall, Efficient implementation

scheme of a real-time radar beamformer on a VLIW DSP processor,
TMS320C66x TI DSP implementation, in 2012 International Conference on
Complex Systems (ICCS) (IEEE, Agadir, Morocco, 2012), pp. 1–6

3. D Bueno, C Conger, A Leko, I Troxel, AD George, Virtual prototyping and
performance analysis of RapidIO-based system architectures for space-based
radar, in Eighth Annual Workshop on High-Performance Embedded Computing
(HPEC) (Massachusetts Institute of Technology Lincoln Laboratory, Lexington,
MA, USA, 2004), pp. 28–30

4. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor
(Texas Instruments, USA, 2014). http://www.ti.com/lit/ds/symlink/
tms320c6678.pdf

5. G Yang, JD Bakos, Sparse matrix–vector multiply on the Texas Instruments
C6678 digital signal processor, in 2013 IEEE 24th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP) (IEEE,
Washington, DC, USA, 2013), pp. 168–174

6. R Mego, T Fryza, Performance of parallel algorithms using OpenMP, in 2013
23rd International Conference on Radioelektronika (RADIOELEKTRONIKA)
(IEEE, Pardubice, Czech Republic, 2013), pp. 236–239

7. Z ZhenHuan, H Wei, T Yan, Y DaWei, W XianHong, A design of versatile
image processing platform based on the dual multi-core DSP and FPGA, in
2012 Fifth International Symposium on Computational Intelligence and Design
(ISCID) (IEEE, Hangzhou, China, 2012), pp. 236–239

8. M Ali, E Stotzer, FD Igual, RA van de Geijn, Level-3 BLAS on the TI C6678
multi-core DSP, in 2012 IEEE 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD) (IEEE, New York,
NY, USA, 2012), pp. 179–186

9. W Min, S Xiu-qin, The design of high performance tracking system based
on multi C6678, in 2012 5th International Congress on Image and Signal
Processing (CISP) (IEEE, Chongqing, Sichuan, China, 2012), pp. 1348–1351

10. W Dan, M Ali, Synthetic aperture radar on low power multi-core digital
signal processor, in 2012 IEEE Conference on High Performance Extreme
Computing (HPEC) (IEEE, Waltham, MA, USA, 2012), pp. 1–6

11. G Chengfei, L Xiangyang, C Wenge, J Gaowei, T Haishan, Matrix
transposition based on C6678, in 2012 5th Global Symposium on Millimeter
Waves (GSMM) (IEEE, Harbin, Heilongjiang, China, 2012), pp. 29–32

12. A Klilou, S Belkouch, P Elleaume, P Le Gall, F Bourzeix, MM Hassani,
Performance optimization of high-speed interconnect SRIO for onboard
processing, in 2012 International Conference on Complex Systems (ICCS)
(IEEE, Agadir, Morocco, 2012), pp. 1–6

13. RapidIO Interconnect Specification, LP-Serial Physical Layer Specification Rev. 2.1
(RapidIO Trade Association, Austin, TX, USA, 2009)

14. J Adams, C Katsinis, W Rosen, D Hecht, V Adams, HV Narravula, S
Sukhtankar, R Lachenmaier, Simulation experiments of a high-performance
RapidIO-based processing architecture, in IEEE International Symposium on
Network Computing and Applications, 2001 (NCA 2001, 2001) (IEEE,
Cambridge, MA, USA, 2001), pp. 336–339
15. X Zhang, G Liu, M Gao, A high-performance scalable computing system for
real-time signal processing applications, in Congress on Image and Signal
Processing, 2008 (CISP '08, 2008) (IEEE, Sanya, China, 2008), pp. 556–560

16. X Zhang, M Gao, G Liu, A scalable heterogeneous multi-processor signal
processing system based on the RapidIO interconnect, in International
Symposium on Intelligent Information Technology Application Workshops, 2008
(IITAW '08, 2008) (IEEE, Shanghai, China, 2008), pp. 761–764

17. W Changrui, C Fan, C Huizhi, A high-performance heterogeneous embedded
signal processing system based on Serial RapidIO interconnection, in 2010 3rd
IEEE International Conference on Computer Science and Information Technology
(ICCSIT) (IEEE, Chengdu, China, 2010), pp. 611–614

18. Y Zhang, Y Wang, P Zhang, A high-performance scalable computing system
on the RapidIO interconnect architecture, in 2010 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
(IEEE, Huangshan, China, 2010), pp. 288–292

19. J Zhang, S Hb, W Q-z, J Zhang, Research and implement of SRIO based on
Mul-DSP, in Conference on Computational Intelligence and Software
Engineering (IEEE, Wuhan, China, 2009), pp. 1–4

20. S Xue, J Wang, Y Li, Q Peng, Parallel FFT implementation based on multi-core
DSPs, in 2011 International Conference on Computational Problem-Solving (ICCP)
(IEEE, Chengdu, China, 2011), pp. 426–430

21. D Bueno, C Conger, A Leko, I Troxel, AD George, RapidIO-based space system
architectures for synthetic aperture radar and ground moving target indicator,
in Ninth Annual Workshop on High-Performance Embedded Computing (HPEC)
(Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA,
2005), pp. 20–22

22. D Bueno, A Leko, C Conger, I Troxel, AD George, Simulative analysis of the
RapidIO embedded interconnect architecture for real-time, network-intensive
applications, in 29th Annual IEEE International Conference on Local Computer
Networks (LCN) via the IEEE Workshop on High-Speed Local Networks (HSLN) (IEEE,
Tampa, Florida, USA, 2004), pp. 710–717

23. C Conger, D Bueno, AD George, Experimental analysis of multi-FPGA architectures
over RapidIO for space-based radar processing, in Tenth Annual Workshop on
High-Performance Embedded Computing (HPEC) (Massachusetts Institute of
Technology Lincoln Laboratory, Lexington, MA, USA, 2006)

24. D Bueno, C Conger, AD George, I Troxel, A Leko, RapidIO for radar processing in
advanced space systems. ACM Trans. Embed. Comput. Syst. 7(1), 1–38 (2007)

25. D Bueno, C Conger, AD George, Optimizing RapidIO architectures for
onboard processing. ACM Trans. Embed. Comput. Syst. 9(3), 1–30 (2010)

26. G Schorcht, I Troxel, K Farhangian, P Unger, D Zinn, CK Mick, A George, H
Salzwedel, System-level simulation modeling with MLDesigner, in 11th IEEE/
ACM International Symposium on Modeling, Analysis and Simulation of
Computer Telecommunications Systems, 2003 (MASCOTS 2003, 2003) (IEEE,
Orlando, FL, USA, 2003), pp. 207–212

27. E Brookner, Phased-array radar. Sci. Am. 252, 94–102 (1985)
28. BD Van Veen, KM Buckley, Beamforming: a versatile approach to spatial

filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)
29. PZ Peebles, Radar Principles (Wiley-India, 1998
30. F Bin Khalid, RA Amjad, MA Chohan, MM Khizar, FPGA based real-time signal

processor for Pulse Doppler radar, in 2012 International Conference on Informatics,
Electronics & Vision (ICIEV) (IEEE, Dhaka, Bangladesh, 2012), pp. 362–366

31. H Izumi, K Sasaki, K Nakajima, H Sato, An efficient technique for corner-turn
in SAR image reconstruction by improving cache access, in Proceedings
International Symposium on Parallel and Distributed Processing (IPDPS 2002,
2002) (IEEE, Ft. Lauderdale, FL, USA, 2002), pp. 3–8

32. TMDXEVM6678L EVM Technical Reference Manual Version 2.0 (Texas
Instruments, USA, 2011). http://wfcache.advantech.com/support/
TMDXEVM6678L_Technical_Reference_Manual_2V00.pdf

33. T Scheckel, Serial RapidlO: Benefiting system interconnects, in IEEE International
SOC Conference, 2005 (IEEE, Herndon, VA, USA, 2005), pp. 317–318

34. KeyStone Architecture Serial RapidIO (SRIO) User Guide (Texas Instruments,
USA, 2012). http://www.ti.com/lit/ug/sprugw1b/sprugw1b.pdf

35. S-RIO Development Platform Gen2 (Silicon Turnkey Express, USA, 2011).
http://silicontkx.com/pdfs/SRDP2.pdf

doi:10.1186/1687-6180-2014-161
Cite this article as: Klilou et al.: Real-time parallel implementation of
Pulse-Doppler radar signal processing chain on a massively parallel machine
based on multi-core DSP and Serial RapidIO interconnect. EURASIP Journal on
Advances in Signal Processing 2014 2014:161.

http://www.ti.com/lit/ds/symlink/tms320c6678.pdf
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf
http://wfcache.advantech.com/support/TMDXEVM6678L_Technical_Reference_Manual_2V00.pdf
http://wfcache.advantech.com/support/TMDXEVM6678L_Technical_Reference_Manual_2V00.pdf
http://www.ti.com/lit/ug/sprugw1b/sprugw1b.pdf
http://silicontkx.com/pdfs/SRDP2.pdf

	Abstract
	1 Introduction
	2 Related works
	3 Background information on Pulse-Doppler radar
	3.1 Introduction
	3.2 Coherent processing
	3.2.1 Beamforming
	3.2.2 Pulse compression
	3.2.3 Doppler filtering
	3.2.4 Corner turn

	3.3 Post-processing
	3.4 Data flow and real-time constraint

	4 Description of the proposed parallel machine and the experimental platform
	4.1 Parallel machine's architecture
	4.2 C6678 DSP overview
	4.3 Description and performance evaluation of SRIO interconnect
	4.3.1 RapidIO standard
	Physical specification
	Transport specification
	Logical specification
	4.3.2 SRIO implemented in C6678 DSP
	4.3.3 SRDP2 overview
	4.3.4 SRIO performances optimization


	5 Optimization of Pulse-Doppler radar processing to parallel architecture
	5.1 Mapping results of the use case on a single DSP core
	5.2 Straightforward mapping model description and optimization
	5.2.1 Optimization of the communications between the beamforming and pulse compression in the straightforward model
	5.2.2 Optimization of the communications between the pulse compression and Doppler filtering in the straightforward model
	Communications by SRIO
	Data rearrangement
	5.2.3 Optimization of the communications between the Doppler filtering and the post-processing in the straightforward model
	5.2.4 Optimization synthesis

	5.3 Experiments and results

	6 Conclusions
	Competing interests
	Acknowledgements
	Author details
	References

