
Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164
http://asp.eurasipjournals.com/content/2014/1/164

RESEARCH Open Access

A frame-based domain-specific language for
rapid prototyping of FPGA-based
software-defined radios
Ganda Stephane Ouedraogo, Matthieu Gautier* and Olivier Sentieys

Abstract

The field-programmable gate array (FPGA) technology is expected to play a key role in the development of
software-defined radio (SDR) platforms. As this technology evolves, low-level designing methods for prototyping
FPGA-based applications did not change throughout the decades. In the outstanding context of SDR, it is important
to rapidly implement new waveforms to fulfill such a stringent flexibility paradigm. At the current time, different
proposals have defined, through software-based approaches, some efficient methods to prototype SDR waveforms
in a processor-based running environment. This paper describes a novel design flow for FPGA-based SDR applications.
This flow relies upon high-level synthesis (HLS) principles and leverages the nascent HLS tools. Its entry point is a
domain-specific language (DSL) which handles the complexity of programming an FPGA and integrates some
SDR features so as to enable automatic waveform control generation from a data frame model. Two waveforms
(IEEE 802.15.4 and IEEE 802.11a) have been designed and explored via this new methodology, and the results are
highlighted in this paper.

Keywords: Software-defined radio (SDR); Field-programmable gate array (FPGA); Domain-specific language (DSL);
High-level synthesis (HLS)

1 Introduction
Software-defined radio (SDR) is a flexible signal process-
ing architecture with very high reconfiguration capabil-
ities to adapt itself to various air interfaces. It was first
introduced by Joseph Mitola and turned out to be a sus-
tainable underlying structure for cognitive radio (CR) [1].
An important research and development work has been
done to release SDR solutions, and a survey of SDR plat-
forms is given in [2,3].
The mainstream approach to specify an SDR applica-

tion has consisted in implementing the signal processing
blocks on digital signal processors (DSP) coupled with
hardware accelerators such as field-programmable gate
array (FPGA) or application-specific integrated circuit
(ASIC) fabrics [4]. As a matter of fact, the reason why such
heterogeneous DSP-centric SDR platforms have been
popularized is mainly due to the fact that current DSPs
offer some important reconfiguration capabilities while

*Correspondence: matthieu.gautier@irisa.fr
University of Rennes 1, IRISA, INRIA, 6 Rue de Kerampont, Lannion 22300, France

being programmed with software design flows. However,
DSPs suffer from high power consumption as compared
to hardware fabrics. Thus, FPGA turned out to be an
interesting alternative by trading-off between energy con-
sumption and high computation performances. Dynamic
reconfiguration capabilities are also available on recent
FPGAs which offer some reconfiguration delays of up to
a few microseconds. Furthermore, FPGA programming
model enables to leverage an important dataflow paral-
lelism through its native parallel computational model in
contrast to the sequential nature of DSPs. Thus, FPGA-
based SDR is a quite old paradigm [5,6], and most of the
prototypes rely on intellectual properties (IP) described
at the register-transfer level (RTL), therefore getting the
SDR concept far away from its initial idea that is to
say a software-only platform. Indeed, one of the issues
related to FPGA-based SDR is the design flow, essen-
tially based on hardware description languages (HDLs),
which are used to program the applications. These lan-
guages, namely Verilog or VHSIC hardware description
language (VHDL), represent an important burden and

© 2014 Ouedraogo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: matthieu.gautier@irisa.fr
http://creativecommons.org/licenses/by/4.0

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 2 of 15
http://asp.eurasipjournals.com/content/2014/1/164

limit dramatically the programmability of the SDR plat-
forms. In order tackle this issue, abstraction has been
raised through software languages which were proposed
to target FPGAs.
High-level languages (HLLs) are software languages

that generate hardware description (RTL) from abstracted
software specifications [7] for FPGA or ASIC targets.
They raise the level of abstraction and bridge the gap
between high-level algorithm designers and low-level cir-
cuit architecture designers. Their associated compiling
frameworks generate RTL descriptions that fit the best
to the specified application. We experienced with some
of those high-level synthesis (HLS) tools and the flow
depicted in this paper is essentially based on them.
In this paper, we are addressing the FPGA-based SDR

and propose a methodology for rapid prototyping of the
SDR applications. The main idea is to provide the SDR
community with a design flow for specifying and imple-
menting SDR waveforms fully running on FPGA-based
platforms.
The major contribution of this paper is a design

methodology consisting in a domain-specific language
(DSL), which combines data frame information with
dataflow computational model to synthesize an FPGA-
SDR waveform. The aim is to hide the complexity of
specifying an SDR waveform while automating all the
control requirements from a high level data frame descrip-
tion. Furthermore, theHLS tools are employed to generate
efficient signal processing blocks, at the RTL-level, while
the compiling framework consistently builds the datapath
and associates the control logic.
The rest of the paper is organized as follows. A dis-

cussion on the related work is given in Section 2. Sub-
sequently, Section 2.3 states the problems which have
motivated for this work. Section 3 details the methodol-
ogy by first introducing the proposed DSL then describ-
ing each step of the language. Section 4 discusses the
associated compiling framework, and Section 5 outlines
some results. These results have been obtained on a
Nutaq Perseus 6010 development board (Nutaq, Quebec,
Canada) by prototyping both the PHY IEEE 802.15.4 and
the PHY IEEE 802.11a. Finally, conclusions are drawn in
Section 6.

2 Related work
2.1 Software-defined radio languages andmiddlewares
The main requirements in the SDR domain are essentially
the reconfigurability of the underlying platform, the pro-
grammability of the platform, and the portability of the
application over different platforms [1]. Therefore, sev-
eral proposals attempted to meet those requirements by
using software-based approaches [8-14]. Indeed, software
gives an abstraction level that enables more control over
the hardware design flow. To this end, two complementary

approaches have been proposed, namely the SDR-specific
languages to design the waveform and the SDR middle-
ware to provide the building environment. They both take
advantage of the abstraction level given by the software.
The first approach consists in defining specific lan-

guages, (i.e., DSLs), which purpose is to simplify the pro-
totyping process of an SDR waveform, that is to say the
physical layer (PHY). Most of these languages proposed
in the literature essentially target DSP-centric architec-
tures through specific design flows [8-10]. The waveform
description language (WDL) [8] enables implementing
the overall PHY from a hierarchical decomposition. It
is mixing graphical and state machine concepts to pro-
vide the user with facilities to specify a complete SDR-
PHY. Processing elements are blocks within which a state
machine locally handles both scheduling, thanks to hand-
shake protocols, as well as the communication with the
other blocks. SPEX [9] is another language developed
to specify SDR PHYs on single instruction multiple data
(SIMD) processor using vector data type such as Matlab
and also data type borrowed from SystemC. It is declined
into three sub-languages, namely the Kernel SPEX defin-
ing the processing algorithm, the Stream SPEX handling
the dataflow and modules interconnections, and finally
the Synchronous SPEX for real-time constraints consid-
eration. DiplodocusDF [10] is a modeling language that
was proposed for implementing SDR PHYs on software-
based platforms. It leverages a unified modeling lan-
guage (UML)-like representation to model the SDR PHY
and generates an executable to run on a software-based
platform.
The second approach can be defined as a set of pro-

posals for SDR standardization. They consist essentially in
defining middlewares as the interfaces between the hard-
ware and the application [11-14]. The core idea is to pro-
vide an environment, based on application programmable
interfaces (APIs), to specify an SDR application while
giving an emphasis to both the portability and the pro-
grammability of the application. The Software Commu-
nication Architecture (SCA) [11], initiated by the Joint
Tactical Radio System (JTRS), is a major contribution in
the software radio domain. It is defined as both a frame-
work and a common standard for software radio speci-
fications, and it is based on three major elements. The
Core Framework handles via a hardware abstraction the
installation, the configuration, the control, and the man-
agement of the waveforms. TheORBmiddleware serves to
ensure the communication between the entities through
client/server-like architecture. Both the Core Framework
and the ORB leverage a real-time operating system to get
access to the hardware resources. The Prismtech Spectra
Core Framework (PrismTech Group Ltd., Stirlingshire,
UK) [14] is a SCA-compliant framework that supports
the deployment of waveform components on any mix of

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 3 of 15
http://asp.eurasipjournals.com/content/2014/1/164

general purpose processor (GPP), DSP microprocessors,
and FPGAs. FPGA functions are essentially programmed
in VHDL-RTL. In the same way, the Platform and Hard-
ware Abstraction Layer (P-HAL) [12] aims at designing
specific radio applications independently of the hardware
context. The underlying approach consists in abstracting
the hardware platform by software functional units. Thus,
it manages radio process real-time constraints, process-
ing elements and communication issues, and enables the
software functional units to be configured. The P-HAL
defines four services, namely the BRIDGE that handles
real-time constraints, the SYNC that synchronizes the
concurrent processes, the KERNEL that schedules the
software functional units, and the STATS that analyses
the statistics of the functional units.
The GNU Radio [13] provides both the signal process-

ing primitives and the environment to implement soft-
ware radio applications running exclusively on a host PC.
The interconnections within the waveform are written in
Python, and the signal processing blocks together with
some of the critical datapath are implemented in C++. It
is usually combined with an external RF chip to generate
radio waveforms or simply used for simulation purpose.
In summary, it is important to note that managing an

SDR from a higher level of specification is a key ele-
ment since it would provide a complete overview over
the application at the early stages of the design process.
Most of the proposals that we have discussed in this
section target either software-based platforms or hetero-
geneous platforms composed of mix of GPPs, DSPs, and
FPGAs. FPGA uniprocessor platforms are a promising
alternative for SDR. Indeed, some research work [15] have
already addressed this issue by developing FPGA-based
uniprocessor SDR platform where the signal processing is
entirely done on an FPGA. However, such platforms lack
of programmability since FPGAs are programmed with
low-level languages. In this context, HLS turns out to be a
good candidate to achieve such a high level of abstraction
when FPGA-based SDR is addressed.

2.2 High-level synthesis tools and flow
A traditional implementation of a waveform intended
to run on hardware processors such as FPGA or ASIC
fabrics often requires a manual HDL description. Those
HDLs appeared to be relatively fastidious, error prone,
and hard to maintain when it comes to specify huge
and complex applications. In the early 1980s, some new
approaches/languages, most of them inspired from the C
language, suggested a more abstracted way to specify and
implement the hardware circuit architecture. Known as
HLL, this trend is still on the mainstream, and an inter-
esting survey was proposed in [7]. One could make an
analogy with software programming flows which employ
the C language as entry point instead of pure assembly

code. However, employing such high-level design flow still
requires a good knowledge in hardware circuit architec-
ture so as to achieve good design performance.
The majority of HLLs are academic research works, but

commercial examples of such languages/tools have also
been released, namely Catapult from Calypto (Calypto
Design Systems, Inc., San Jose, CA, USA) and Vivado HLS
from Xilinx (Xilinx Inc., San Jose, CA, USA). Figure 1
illustrates the Catapult design flow that we have experi-
enced within the work presented in [16]. The first stage
requires specifying the waveform from an algorithmic
point of view. This specification allows a functional sim-
ulation of the application and it is more about deciding
what the system does and how the computation is done.
At this stage, some relevant aspects such as data siz-
ing and communication protocols can also be explored.
Then, those realistic specifications are fed to the synthe-
sis tool together with a set of architectural and resource
constraints. The compiler parses the specifications and
the constraints to decide both a scheduling and resource
allocation for the final design. In a successful case, it
generates the RTL description of the specification which
can be tested and synthesized for a specific FPGA tar-
get or ASIC fabric. Recently, OpenCL (Khronos Group,
Beaverton, OR, USA) [17-19] has also been proposed as an
abstraction to program FPGAs. It is argued that OpenCL
has a native approach to express application parallelism;

Figure 1 Catapult-C conception flow [16].

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 4 of 15
http://asp.eurasipjournals.com/content/2014/1/164

hence, it is a good candidate for designing parallel signal
processing applications for FPGA fabrics.
These high-level languages and their compilers give

an emphasis to the timing, area, or throughput con-
straints while making it easier to explore a set of solu-
tions throughout design space exploration (DSE). Thus,
HLS enables skipping several manual steps and gives an
error-free path from abstract specification down to RTL
description. In effect, by bypassing those steps, an impor-
tant workload is being transferred to writing good speci-
fications. A set of design optimization techniques such as
loop pipelining or loop unrolling, which can be triggered
from the specification, is also proposed by the HLS tools
to achieve better design performance.

2.3 Problem statement andmotivations
The FPGA platforms have not extensively been consid-
ered for the implementation of SDR because of the pro-
gramming model which is offered by this technology.
Table 1 summarizes the SDR languages that have been
proposed to achieve the high-level programmability of a
target platform, its reconfiguration, and the portability of
the application over it. Most the proposals that we have
introduced in Section 2.1 use FPGA as hardware acceler-
ators using in most of the case RTL description. They do
not address the implementation of the SDR waveform in a
uniprocessor FPGA platform.
As mentioned previously, HLS is a powerful means to

prototype and synthesize waveform specifications down
to circuit architecture. However, HLS has been thus far
specialized in datapath designing rather than control.
Indeed, complex control structures might require to be
written entirely in HDL. Actually, HLS has been employed
as a processor generator intended to be used as hardware
accelerators. For instance, it does not properly address the
specification and the implementation of state machines
that are the mainstream approach for specifying complex
control system. Thus, in the context of full FPGA-based
SDR, HLS can be leveraged to increase the programma-
bility of each signal processing block composing the SDR
PHY dataflow graph whereas control requirements could

be handled separately. In addition to this, employing dif-
ferent HLS tools so as to achieve various performance
in a target design is a situation in which the control
structure could be handled separately, as well. In the fol-
lowing sections, the authors propose an SDR PHY design
methodology combining the model-driven engineering
(MDE) for high-level description and the HLS for datap-
ath designing.

3 DSL-based SDRwaveform specification
3.1 Model-driven engineering for FPGA-SDR
The growth of the platform complexity exhibits the
limitations of current programming languages. Further-
more, these platforms evolve rapidly while the application
codes are still written and maintained manually. A main-
stream approach to handle such platform evolution is
the MDE [20]. It comprises both a DSL, which formal-
izes the application structure, behavior, and requirements
in a declarative way, and a set of transformation engines
and generators to generate multiple artifacts such as
source code. The MDE approach ensures a ‘correct-by-
construction’ development of an application.
The spearhead of the proposed methodology is the def-

inition of a DSL to implement SDR waveforms running
on FPGA uniprocessor platforms. A DSL, as opposed to
the general-purpose languages (GPLs), is a computer pro-
gramming language of limited expressiveness focused on
a particular domain [21,22]. In [21], they are declined into
two variants, namely the internal DSL and the external
DSL. Internal DSLs are languages that depend on a host
language (generally a GPL). Their syntax is derived from
the host language syntax and they benefit from the exist-
ing GPL compiling frameworks. An external DSL denotes
a language with a custom syntax not depending on any
GPLs. They are generally developed from scratch and
require defining a specific compiling framework. Finally,
the advantages of implementing a DSL are the improve-
ment of the development productivity, the fact of facilitat-
ing the communication between domain expert through
an explicit syntax, and above all, the usage of an alternative
computational model.

Table 1 Summary of state-of-the-art SDR languages

Proposals Programming language Flexibility Portability

WDL [8] UML-based representation Constrained specifications n/a

SPEX [9] Subset of the C++ n/a DSP (VLIW and SIMD)

DiplodocusDF [10] UML-based representation Constraint profile GPP and DSP

P-HAL [12] Object-oriented C++ Real-time adaptation GPP and DSP and FPGA

GNU Radio [13] C++ and Python Compile-time flexibility GPP

Prismtech Spectra Core [14] Model-based design and RTL IP cores n/a GPP and DSP and FPGA

n/a, not applicable.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 5 of 15
http://asp.eurasipjournals.com/content/2014/1/164

The proposed methodology relies upon the MDE con-
cept and deduces its computational model from a com-
mon feature of most of the telecommunication standards,
that is, the data frame structure. The design flow synthe-
sizes an efficient FPGA-based SDR waveform from both
a specification of the data frame and the dataflow repre-
sentation of the SDR waveform. These two features of the
waveform are described in a novel external DSL. Figure 2
gives the generic DSL-based framework for an SDR-PHY
description, which is divided into three related parts. The
Header specifies different information that are later used
both in the design flow and at compile time. Libraries
of the required HLS-based functional blocks (FBs) are
included together with the platform-specific information.

Figure 2 Framework of the PHY DSL-based description.

Clocks and data rates are also highlighted in this part. The
Frame specification part highlights the data frame struc-
ture for a given PHY. Thus, each field is described and the
complete frame is specified afterwards. In the Dataflow
part, both the interconnections and FB mapping are spec-
ified. It provides a natural dataflow representation (graph)
of the PHY. Further details of the DSL are provided in the
following parts by taking the PHY IEEE 802.11a as a use
case.

3.2 DSL-based frame specification
In most of the radio communication standards [23-25],
the transmitted data are organized in data frames or
packets. This structure ensures the interoperability of the
solutions that are released by different vendors. A frame
is composed out of a set of fields or subframes that
carry either synchronization information or upper layer
such as medium access control (MAC) data payload or
frame-specific information.
Moreover, the information nested in a given field can

vary or remain unchanged in all the transmitted frames.
For instance, synchronization data should always respect
a regular pattern, whereas data payload can vary in terms
of content or size. Thus, in the proposed DSL, each field
is characterized depending on its fix or variable nature.
As a result, two types of fields are identified, namely the
constant fields and the variable fields. Figure 3 illustrates
a field-based data frame structure of a PHY IEEE 802.11a
standard where the SHORTPB and LONGPB are constant
fields, whereas HEADER and DATA fields are variable.

3.2.1 Field specification
In the DSL, the declarations of constant and variable fields
are done with the key words #fieldC and #fieldV, respec-
tively. They are followed by an arbitrary identifier that
represents the field in the rest of the DSL source code.
Following that, field-specific information such as data
redundancy, size, and duration are defined within curly
braces. These definitions enable to adapt the control when
each field is transmitted or received.
Figure 4 shows a DSL-based source code description of

the PHY IEEE 802.11a data frame previously shown in
Figure 3. The PHY IEEE 802.11a frame is comprised of
a short preamble (SHORTPB) appended for coarse syn-
chronization. It is a known time domain data sequence
used for signal detection, automatic gain control, and
channel diversity selection. The short preamble is fol-
lowed by a long preamble (LONGPB) field consisting of
two orthogonal frequency-division multiplexing (OFDM)
symbols used for channel and fine frequency estimation.
The HEADER field carries frame-specific information
such as the current modulation scheme and coding rate.
The DATA field corresponds to the data from the upper
layers to be transmitted.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 6 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Figure 3 PHY IEEE 802.11a data frame and equivalent DSL declaration.

3.2.2 Data frame specification
A data frame is specified out of the instantiated fields
with the key word frame followed by a frame identifier.
Within curly braces, the set of fields composing the frame
are listed. A frame can be either complex or real. Com-
plex frames imply both an in-phase and a quadrature
phase projection of the signal. Once a frame is specified, a
Start-Of-Frame (sof) is designated among the constitutive
fields. It denotes essentially a synchronization moment at
the receiver. Thus, it enables to sketch the control of the
waveform at the receiver.
The purpose of a frame declaration is twofold. On

one hand, computation resources are optimized away in
regard with the nature of the field. For instance, constant
fields are one time computed and mapped to memory.
The actual frame is built by consistently multiplexing
those fields to the rest of the frame during transmission.
On the other hand, the attributes of each field enable to
dimension the appropriate control logic required in the

Figure 4 DSL-based IEEE 802.11a PHY frame specification.

waveform. This logic aims at sketching the datapath with
energy efficiency considerations.

3.3 DSL-based dataflow
3.3.1 The underlyingmodel of computation
Addressing the dataflow computation of an SDR wave-
form requires to define an appropriate model of compu-
tation (MoC). Thus, an SDR waveform can be modeled as
a synchronous dataflow (SDF) graph [26] as implemented
in the Ptolemy project [27]. SDF models dataflow applica-
tions in a graph-like representation, and the usage of SDF
as the underlying MoC makes our approach more formal
and high-level than some of the existing approaches such
as GNU Radio [13] where no MoC has been defined. SDF
defines actors, interconnected by channels that are trans-
porting tokens (data). The channels are buffer memories
that model infinite first-in-first-outs (FIFOs). An example
of SDF signal flow graph is given in Figure 5, where FB1,
FB2, FB3, and FB4 denote FBs communicating through
channels. An SDF implementation requires a control unit,
and a typical SDF-based dataflow architecture is given
in Figure 6, where the FBs depict the computing cores.
Figure 6 can be interpreted as an implementation of the
graph given in Figure 5. At the inputs and outputs of the
FBs, FIFOs are interfaced to control the streaming flow
through the graph. An important element that is mak-
ing the waveform structure consistent is the control logic
which purpose is to orchestrate the data routing and com-
puting in the graph. Indeed, it provides the system with
specific signals which are used to change the state of the
system. This generic overview of the dataflow architecture
clearly shows that for efficiency purposes, enhancements
can be performed at three distinct levels, namely the FBs,
the communication infrastructure, and finally the con-
trol unit. In this work, the control unit is automatically
inferred and generated from the DSL-based specification
of the waveform by means of a DSL compiler.

3.3.2 DSL-based dataflow description
A relevant step in the proposed design methodology is the
assembly of the FBs into a waveform architecture. This
step is automatically performed by the DSL compiler that

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 7 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Figure 5 SDF signal flow graph example.

is further detailed in the next section. The resulting wave-
form is intended to process the data frame specified in
the DSL source code. Moreover, each block has to be syn-
thesized according to some set of throughput and latency
constraints. To this end, the dataflow structure of the final
waveform is inferred from the DSL-based description of
its datapath. In Figure 7, a DSL-based description of an
IEEE 802.11a PHY is depicted, where the FBs are sourced
from HLS-based libraries written in C++. As it can be
noted, the description of each FB is made by specifying
the set of fields, with the key word processing, that the
block is intended to process. In addition tomentioning the
fields of interest, their respective source (analog-to-digital
converter (ADC) or another FB) is also highlighted in
that description. Inside braces, input, and output are con-
nected to the external world by making explicit or not the
rate at which they work. Inputs and outputs are declared
with the key words read and write, respectively. Further
details are made explicit for synthesis purpose. Thus, the
expected synthesis tool and various constraints are given
in the description.
The proposed design flow is here to synthesize SDR

waveforms. To this end, aiming at anticipating on the
flexibility requirements, when adaptive coding modula-
tion is implemented for instance, a flexible FB is declared
adaptive within the DSL source code. In Figure 7, both

the fast Fourier transform (FFT) and the Demapper blocks
are declared adaptive. Indeed, these two blocks work in
multi-mode, and it is often required to reconfigure them
on the fly in order to work in a given mode. Thus, block-
level reconfiguration is addressed early in the design pro-
cess. For a complete waveform to be synthesized, both
the transmitter (TX) and the receiver (RX) have to be
described.
A DSL compiler has been implemented to parse the

entire waveform description and synthesize all the arti-
facts required to implement the waveform. This compiler
is introduced and detailed in the next section.

4 DSL compiler
4.1 Compiling framework
The proposed DSL enables to capture, for a given wave-
form, several extra information like the PHY data frame
structure or the adaptive nature of some of the FBs.
This description is parsed and synthesized into the actual
waveform intended to run on FPGA fabrics. The main
interface language that is employed in this flow is the .tcl
scripting language. Indeed, the .tcl language is proposed
by most of the electronic design automation (EDA) tools
as entry point. This scripting language is leveraged in the
proposed design methodology to automate several steps
throughout the synthesis process. HLS tools, for instance,

Figure 6 Typical SDF dataflow RTL architecture.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 8 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Figure 7 DSL source code for a PHY IEEE 802.11a receiver.

are interfaced with .tcl scripts that are generated by the
DSL compiler. Indeed, for each FB instantiated in the
DSL, a .tcl script will be generated by the compiler. After-
wards, those scripts are used to synthesize the desired
RTL description of the block. In addition, after generating
the appropriate .tcl scripts, the DSL compiler collects the
FB RTL descriptions and implements the datapath of the
desired SDRwaveform as a top level design. A controller is
also inferred from the DSL-based description. It is imple-
mented as a hierarchical finite state machine (HFSM) that
is automatically generated after parsing the source code.
The structure and the working modes of the finite state
machine (FSM) are deduced from both an algorithm and

the description provided by the DSL. Tcl scripting is also
used to interface the Xilinx synthesis tools when it comes
to synthesize the bitstream of the waveform. Figure 8 illus-
trates the compiling framework that is made up of four
parts. The first part consists in modeling the waveform
in the proposed DSL. Then, this description is parsed to
generate .tcl scripts for each HLS-based FB. A heteroge-
neous approach is also envisioned in this methodology so
as to interconnect FBs issued from different HLS tools.
Thus, some key words such as #catapult, #vivadohls, and
#rtl enable to target Catapult-C, Vivado HLS, and native
RTL blocks, respectively. The second part is the core com-
piler where each script is used to synthesize (at the RTL

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 9 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Figure 8 Top-down FPGA-SDR design flow.

level) the desired blocks while a control unit is automati-
cally inferred and generated. The connection of all the FBs
into a datapath is also performed automatically in this step
together with the assembly of waveform which consists
of the dataflow unit (datapath) and the control unit. The
third part consists in the integration of the waveform into
the platform with the help of the generated scripts. How-
ever, this step is not fully automated and requires the user
to deal with the synthesis tools. The fourth stage operates
in parallel with the others and deals essentially with verifi-
cation and validation. In the following section, we discuss
the validation aspects of the proposed design flow.

4.2 Verification and validation framework
Verification and validation (V&V) processes are very
important in a design flow because they ensure that the
final design meets with the requirements. They can be
time consuming to be performed, but they enable to prove
correctness and reliability in the various steps of design
and implementation. In the proposed design as illustrated
in Figure 8, the V&V is declined into three steps, namely
theModel-Based Verification, the Functional Verification,
and the Waveform Validation. The Model-Based Verifi-
cation relies on the MDE concept and includes formal

verification, dataflow analysis, and model checking. The
Functional Verification relies first on the verification pro-
vided by the HLS tools which enables to verify each
generated FB from a C/C++ test bench. The data frame
specification is used to generate the stimuli for the test
bench. The final waveform is verified from a generated
VHDL test bench whose outputs are compared with pre-
determined golden outputs. Finally, the Waveform Vali-
dation takes place after bitstream synthesis. It consists
essentially in testing the waveform on the platform so
as to analyze its performance. Contrary to the first two
steps that are performed automatically, this step is by
now performed manually, and the authors are investigat-
ing on how to automate such validation process from the
high-level specifications.

4.3 Frame-based SDR waveform controller
A frame is generally considered at distinct levels, namely
the bit level, the symbol level, and optionally at the
sample level. It is mainly characterized by its duration,
its source (e.g., a FB), and its composition (a set of
fields). This structure gathers exploitable information that
are leveraged to achieve better waveform control per-
formance. The duration of each field for instance can

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 10 of 15
http://asp.eurasipjournals.com/content/2014/1/164

help generate the read and write clock signals during the
appropriate slot of time. In addition, each block within
the flow graph is meant to perform a given action on
a specific set of fields. Once this action terminates, the
block may no longer be required, then disabled. For
instance, some FBs may address only synchronization
and some others address only data decoding. It is then
convenient to control the activation and deactivation of
each FB.
The automatically generated controller is a hierarchi-

cal FSM working in both TX and RX modes. Its overall
structure is given in Figure 9, where the dash lines denote
parallel states. In the TX mode, the controller consists
of two major states called super-states. First is the IDLE
super-state corresponding to the inactive state of the
transmitter. After detecting a start signal from the MAC
layer for example, it switches from the IDLE to the FRAM-
ING super-state where data coding is sketched. Gen-
erally speaking, dataflow transmitters are feed-forward
architectures then less complex to implement as com-
pared to their associated receiver. The FRAMING super-
state is declined into three parallel sub-states, namely
the CODING state, the INSERT state, and finally the
BL-RECONF state. In the CODING, the dataflow com-
putation described in the DSL is performed. The out-
put samples are fed to the digital-to-analog converters
(DACs) prior to RF stage. In parallel to the CODING
state, an INSERT state is active. This state manages the
insertion of specific data in the frame, both at the time
and frequency domains. Considering the standards using

Figure 9 Transceiver hierarchical FSM.

an OFDM modulation, they require to inject pilot sym-
bols for coherent detection. Moreover, a data frame often
includes constant fields (e.g., preamble) that remain the
same in all the transmitted frames. For the purpose of
reducing the overall computation, such fields are one-time
computed and inserted (at run-time) at the sample level
in the frame before DACs. The BL-RECONF state handles
the block-level (fine-grained) reconfiguration of the trans-
mitter. Modern standards require certain blocks to be
adaptive (ACM), i.e., changing their properties on-the-fly.
One approach consists in hard coding all the configu-
ration of the block once, then using software controlled
switch to select the desired configuration at run-time. A
second approach is to reconfigure the block when a given
configuration is desired. It is a suitable approach which
fits the best to the paradigm of SDR and would require
partial reconfiguration capabilities in the context of
FPGA.
In the RX mode, the FSM is composed out of the three

super-states. An IDLE state, as in TX mode, denotes the
inactive state of the receiver. In this state, the receiver
monitors the environment seeking for an incoming signal.
Once a signal is detected, through an received sig-
nal strength indicator (RSSI) for instance, the receiver
switches from the IDLE state to the PRE-SOF state.
The PRE-SOF state consists essentially of synchronization
tasks as imposed by most of the standards. Once the sys-
tem enters the PRE-SOF state, a set of synchronization
elements has to be detected and computed within a cer-
tain delay. If not, the system returns in the IDLE state.
These synchronization element detection and computa-
tion are associated to the sof event which is defined in
the DSL-based frame specification that was lately intro-
duced. An sof detection makes the system switch from
PRE-SOF to POST-SOF where a coherent data decoding is
sketched. The POST-SOF state is declined into three par-
allel sub-states, namely the DECODING state where most
of the signal processing is required, the SYNC-TRACK
state in which the system keeps on tracking synchro-
nization elements, and finally the BL-RECONF state to
handle the run-time block-level reconfiguration like in
TX mode.
In each of the states (TX and RX), a set of dataflow com-

putation is intended. In the context of FPGA, the datapath
is one time mapped to dedicated resources and ready to
operate as soon as the FPGA is powered on. One of the
roles of the controller is to distribute the clock signal to
activate or deactivate the FBs when required. We lever-
age the properties of the data frame together with the
intrinsic structure of the datapath (dataflow) to build the
control unit. First, a data frame F is as a collection of
fields, i.e.,

F = ∪N
i=1Fi, (1)

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 11 of 15
http://asp.eurasipjournals.com/content/2014/1/164

where Fi denotes the ith field. Each field Fi is characterized
by its duration Ti, its constant, or variable nature State of
its transported data Payload:

Fi = {Ti, State, Payload}. (2)

The duration TF of the overall frame F is computed as,

TF =
N∑

i=1
Ti. (3)

The datapath, on both the transmitter and receiver side,
is a set of interconnected FBs as illustrated in Figure 6.
They are characterized by their latency (L), throughput
(TP), and input and output data rates (fin and fout). For
each block, when the inputs and outputs rate are known,
they can be directly managed using enable signals. More-
over, each block is activated or deactivated on a per-field
basis since computation happens to be specific to a given
field. Thus, let FBj be the jth FB within the dataflow graph:

FBj = {
finj , foutj , Lj, TPj

}
. (4)

Assuming that FBj processes the field Fi of duration Ti
at an input rate of fin and output rate of fout, the block
requires being enabled a number of clock cycles equal
to

ki,j = Ti fin. (5)

Thus, each block is affected a time slot to process a
field when this field is traversing the graph. They are
then activated depending on the ongoing field. To achieve
this, the controller decides a starting moment for each
block in the graph. This starting time is computed by
considering both the graph structure and the proper-
ties (latency and throughput) of each block composing it.
Indeed, each state is associated to a datapath, and once
the system enters a state, the processing starts with a
specific block that is tagged as a reference block. The
activation moment of the remaining blocks in the datap-
ath is then estimated by computing their distance to the
reference block based on the latency and the through-
put of the blocks preceding them. This algorithm has
been integrated into the presented SDR PHYs design
flow.

Figure 10 Nutaq boards and signal analysis snapshots.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 12 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Figure 11 Experimental testbed.

5 Experimentation and validation
5.1 Testbed description and waveform implementation

results
The experimentation of the proposed DSL-based design
methodology was carried out on an FPGA-based plat-
form. It consisted in describing and automatically
implementing both IEEE 802.15.4 and IEEE 802.11a
transceivers.
The testbed is composed of a Nutaq (ex-Lyrtech)

Perseus 6010 development board. Perseus 6010 is an
advanced mezzanine card designed around a Virtex-6
FPGA with fabrics flexibility and an external memory.
It also benefits from multiple high-pin-count add-on

FPGA mezzanine card (FMC)-based cards. An FMC-
based Radio 420x daughter board is used as full duplex
SDR agile RF front-end with 12 bits ADC and DAC at up
to 40 mega-samples per second.
The integration of the applications is partly made by

using generated .tcl scripts as entry point to the synthesis
tools. Moreover, in order to demonstrate the feasibility of
the concept, a first test has beenmade without the DSL on
the same platform and the results were published in [28].
In Figure 10, the testbed is presented. Figure 11 on

the other hand, illustrates the set of equipment utilized
in this experimentation. It includes two Nutaq platforms
(TX and RX) and some measurement tools such as ADS

Figure 12 IEEE 802.11a transmitted spectrum.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 13 of 15
http://asp.eurasipjournals.com/content/2014/1/164

Table 2 Resource estimation for the IEEE 802.15.4 and IEEE
802.11a receivers

Slices FF LUT DSP BRAM

IEEE 802.15.4 543 1630 1058 1 0

IEEE 802.11a 961 803 2832 8 5

vector signal analyzer (VSA), spectrum analyzer, and tim-
ing scopes. The PHY IEEE 802.15.4 transceiver was first
prototyped, and the corresponding baseband signals are
also shown in Figure 10 through a Chipscope capture. The
spectrum corresponding to transmitted signal is observed
using a spectrum analyzer, and VSA Agilent (Agilent
Technologies, Santa Clara, CA, USA) was also used to
demodulate the transmitted signal, thus validating the
IEEE 802.15.4 waveform. Moreover, we have developed
an OFDM transceiver whose corresponding transmitted
signal spectrum is given in Figure 12.

5.2 DSL complexity
A waveform specification with the proposed DSL is done
with a few hundreds of lines of source code. In the exam-
ples depicted in this paper, less than 150 of lines of source
code was used to model the PHY IEEE 802.11a and less
than a hundred for the PHY IEEE 802.15.4. The flow also
relies on a set of constantly evolving FB libraries, hence
reducing considerably the development time. As previ-
ously explained, most of the steps in this flow are made
automatic through the .tcl scripting language. The DSL
compiler handles the implementation of the waveform by
connecting the FBs and generating the waveform con-
troller introduced previously in this paper. The resulting

RTL source code for a given waveform consists of a few
thousand of lines of source code entirely generated by
both the DSL compiler and the HLS tools.

5.3 Synthesis results and design space exploration
Table 2 gives the synthesis results for the two waveform
receivers. The results are collected after place and route
and are intended to show that the proposed flow allows
to complete the whole design process. Resource optimiza-
tion can be performed from a higher level through the
HLS tools. Indeed, this flow also enables automatic DSE
for a given FB. The exploration aims essentially at meeting
performance requirements and represents an important
add value to the HLS tools. They make it possible within a
few clicks to explore various solutions of the same design.
In Figure 13, a DSE is performed on a Decoder block, part
of the PHY IEEE 802.15.4, in order to trade off between
the area and the throughput of the block. Each curve on
this figure corresponds to a level of internal loop pipelin-
ing which represents how often, in clock cycles, a loop
iteration is started. Thus, the less the initiation interval
(II), is the deeper the pipeline is. One can see from these
curves that low throughput in cycles (high in frequency)
is achieved when the design is pipelined to a maximum
(II = 1). Loop unrolling (U) impacts considerably the
design throughput. However, both loop unrolling and
pipelining require more resources; hence, an increasing
area as can be seen in Figure 14 shows a DSE for a
256-point FFT, performed with Catapult-C in order to
obtain different solutions for same FB. The DSE is per-
formed automatically from the scripts generated by the
DSL compiler. The exploration of the FFT block exhibits

0 5 10 15 20 25 30 35
1300

1400

1500

1600

1700

1800

1900

2000

2100

Throughput (in number of cycles)

C
at

ap
u
lt

C
 A

re
a

es
ti

m
at

io
n

Pipeline II=1

Pipeline II=2

Pipeline II=3

No pipeline

U=4

U=8

U=10
U=8

U=8

U=4

Pareto front U=4

U=0
U=2

U=2

U=10

U=10
U=8

U=2
U=4

U=14

U=10

U=2

Figure 13 Design space exploration on PHY IEEE 802.15.4 Decoder block.

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 14 of 15
http://asp.eurasipjournals.com/content/2014/1/164

5 10 15 20 25 30 35
900

1000

1100

1200

1300

1400

1500

Throughput (Mbit/s)

N
um

be
sr

 o
f

sl
ic

e

Figure 14 Resource estimation versus data rate of the IEEE 802.11a receiver.

an increasing number of slices versus the achievable data
rate. Hence, suitable solution can be chosen to compose
the desired waveform.
To conclude, the current version of the flow handles

block-level configuration; it enables to select the archi-
tecture of a adaptive block depending on the constraints.
This compile-time reconfiguration takes advantage of the
HLS capabilities. An extension would be to make the
generated controller able to manage at run-time the han-
dover between two configurations of an adaptive block. In
practice, it could leverage the dynamic and partial recon-
figuration features available on recent FPGA devices. To
this end, each adaptive block could be interfaced with
large memory resources to store the streaming data when
a reconfiguration is required.

6 Conclusions
In this paper, we have discussed a design flow which
purpose is to enable rapid implementation of SDR appli-
cations on FPGA-based platforms. The proposed flow
relies upon aDSLwhich provides a software abstraction to
model the waveform. The specified waveform generation
results from the analysis of their associated data frame
and dataflow structure. Moreover, HLS capabilities are
also featured with this flow, aiming at shortening design
implementation time.
A case study has been performed through two examples,

namely a PHY IEEE 802.11a transceiver and a PHY IEEE
802.15.4 transceiver. It results in a fast method for proto-
typing SDRs on FPGA devices with considerable flexibility
to achieve different design goals. The current perspectives
aim at enriching the processing block libraries and inte-
grate different HLS tools within the flow. Another aspect

that we will investigate is the use of dynamic and partial
reconfiguration features on FPGA which are now missing
in the depicted flow.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors would like to thank the anonymous reviewers for their comments
and suggestions which helped improve this paper.

Received: 11 March 2014 Accepted: 20 October 2014
Published: 18 November 2014

References
1. J Mitola, Software radios: survey, critical evaluation and future directions.

IEEE Aerospace Electron. Syst. Mag. 8(4), 25–36 (1993)
2. M Dardaillon, K Marquet, T Risset, A Scherrer, in IEEE International Wireless

Communications andMobile Computing Conference (IWCMC). Software
defined radio architecture survey for cognitive testbeds (Limassol, Cyprus,
27–31 Aug 2012), pp. 189–194

3. O Anjum, T Ahonen, F Garzia, J Nurmi, C Brunelli, H Berg, State of the art
baseband DSP platforms for software defined radio: a survey. EURASIP J.
Wireless Commun. Netw. 2011, 5 (2011)

4. JF Jondral, Software-defined radio: basics and evolution to cognitive
radio. EURASIP J. Wireless Commun. Netw. 2005, 275–283 (2005)

5. M Cummings, S Haruyama, FPGA in the software radio. IEEE Commun.
Mag. 37(2), 108–112 (2010)

6. AD Stefano, G Fiscelli, CG Giaconia, An FPGA-based software defined
radio platform for the 2.4 GHz ISM band. Res. Microelectronics Electron.
73–76 (2006). doi:10.1109/RME.2006.1689899

7. SA Edwards, The challenges of synthesizing hardware from C-like
languages. IEEE Des. Test Comput. 23(5), 375–386 (2006)

8. ED Willink, The waveform description language: moving from
implementation to specification. IEEE Mil. Commun. Conf. (MILCOM 2001)
1, 208–212 (2004)

9. Y Lin, R Mullenix, M Woh, S Mahlke, T Mudge, A Reid, K Flautner, in
Software Defined Radio Technical Conference and Product Exposition
(SDR-Forum 06). SPEX: a programming language for software defined
radio (Orlando, FL, USA, 13–16 Nov 2006)

10. J Gonzales-Pina, R Ameur-Boulifa, R Pacalet, in 38th EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA).

Ouedraogo et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:164 Page 15 of 15
http://asp.eurasipjournals.com/content/2014/1/164

DiplodocusDF, a domain-specific modeling language for software
defined radio applications (Cesme, Izmir, Turkey, 5–8 Sept 2012), pp. 1–8

11. G Jianxin, Y Xiaohui, G Jun, L Quan, in IEEE Conference on Computational
Intelligence and Industrial Applications (PACIIA). The software
communication architecture specification: evolution and trends (Wuhan,
China, 28–29 Nov 2009)

12. A Gelonch, X Revès, V Marojevik, R Ferrús, in SDR Forum Technical
Conference. P-HAL: a middleware for SDR applications (Orange Country,
CA, USA, 14–17 Nov 2005)

13. GNU Radio, The free and open software radio ecosystem. www.gnuradio.
org

14. PrismTech Corporation, Prismtech spectra SDR: spectra CF high performance
low footprint SCA core framework. (PrismTech Corp., France, 2014)

15. The WARP Project. http://warp.rice.edu
16. S McCloud, Catapult-C, synthesis-based design flow: speeding

implementation and increasing flexibility. (White Paper, Mentor Graphics,
2004)

17. Altera, Implementing FPGA design with the OpenCL Standard. (White Paper,
Altera Corporation, 2013)

18. K Shagrithaya, K Kepa, P Athanas, in IEEE 24th International Conference on
Application-Specific Systems, Architectures and Processors (ASAP). Enabling
development of OpenCL applications on FPGA platforms (Washington,
D.C., USA, 5–7 June 2013), pp. 26–30

19. G Economakos, in 16th Panhellenic Conference on Informatics. ESL as a
gateway from OpenCL to FPGAs: basic ideas and methodology
evaluation (Piraeus Attica, Greece, 5–7 Oct 2012), pp. 80–85

20. DC Schmidt, Model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)
21. M Fowler, R Parsons, The Addison-Wesley Signature Series: Domain-Specific

Languages. (Pearson, Indianapolis, 2011)
22. A Pasha, S Derrien, O Sentieys, System level synthesis for wireless sensor

node controllers: a complete design flow. ACM Trans. Des. Automation
Electron. Syst. (TODAES) 17(1), 2–1224 (2011)

23. IEEE, IEEE Std 802.15.4: IEEE Standard for Information Technology: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for
Low-RateWireless Personal Area Networks (WPANS). (IEEE, Piscataway, 2006)

24. IEEE, IEEE Standard for Local andMetropolitan Area Networks: Part 16: Air
Interface for Fixed BroadbandWireless Access Systems. (IEEE, Piscataway,
1999)

25. IEEE, Supplement to IEEE Standard for Information Technology: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (IEEE,
Piscataway, 2001)

26. EA Lee, DG Messerschmitt, Synchronous data flow. Proc. IEEE 31(1),
24–35 (1987)

27. J Eker, J Janneck, EA Lee, J Liu, X Liu, J Ludvig, S Sachs, Y Xiong, Taming
heterogeneity - the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

28. V Bahtnagar, GS Ouedraogo, M Gautier, A Carer, O Sentieys, in IEEE
Vehicular Technology Conference (VTC-Spring13). An FPGA software
defined radio with a high-level synthesis flow (Dresden, Germany, 2–5
June 2013), pp. 1–5

doi:10.1186/1687-6180-2014-164
Cite this article as: Ouedraogo et al.: A frame-based domain-specific
language for rapid prototyping of FPGA-based software-defined radios.
EURASIP Journal on Advances in Signal Processing 2014 2014:164.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

www.gnuradio.org
www.gnuradio.org
http://warp.rice.edu

	Abstract
	Keywords

	Introduction
	Related work
	Software-defined radio languages and middlewares
	High-level synthesis tools and flow
	Problem statement and motivations

	DSL-based SDR waveform specification
	Model-driven engineering for FPGA-SDR
	DSL-based frame specification
	Field specification
	Data frame specification

	DSL-based dataflow
	The underlying model of computation
	DSL-based dataflow description

	DSL compiler
	Compiling framework
	Verification and validation framework
	Frame-based SDR waveform controller

	Experimentation and validation
	Testbed description and waveform implementation results
	DSL complexity
	Synthesis results and design space exploration

	Conclusions
	Competing interests
	Acknowledgements
	References

