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Abstract

In this paper, we introduce a new self-adaptive algorithm for segmenting human skin regions in color images. Skin
detection and segmentation is an active research topic, and many solutions have been proposed so far, especially
concerning skin tone modeling in various color spaces. Such models are used for pixel-based classification, but its
accuracy is limited due to high variance and low specificity of human skin color. In many works, skin model adaptation
and spatial analysis were reported to improve the final segmentation outcome; however, little attention has been
paid so far to the possibilities of combining these two improvement directions. Our contribution lies in learning a local
skin color model on the fly, which is subsequently applied to the image to determine the seeds for the spatial analysis.
Furthermore, we also take advantage of textural features for computing local propagation costs that are used in the
distance transform. The results of an extensive experimental study confirmed that the new method is highly
competitive, especially for extracting the hand regions in color images.
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1 Introduction
Detection and segmentation of human skin regions [1,2]
in color images is an active research topic, which receives
considerable attention from image and signal processing
community. Skin detection consists in taking a binary
decision whether an image, its region, or a particular
pixel presents the human skin. In case of the positive
answer, skin segmentation is applied to determine the
exact boundaries of the detected skin regions. Applica-
tions of skin detection and segmentation are of a wide
range and significance, and they include gesture recog-
nition for human-computer interaction [3], objectionable
content filtering [4], content-based image retrieval [5],
medical imaging [6,7], and image coding [8].

1.1 Overview of skin detection and segmentation
techniques

The existing methods are based on the premise that the
skin color can be effectively modeled in various color
spaces, which allows segmenting the skin regions in
color images. Using skin color models, every pixel may
be classified to the skin or non-skin class based on its
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position in the color space, independently from its neigh-
bors. Alternatively, the probability that each pixel presents
the skin can be determined, which transforms a color
image into a skin probability map (PS). The map may be
binarized using a certain acceptance threshold in order
to extract the skin regions. This problem has been widely
studied, and a large number of skin color models were
introduced over the years. The main difference between
them lies in their learning and generalization capabilities,
but given a sufficiently large training set, their effective-
ness is similar, and it is limited due to high variance and
low specificity of human skin color [2]. Basically, skin and
non-skin pixels overlap in color spaces; hence, they can-
not be separated relying exclusively on their color. The
pixel-wise classification may be improved by incorporat-
ing information extracted from the texture, as well as by
spatial analysis of the pixels that have high skin probability.
Also, global skin color models may be adapted to a par-
ticular scene or an individual who appears in the image,
which improves the classification accuracy, providing that
the adaptation is correct.

1.2 Contribution
In the work reported here, we introduce a new method
that consists in combining three important elements,
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namely, (i) skin color model adaptation, (ii) spatial anal-
ysis, and (iii) exploitation of the textural features. First,
a skin probability map is obtained from the input image
using a global model. The map is processed to extract skin
samples, used to create a local skin color model. Subse-
quently, the local model is applied to locate the seeds for
spatial analysis, which determines the final boundaries of
the skin regions. We perform the spatial analysis using the
discriminative skin-presence features (DSPF), introduced
in our earlier work [9], that rely on textural properties of
skin probability maps.
There have been a handful of methods proposed [10,11]

that combinemodel adaptivity with spatial analysis. These
techniques require a skin sample for the adaptation, deliv-
ered by a face detector, and they do not exploit textural
features. Naturally, these methods cannot perform the
adaptation when a face is not visible or if a face detector
fails.
In the proposed approach, the model is adapted based

on analysis of a skin probability map, without using
any additional information sources. The reported exper-
imental results clearly show that our algorithm achieves
better segmentation scores than alternative state-of-the-
art methods. Furthermore, the new method significantly
increases the detection precision, which is particularly
important when a hand region is to be segmented for the
hand pose estimation purposes.

1.3 Paper structure
The paper is organized as follows. In Section 2, the exist-
ing approaches to skin detection and segmentation are
outlined, with particular attention given to the adaptation
techniques. Spatial analysis methods used in our study are
described in Section 3, and the proposed skin detection
algorithm is presented in details in Section 4. Experi-
mental validation is reported and discussed in Section 5.
Section 6 concludes our study. Furthermore, the symbols
used in the paper are explained in Table 1.

2 Related literature
Skin detection and segmentation has been widely studied
over the last 20 years, and a lot of advancements emerged
so far. A large number of contributions address the prob-
lem of skin color modeling in various color spaces, and
they are well summarized in a survey published in 2007 by
Kakumanu et al. [1].
Skin color can be modeled using a set of rules and

thresholds defined in color spaces based on some obser-
vations [12-15]. Alternatively, given a representative train-
ing set, skin detection rules can be determined using
machine learning. Jones and Rehg [16] proposed to train
the Bayesian classifier in the RGB space. This requires a
training set containing pixels assigned to the skin (Cs) and
non-skin (Cns) classes. Color histograms are built for these

Table 1 The symbols used in the paper

Symbol Description

General symbols

I Input color image

Cs Skin class

Cns Non-skin class

P Probability

PS Skin probability map

H Histogram

� Covariance matrix

B A set of blobs

Nn×n(x) A set of pixels in the n × n kernel around the
pixel x

δfp False-positive rate

δmin Minimal error

Symbols related with
the DT-based spatial analysis
(including the DSPF space)

� Total path cost

γ Overall local cost

γp Destination-probability local cost component

γ� Local cost component related with the
difference in the propagation domain

T P
α High-probability seed extraction

threshold

T P
β Lower-bound propagation threshold

T P
0 Costless propagation threshold

T� Total path cost threshold

D Distance in the DSPF space

ν Feature vector in the DSPF space

r Reference pixel

Pr Reference skin probability (determined
in the neighborhood of r)

Symbols related
with the self-adaptive

seeds method

S0 Initial skin seeds

SE Expanded skin seeds

SA Adapted (final) skin seeds

tseed Dynamic initial binarization threshold

Rseed Ratio of pixels used to determine tseed

T P
A Binarization threshold used to extract SA

from the local skinprobability map

T P
seed Minimum acceptable value of tseed

T P
r Threshold for the reference skin probability

(in the dilated PS)

γ E
� Local difference costs (γ�) used for building

the expanded

γ F
� Local difference costs (γ�) used for final

‘skinness’ propagation
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two classes: P(v|Cs) and P(v|Cns), where v is the color, and
the probability that a given pixel presents the skin (i.e.,
P(Cs|v)) is determined from the Bayes rule. This is a robust
approach, provided that a sufficiently large training set is
available. In the majority of cases, it is beneficial to reduce
the number of histogram bins per channel to increase
the generalization capacity [2,17]. Analysis of color his-
tograms has also been applied to solve more general tasks
concerning extracting image regions [18].
Greenspan et al. [19] used Gaussian mixture models

(GMMs) for learning human skin color in the normalized
rg chromaticity space. GMMs offer better generalization
capabilities than the Bayesian classifier, and they were
later exploited in many approaches to skin color mod-
eling [20,21]. In our recent survey [2], we demonstrated
that GMMs outperform the Bayesian classifier for small
training sets; however, for larger sets, the latter was more
accurate.
Among other machine learning techniques applied to

skin detection, it is worth to mention artificial neural net-
works (ANNs) [22,23], support vector machines [24,25],
and random forests [10]. In general, the methods based on
machine learning achieve higher classification accuracy
than the rule-based approaches.
Skin detection and segmentation plays also an impor-

tant role in dermoscopy for skin lesions segmentation
and analysis. This is an active research topic of med-
ical imaging, and many methods have been developed
over time [6]. Segmentation of skin lesions may be
performed using a number of techniques, which take
advantage of the skin homogeneity in the domain of
color, luminance or texture, and they include statisti-
cal region merging [26,27], dynamic programming [28],
and wavelet-based texture analysis [7]. The segmenta-
tion phase is followed by shape analysis to investigate
the lesion type [29]. In general, these methods are spe-
cialized to deal with the dermoscopy images. It is there-
fore assumed that a given image presents human skin
with some lesions that should be segmented from the
background.

2.1 Adaptive skin color modeling
Accuracy of skin detection using color models is limited
due to the overlapping between skin and non-skin pix-
els, which may be observed in various color spaces. If
the model is created so that it omits the overlapping val-
ues, then many skin pixels are classified as background,
decreasing the recall. On the other hand, if the model
includes these overlapping values, then the number of
false-positives (FP) is increased. It is worth noting that the
overlap may be reduced, if a skin model is adapted to indi-
viduals who appear in a presented scene. Given constant
lighting conditions and a limited number of individuals in
the image, skin color specificity is definitely higher than in

the general case, and overall, the skin regions can be better
separated from the background.
Basically, the existing adaptation methods either require

a skin sample, from which the local skin model is learned
on the fly, or they use some features extracted from an
input image to fit the model. In the latter case, sev-
eral approaches exploit ANNs for the adaptation. Lee
et al. [4] used a multilayer perceptron to select the most
appropriate skin model from a collection of models, each
of which was trained earlier for specific lighting condi-
tions. ANNs were also used to tune the parameters of
the Gaussian intended to model the skin color, given an
image histogram [30], as well as to determine an optimal
acceptance threshold [31] for each skin probability map
obtained using a global model. Sun [32] applied a global
skin model to extract skin pixels, whose distribution was
subsequently modeled using GMM. Final skin probabil-
ity was determined relying on that locally learned GMM
combined with the global model. In this way, those pixels
preliminarily classified as skin, which do not form clusters
in the color space, are reclassified as background.
Skin models can also be effectively adapted given a

skin sample, acquired based on tracking skin-like objects
in video sequences [33], or relying on face [11,34] or
hand [3] detection. For such a skin sample, a local model
can be generated using the Bayesian classifier [35,36] or
GMMs [37] as they do not require time-consuming train-
ing. However, although the local model allows detecting
the skin with high precision, the recall is often low. To
address this problem, the local model is combined with
the global one. The final probability Pf (Cs|v) can be com-
puted as a weighted mean of the probabilities obtained
using the local Pl(Cs|v) and global Pg(Cs|v) models.
Another approach adopted here consists in using a

global skin color locus, which imposes a restriction on the
adaptation [37,38]. It is also possible to combine the local
and global models by incorporating them into a spatial
analysis framework, which is given more attention later in
this section.
Alternatively, a skin sample may be used to opti-

mize the value of the acceptance thresholds [3,39].
Recently, Yogarajah et al. [40] proposed to use skin sam-
ples for adapting the acceptance thresholds in a single-
dimensional error signal space (ESS) [14]. ESS is obtained
from RGB, and skin color can be modeled here using a
single Gaussian.
The Yogarajah’s method consists in analyzing the dis-

tribution of the error signal in a facial region to deter-
mine the decision thresholds from the obtained Gaussian
parameters.

2.2 Textural and spatial analysis
Although the color-based skin models can be adapted to a
given image, which reduces the false-positives, Zhu et al.
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[41] demonstrated that even for perfect adaptation, in
most situations, the skin cannot be completely separated
from the background in a given color space. The discrimi-
native power of skin classifiers may be increased, when the
pixels neighborhood is taken into account, for example,
exploiting textural features extracted from an input image.
Wang et al. [42] proposed to enhance the segmenta-

tion in the RGB and YCgCb color spaces by analyzing
various textural features, extracted using the gray-level
co-occurrence matrix. Moreover, simple textural features
were used to boost the performance of a number of skin
detection techniques and classifiers, including the ANNs
[43], non-parametric density estimation of skin and non-
skin classes [44], GMMs [45], and many more [46-49]. In
our earlier work [50], we found it beneficial to extract tex-
tural features from skin probability maps rather than from
the input images.
Skin detection accuracy may also be increased using the

region-growth operations, because skin pixels are usually
grouped, whereas the non-skin false-positives are scat-
tered in the spatial domain. Here, conventional image
segmentation algorithms can be applied, for example,
those based on combined Markov random fields [51], or
probabilistic bottom-up aggregation [52]. It may be ben-
eficial to extract and utilize some textural features, for
example, using wavelets [7,53]. Although this is a time-
consuming technique, it has been demonstrated that it
may be successfully optimized for DSP processors [54].
Overall, a number of specific methods devoted to seg-
menting skin regions have been developed. Kruppa et al.
[5] proposed to verify the potential skin regions assuming
that they should have an elliptical shape. In other works, a
threshold hysteresis in skin probability maps was applied
to accept those regions, which are connected with the
seeds of high skin probability [36,55]. Furthermore, spatial
properties of skin regions were analyzed using conditional
random fields [56] and cellular automata [49]. Del Solar
and Verschae proposed to analyze skin probability maps
using controlled diffusion [57]. At first, the diffusion seeds
are formed by those pixels, whose skin probability exceeds
the seed threshold (T P

α ). Then, the neighboring pixels are
iteratively adjoined to the skin region, if they meet the
diffusion process criteria, provided that their skin proba-
bility is larger than the lower-bound propagation threshold
(T P

β ).
In our earlier research [58], we introduced an energy-

based technique for skin blobs analysis. The skin regions
are expanded depending on the amount of energy, which
is spread over the image, according to the local skin prob-
ability. Recently, we proposed to use the distance trans-
form (DT) in a combined domain of hue, luminance, and
skin probability [59,60]. Furthermore, we elaborated on
the importance of seeds detection, from which the skin
probability (termed ‘skinness’) is propagated. This method

is exploited in the research reported here, and it is given
more attention in Section 3.

2.3 Hybrid methods
There are relatively few methods that combine the afore-
mentioned improvement strategies, and the research
reported in this paper also falls into this category.
Jiang et al. [61] proposed to take advantage of color, tex-

ture, and space analysis. At first, the skin regions are deter-
mined based on a skin probability map obtained from
color information. Subsequently, the regions are refined
to improve the precision, relying on the textural features
extracted using the Gabor wavelets. Finally, the regions
are grown with the watershed segmentation to exploit the
spatial information.
Combining textural features with spatial analysis was

also the key contribution of our recent work [9]. We intro-
duced the DSPF space, which is exploited to compute the
local costs for DT, instead of using the skin probability
map as in [59]. As we also use the DSPF domain in our
study, this method is given more attention in Section 3.
In our another work [11], we explored how to combine

a local skin color model with the global one using spatial
analysis. We applied the face-based local model to detect
the skin seeds, from which the ‘skinness’ is propagated
using DT to adjoin the skin pixels. A similar approach
was proposed by Khan et al. [62], where the local model
is learned from the facial region. The model is used to
obtain the foreground weights for the graph-cut image
segmentation, and the background weights are obtained
using the global skin color model. A potential drawback
of this method lies in using a generic image segmenta-
tion algorithm, whose parameters are difficult to tune.
Unfortunately, the implementation is not available, and
the paper does not include all the details necessary to
reproduce the results. The method was validated using
thousands of video frames. Although this is a huge data
set, the number of scenes and individuals is quite small,
as the images were extracted from only 25 videos and the
conditions within each single video are uniform. Also, the
authors claim to have used 8,991 images for validation,
while the entire data set contains 10,764 frames, and it is
unclear which images were excluded. Last, but not least,
the method is quite slow, as it requires 1.5 s to process a
small 100× 100 image.

3 Distance transform for spatial analysis
In the research reported here, we adopted the spatial
analysis framework, developed during our earlier study
[59]. The method consists of two general phases, namely,
(i) seeds extraction and (ii) propagation from the seeds
using DT. These phases are described in this section, along
with the texture analysis technique [9], which additionally
improves the results obtained using DT.
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3.1 Propagation seeds
The aim of the seeds extraction is to determine the ini-
tial skin regions, from which the ‘skinness’ is propagated.
The seeds are considered as skin, and neighboring pix-
els are subsequently adjoined to the skin region using DT.
In an ideal case, not only should the seeds contain no
false-positive pixels but also every ground-truth skin blob
(i.e., a region composed of the real skin pixels) should
include at least one detected seed inside. Otherwise, such
a region would not be adjoined to the skin class during the
propagation, increasing the false-negative (FN) rate.
The seeds can be extracted taking advantage of the

observation that if the skin probability map is binarized
using a high-probability threshold, then the precision is
rather high, because usually only true-positive (TP) skin
regions contain pixels with very high skin probability val-
ues. If the skin probability of an individual pixel is over
a high threshold T P

α , then the pixel is added to the seed.
Such an approach was adopted in many spatial analysis
methods [36,55,57].
Recently, we proposed to create an adaptive seed based

on detected facial regions [11]. Using the geometrical fea-
tures extracted from the luminance channel of the input
color image, the facial regions are detected. A local skin
model is learned using a single multivariate Gaussian, and
the model is applied to the input image to obtain a local
skin probability map, which is binarized to determine the
final seeds. Afterwards, the propagation is carried out
using the skin probability map obtained from a global skin
color model.

3.2 ‘Skinness’ propagation
In order to propagate the ‘skinness’ from the seeds, the
shortest routes from the seed to every pixel are deter-
mined at first. This is achieved by minimizing total path
costs from the set of seed pixels to each non-seed pixel in
the image. The total path cost for a pixel x is defined as

�(x) =
l−1∑
i=0

γ (pi → pi+1) , (1)

where γ is a local propagation cost between two neigh-
boring pixels, p0 is a pixel that lies at the seed boundary,
pl = x, and l is the total path length. The minimization
is performed using the Dijkstra’s algorithm [63]. In addi-
tion, the threshold T P

β = 0.3 is used as proposed in [57],
which prevents propagating to the regions of very low skin
probability. Furthermore, mainly to decrease the execu-
tion time, the propagation is terminated if the total path
cost exceeds a certain boundary value T� .
The route optimization outcome heavily depends on

how the local costs γ are computed. For skin segmenta-
tion, we construct the local cost using two major compo-
nents, namely the difference in the propagation domain

γ� and the destination-probability cost γp. The local cost
from a pixel x to y, i.e., γ (x → y) is obtained as

γ (x → y) = γ� (x, y) · [
1 + γp (x → y)

]
, (2)

where

γp (x → y) =
⎧⎨
⎩

−1 for P(y) > T P
0

1 − P(y) for T P
β < P(y) ≤ T P

0
∞ for P(y) ≤ T P

β

. (3)

P(y) is the skin probability of the pixel y and T P
0 is

the costless propagation threshold (if the skin probability
at pixel y exceeds T P

0 , then the total path cost does not
increase when moving from pixel x to y). The difference
cost γ� was originally defined using hue and luminance
values:

γ� (x, y) = αd · (∣∣Y (x) − Y (y)
∣∣ + ∣∣H(x) − H(y)

∣∣) , (4)

where αd ∈ {1,√2} is the penalty for propagation in the
diagonal direction, Y (·) is the pixel luminance, andH(·) is
the hue in the HSV color model, both scaled to the range
from 0 to 255.
The total path cost obtained after the optimization is

inversely proportional to the ‘skinness’; hence, the final
skin probability map is obtained by scaling the costs from
0 (for the maximal cost) to 1 (for a zero cost, i.e., the seed
pixels). The pixels not adjoined during the propagation
process (i.e., those whose total path cost � is greater than
T�) are assigned with zeroes. Finally, the skin regions are
extracted using a fixed threshold in the distance domain.
In the research reported in this paper, we consider

alternative local difference costs (explained below), which
we found effective in various ‘skinness’ propagation
scenarios.

1. Restrictive hue-luminance difference cost:

γ
(HL)
� (x, y) = αd ·max

(∣∣Y (x) − Y (y)
∣∣ , ∣∣H(x) − H(y)

∣∣) .
(5)

2. Cost based on a difference in the RGB color space:

γ
(RGB)
� (x, y) = αd · (∣∣R(x) − R(y)

∣∣ + ∣∣G(x) − G(y)
∣∣ + ∣∣B(x) − B(y)

∣∣) .
(6)

3. Skin probability difference cost:

γ
(SP)
� (x, y) = αd · ∣∣PS(x) − PS(y)

∣∣ . (7)

3.3 Discriminative skin-presence features domain
For computing the destination-probability cost γp, the
skin probability map obtained with the global skin model
was originally used [59]. However, later, we proposed to
refine the skin probability relying on the textural features
[9] and to use the refined probability for computing the
local cost γp.
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The textural features are incorporated into the DSPF
space, later exploited to refine the skin probability. In
order to obtain the DSPF space, the basic image fea-
tures are first extracted from the skin probability map.
They consist of the following features: (i) the median and
(ii) minimal values, (iii) standard deviation, and (iv) the
difference between the maximum and minimum, com-
puted in three kernels: 5× 5, 9× 9, and 13× 13 pixels.
In addition, the raw skin probability value is appended
to this feature vector, as it is the principal source of the
discriminating information between skin and non-skin
pixels. We considered exploiting more advanced textural
descriptors, for example, local binary patterns [64]; how-
ever, it has not improved the results. The selected features
are aimed at extracting the roughness of the skin probabil-
ity map rather than finding a repeatable pattern, and this
can effectively be done using these simple statistics. Over-
all, every pixel x is transformed into an M-dimensional
basic feature vector ux, where M = 13. Using linear

discriminant analysis, the dimensionality of the basic
image feature space is reduced tom = 2 dimensions in the
DSPF space.
Subsequently, a pixel of maximum skin probability is

found in the skin probability map eroded using a large
(15× 15) kernel; it should be larger than the kernels used
for extracting basic image features. This pixel is termed
the reference pixel r, and the distance between r and every
pixel in the image is computed in the DSPF space:

D(x) =
[ m∑
i=1

(
ν

(x)
i − ν

(r)
i

)2]1/2

, (8)

where ν
(x)
i is the ith dimension of the DSPF vector

obtained for the pixel x. This operation converts the
input skin probability map into the DSPF skin map, which
is normalized and used for computing the destination-
probability cost γp.

Figure 1 Flowchart of the proposed skin segmentation process.
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4 Skin segmentation using self-adaptive seeds
In this section, we present the details of the proposed
approach. Compared with our earlier methods, here, our
main contribution lies in introducing a new technique
for extracting adaptive seeds, which does not require any
skin sample be given a priori for the adaptation. Instead
of exploiting a face detector to acquire the skin sam-
ple, we analyze the skin probability map PS obtained
from the input color image I using a global skin color
model. At first, our algorithm determines whether the
image presents any skin pixels at all, and subsequently,
it extracts the skin sample that is used to adapt the skin
model and to build the seeds. Furthermore, we elabo-
rate on the adaptation scheme we introduced in [11] and
apply new metrics to compute local costs for DT [59].
These metrics (Equations 5 to 7) are used for creating the
seeds, as well as they are utilized for the final ‘skinness’
propagation.

4.1 Algorithm outline
A flowchart of our method is presented in Figure 1, and
examples of outcomes obtained at subsequent stages of
the processing chain are demonstrated in Figure 2. First
of all, an input image (Figure 2(a)) is converted into a
skin probability map (Figure 2(b)) using a global skin
color model based on the Bayesian classifier (the darker
shade indicates higher skin probability). The obtained skin
probability map is processed to determine the initial skin
seeds (annotated as red pixels inside the black regions in
Figure 2(c)). Here, our goal is to extract a sample of skin
pixels with high precision, without including the non-skin
pixels. Although it is crucial that the seeds are detected
in every ground-truth skin blob, this is not critical at this
stage, as the seeds are transferred to other regions later.
An important problem here is to avoid finding the initial
skin seeds in the images which do not contain human skin
at all; otherwise, the algorithm may adapt the skin model

(a) (b) (c) (d) (e) (f) (g)

Figure 2 Outcomes obtained at subsequent steps of the adaptive skin segmentation process. The presented images (I to IV and VI) come
from the publicly available ECU benchmark data set [65]. The image V comes from the HGR data set [9].
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to some non-skin regions, increasing the false-positive
rate. The exact procedure on how the initial seeds are
determined is described later in Section 4.2.
Subsequently, the initial seeds are expanded using

DT to include more skin pixels (black regions in
Figure 2(c)). Again, the primary goal at this stage is
to keep the false-positive rate at the smallest pos-
sible level; hence, the conditions for adjoining the
pixels should be strict. From the expanded seeds, a
local skin color model is trained and applied to the
image in order to determine the final seeds for the

propagation (black regions in Figure 2(d)). Here, the aim
is to find at least a single seed in every ground-truth
skin region while keeping the false-positives low. It can be
seen from Figure 2(d) (images I to IV) that the adapted
seeds appear in the skin regions which were not cov-
ered by the initial skin seeds, while they are absent in
the background. For image V, the seeds are not trans-
ferred to new skin regions, but the adaptation allows the
seeds to be better distributed in the regions already cov-
ered by the expanded seeds. Also, an interesting case is
image VI; here, the adaptation almost does not modify the

(a) (b) (c) (d)

Figure 3 Subsequent steps of extracting initial skin seeds from skin probability maps. The presented images (I to IV and VI) come from the
publicly available ECU benchmark data set [65]. The image V comes from the HGR data set [9].
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position of the expanded seeds; however, eventually, the
initial seeds occur sufficient to propagate the ‘skinness’
over the entire skin area. The details of the seed transfer
are given in Section 4.3.
From the final seeds, the ‘skinness’ is propagated

over the image to obtain the final skin probability map
(Figure 2(e)), which is binarized to extract the skin regions
(see Figure 2(f ), where the red tone indicates false-positive
pixels, the blue tone false-negatives, and the green one
boundaries of the true-positive regions).
In Figure 2(g), we present the segmentation results

obtained from the global skin probability maps (from
Figure 2(b)). For several images (I to III), the adapta-
tion substantially reduced the false-positives (which were
caused by the background objects having skin-like color).
Both the false-positives and false-negatives were reduced
for the images III to V, and in the case of image VI, the
false-negative rate was decreased.

4.2 Extracting initial skin seeds
This stage consists in finding initial skin samples, from
which the proper seeds for propagation are later created.
In our method, this is achieved exclusively based on the
analysis of a skin probability map obtained using a global
skin color model (we utilize the Bayesian classifier here;
however, other skin colormodels may also be exploited for
this purpose). The initial skin seeds are extracted relying
on the skin probability histogram and by analyzing the
pixels in the spatial domain.
The algorithm for finding the initial seeds is out-

lined in Algorithm 1. First, we compute the integrated
histogram H (line 1) of the skin probability map PS
to find the value of a dynamic threshold tseed, which
selects Rseed = 5% pixels, whose probability is above
tseed (line 2). Afterwards, we determine the reference

pixel r that indicates the maximum probability value in
the eroded skin probability map Pmin

S (line 5). Subse-
quently, we compute the reference skin probability Pr
(line 6) as the minimum probability value in the dilated
skin probability map Pmax

S within the 15 × 15 neigh-
borhood of the reference pixel (N15×15(r)). Basically, if
the reference pixel presents the skin indeed, then the
value of the reference skin probability Pr should be
high.
Based on the values of Pr and tseed, we take the decision

(Algorithm 1, line 8) whether an image contains skin pix-
els at all (hence, we detect skin at the image level). This
is an important step of our algorithm, as false-positive
detection would lead to adapting the skin color model to
non-skin pixels, significantly decreasing the overall seg-
mentation precision. On the other hand, false-negative
detection would mean that the entire skin area in the
incorrectly classified image is rejected. We apply fairly
simple rules here that consist in checking whether the Pr
and tseed values are above the thresholds T P

r = 0.24 and
T P
seed = 0.12, respectively. Efficacy of this technique is

discussed later in Section 5.
If the image-level skin detection is positive, then the

seeds are extracted by binarizing the skin probability map
using the tseed threshold (Algorithm 1, line 9). We have
observed that the false-positive pixels are scattered in the
binarized image, while the true-positive pixels are orga-
nized in spatially consistent groups. Following this obser-
vation, we use only 10% of the largest blobs (line 11). These
blobs are additionally subject to the erosion (line 13) to
eliminate the blobs having small area. Finally, the seeds
are subject to the morphological skeletonization (line 14),
which further reduces the false-positives. The results
obtained in subsequent steps of the initial skin seeds
extraction are presented in Figure 3.

Algorithm 1 Initial skin seeds generation
Require: PS � Skin probability map obtained using a global model
1: H ← FindIntegratedHistogram(PS);
2: tseed ← FindThreshold(H,Rseed); � Rseed (%) pixels in PS have skin probability over tseed
3: Pmin

S ← Erode(PS, 15); � Erosion using a 15× 15 kernel
4: Pmax

S ← Dilate(PS, 15); � Dilation using a 15× 15 kernel
5: r ← FindMaximum

(
Pmin
S

)
; � Reference pixel r found in the eroded PS

6: Pr ← FindMinimum
(
Pmax
S ,N15×15(r)

)
; � Reference skin probability Pr found in the dilated PS

7: S0 ← {0}; � Mask of the initial seeds (zeroed at this step)
8: if tseed ≥ T P

seed and Pr ≥ T P
r then � Skin detection at the image level

9: S0 ← Binarize(PS, tseed); � PS is binarized with a threshold tseed to get the seeds
10: B ← FindBlobs(S0); � The seeds S0 are represented as a set of blobs B
11: B ← FilterBlobs(B); � 10% of the largest blobs are selected
12: S0 ← Render(B); � S0 gets a mask of the filtered blobs
13: S0 ← Erode(S0, 11); � Isolated small blobs are removed
14: S0 ← MorphologicalSkeleton(S0); � S0 presents a mask of the initial seeds
15: end if
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4.3 Seed expansion and adaptation
The initial skin seeds are characterized with two gen-
eral properties (confirmed experimentally): (i) the seeds
indicate skin regions with very high precision (i.e.,
they contain very few false-positives), and (ii) they
are not present in every ground-truth skin blob (see
Figure 2(c)). The first property makes the seeds appro-
priate to initiate DT in order to determine the bound-
aries of those skin regions, in which the seeds appear.
However, the second property means that the ‘skinness’
cannot be propagated in the spatial domain to non-
covered skin blobs; hence, the color space must be used
for transferring the ‘skinness’. This transfer is achieved
by creating a local skin color model from the ini-
tial skin seeds and applying it to the entire image.
After this operation, the seeds are expected to appear
in every skin blob, and they are used for the final
propagation.
Overall, the skin segmentation algorithm, including the

detailed procedure for extracting the final seeds, is given
in Algorithm 2. After obtaining the initial seeds, they are
expanded using DT (line 3) to include more skin pix-
els (this forms the expanded skin seeds SE). Without the
expansion, the model built from the initial seeds would
not be sufficiently representative and the seeds would not
be correctly transferred in the color space. However, the
expansion must be done carefully to avoid including non-
skin pixels, which could eventually lead to transferring the
seeds also into the background. We investigated various
local costs for obtaining SE (

termed γ E
�

)
; however, in all

the cases, we impose the cost boundary T� = 3·γ E
�, where

γ E
� is the average local cost computed within the image.

Furthermore, we do not use the costless propagation here(
i.e., T P

0 = 0
)
. This limits DT to the very neighborhood of

the initial seeds, and the expanded seeds SE are formed of
the pixels, whose total path cost � is a finite number (see
Figure 2(c)).

After expanding the initial seeds, they are transferred
to other image regions in the color space domain. This
is performed as follows. First, a local skin color model is
learned from the pixels that lie within the expanded seeds
(Algorithm 2, line 4). Subsequently, this model is used
to detect skin in the entire image (line 5), and the local
skin probability map Pl(Cs|v) is obtained. We have investi-
gated two techniques for creating the local model, namely
(i) from the color histogram and (ii) using a single mul-
tivariate Gaussian. The histogram-based approach takes
into account only the skin color distribution, from which
the skin probability P(v|Cs) is directly obtained. As sug-
gested in many works [2,17], we decrease the number of
histogram bins per channel to achieve higher generaliza-
tion. Following the second technique, the skin probability
for a color v is obtained as

P(v) = 1√
(2π)3|�| exp

[
−0.5(v − v)T�−1(v − v)

]
, (9)

where � is a 3× 3 covariance matrix and v is the mean
color in the RGB color space, obtained for the skin pixels
within the expanded seeds.
Finally, the local skin probability map Pl(Cs|v) is bina-

rized using the threshold T P
A to obtain the adapted skin

seeds SA (Algorithm 2, line 6), which completes the seed
transfer stage. The local model is trained using the skin
pixels from the expanded seeds, characterized by low rate
of false-positive pixels. This implies very high skin detec-
tion precision, and there are few false-positives among the
pixels with non-zero skin probability in Pl(Cs|v). There-
fore, we apply a fairly low binarization threshold of T P

A =
0.02 (we have found that the algorithm is little sensitive
to this value within the range 0 < T P

A < 0.1). After
binarization, the seeds are eroded with a small 5× 5 ker-
nel (line 7), which eliminates isolated positive pixels and
shrinks the larger seeds. The shrinking is beneficial as the
adapted seeds may be located at the boundaries of the

Algorithm 2 Proposed self-adaptive skin segmentation
Require: I , Pg(Cs|v) � Input color image and global skin color model
1: P(global)

S ← DetectSkin(I , Pg(Cs|v)); � Skin detection using global skin color model

2: S0 ← FindInitialSeeds
(
P(global)
S

)
; � Initial skin seeds determined using Algorithm 1

3: SE ← SeedsDistanceTransform
(
S0, I ,P(global)

S

)
; � The initial seeds are expanded

4: Pl(Cs|v) ← LearnSkinModel(I , SE); � Local skin color model is build within SE

5: P(local)
S ← DetectSkin(I , Pl(Cs|v)) � Skin detection using local skin color model

6: SA ← Binarize
(
P(local)
S , T P

A

)
; � Adapted skin seeds

7: SA ← Erode(SA, 5); � SA are slightly shrunk
8: PS ← FinalDistanceTransform

(
SA, I ,P(local)

S

)
; � The final skin probability map is obtained
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skin regions. If the propagation is initiated from them,
then some background pixels could be misclassified. Nat-
urally, the shrinking eliminates some true-positive skin
pixels, but then they are correctly adjoined back during
the propagation.
Finally, the ‘skinness’ is propagated from the adapted

seeds in the image using the local difference costs γ F
�

(Algorithm 2, line 8), and the final skin probability is
obtained from the normalized map of distances as out-
lined earlier in Section 3.2. Depending on how the
destination-probability cost γp is computed for expanding
the seeds and for propagating the ‘skinness’, we consider
two variants of our method. This cost may be computed
using the raw skin probability obtained from the global
model (termed raw probability (RP)-based propagation)
or alternatively, the DSPF skin map may be used for this
purpose as outlined in Section 3.3 (termed DSPF-based
propagation).

5 Experimental validation
We have validated the proposed algorithm using two data
sets, namely (i) the ECU benchmark database [65] and (ii)
our hand gesture recognition (HGR) set of hand images
(available at http://sun.aei.polsl.pl/~mkawulok/gestures).
Both data sets encompass ground-truth skin-presence
binary masks. Four thousand images from the ECU set
were acquired in uncontrolled lighting conditions, and
skin-color objects often appear in the background, which
makes the skin segmentation more difficult. The HGR
data set contains 1,293 images of gestures presented by 30
individuals. The data were acquired in both controlled and
uncontrolled conditions.
All the algorithms were implemented in C++. The

experiments were conducted using a computer equipped
with an Intel Core i7-3740QM 2.7 GHz (16 GB RAM)
processor.
Two thousand images from the ECU set were used to

train the Bayesian classifier and to determine the DSPF
space. The remaining 2,000 images from the ECU set and
all of the images from the HGR set were used as the test
set. The test set consists of the images, in which the faces
were detected with the method described in [66], so that
our method can be compared with face-based adaptation
schemes. The lists of images used for training and testing
are available in Additional file 1.
We have compared our technique with several state-of-

the-art methods, namely with (i) several global pixel-wise
skin detectors [14-16], (ii) withmethods that utilize spatial
analysis and textural features [9,59,61], and (iii) with face-
based adaptation schemes [11,40].

5.1 Evaluation metrics
The obtained results were compared with the ground-
truth data to determine the number of correctly classified

pixels (i.e., TP and true-negatives (TN)) as well as the
number of misclassified pixels (i.e., FN and FP). From
these values, we use the following ratios to indicate the
detection accuracy:

1. Recall : rec = TP/(FN + TP), i.e., the percentage of
the ground-truth skin pixels correctly classified as
skin.

2. Precision: prec = TP/(TP + FP), i.e., the percentage
of correctly classified pixels out of all the pixels
classified as skin.

3. F-measure: the harmonic mean of precision and
recall. Here, the acceptance threshold was set to a
value, for which the F-measure was maximal
(precision and recall values are also quoted using the
same threshold). Naturally, the same value of the
threshold is applied to all of the images in the test set
within a single experiment.

4. False-positive rate: δfp = FP/(FP + TN), i.e., the
percentage of background pixels misclassified as skin.

5. Minimal error: δmin = 0.5 · (
δfp + (1 − rec)

)
. Here,

the acceptance threshold was set to a value, for which
δmin is minimal for the test set.

It is worth noting that the F-measure and the minimal
error δmin are usually obtained using different accep-
tance thresholds, and they represent different properties
of the detector. The minimal error is determined at a
higher recall obtained at a cost of larger false-positive rate.
Hence, these two values are quoted in the paper in order
to provide better evaluation.
The precision, recall, and false-positive rate depend on

the acceptance threshold. Their mutual dependence can
be rendered in a form of precision-recall and receiver
operating characteristic (ROC) curves [67,68], which are
also presented to evaluate the investigated skin detectors.
In order to assess the performance for the images that

do not contain human skin at all, we excluded the skin
regions from the images in the ECU and HGR sets.
These data sets include the ground-truth skin presence
masks, and based on them, it was possible to exclude the
skin regions from processing. We subjected these images
to skin detection and measured the false-positive rate
(termed δnsfp ).
In the case of the seed detection, the recall is usually

very low, while the precision is expected to be high. How-
ever, as it was explained earlier, it is crucial that the seeds
appear in every ground-truth skin region. Otherwise, a
region without a seed will not be adjoined to the skin
class during the propagation (unless the ‘skinness’ is prop-
agated through the background, which in general should
be avoided). In order to measure whether the seeds are
correctly located, we measure the potential recall (recseed);
we assume that if at least a single seed is positioned inside

http://sun.aei.polsl.pl/~mkawulok/gestures
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Table 2 F-measure and δmin obtained using the DSPF-based propagation with different thresholds
(
T P
seed and T P

r
)

ECU data set HGR data set

T P
seed T P

r F-measure (δmin) δnsfp F-measure (δmin) δnsfp

0.00 0.00 0.8415 (7.19%) 12.81% 0.9564 (2.49%) 76.73%

0.00 0.12 0.8415 (7.19%) 12.80% 0.9564 (2.49%) 33.32%

0.00 0.24 0.8411 (7.22%) 12.79% 0.9564 (2.49%) 20.97%

0.00 0.36 0.8408 (7.24%) 12.72% 0.9550 (2.63%) 8.85%

0.12 0.00 0.8415 (7.19%) 12.68% 0.9562 (2.52%) 13.35%

0.12 0.12 0.8415 (7.19%) 12.68% 0.9562 (2.52%) 13.35%

0.12 0.24 0.8411 (7.22%) 12.67% 0.9562 (2.52%) 10.51%

0.12 0.36 0.8408 (7.24%) 12.61% 0.9547 (2.67%) 5.79%

0.24 0.00 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 7.03%

0.24 0.12 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 7.03%

0.24 0.24 0.8405 (7.26%) 12.47% 0.9452 (3.66%) 6.88%

0.24 0.36 0.8405 (7.26%) 12.42% 0.9452 (3.66%) 4.90%

0.36 0.00 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.12 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.24 0.8402 (7.28%) 11.94% 0.9280 (5.22%) 3.16%

0.36 0.36 0.8402 (7.28%) 11.92% 0.9280 (5.22%) 3.10%

Italicized values indicate the selected configuration.

a certain ground-truth skin region, then the whole region
is correctly classified as skin. For the seeds, we do not
quote the false-positive rate, as it is usually close to zero
due to the small number of seed pixels compared to the
number of all the pixels in an image. The precision ismuch
a better measure here.

5.2 Parameter tuning and sensitivity analysis
In this section, we report how we selected the parame-
ters and models used in our method, and we analyze their
influence on the obtained scores.

First of all, we focused on the image-level skin detection
(as shown in Algorithm 1, line 8), which is controlled with
two thresholds: T P

seed and T P
r . In Table 2, we demonstrate

the F-measure and the minimal error δmin (given in the
brackets) for images that contain skin, and we show the
false-positive rate δnsfp for the images without skin. It can
be seen that in general δnsfp decreases if the thresholds are
high (and more restrictive), but obviously this affects the
detection scores for the images that contain human skin. It
is worth noting that δnsfp for the ECU set is much less sensi-
tive to the thresholds than for the HGR set. If it is assumed

(a) (b)

Figure 4 Skin segmentation scores obtained with different ratios of the pixelsRseed used to build the initial seeds.
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Table 3 F-measure andminimal error δmin (given in brackets) obtained using different local propagation costs

γp ↓ ECU data set HGR data set

γ E
�

↓ γ F
�

→ γ
(HL)
�

γ
(RGB)
�

γ
(SP)
�

γ
(HL)
�

γ
(RGB)
�

γ
(SP)
�

Gaussian

RP γ
(HL)
� 0.8511 (8.20%) 0.8547 (7.71%) 0.8460 (8.05%) 0.9132 (6.75%) 0.9130 (6.75%) 0.9157 (6.55%)

γ
(RGB)
� 0.8469 (8.58%) 0.8511 (8.00%) 0.8440 (8.28%) 0.9136 (6.73%) 0.9134 (6.73%) 0.9159 (6.55%)

γ
(SP)
� 0.8499 (8.43%) 0.8535 (7.96%) 0.8419 (8.44%) 0.9136 (6.73%) 0.9135 (6.74%) 0.9155 (6.57%)

DSPF γ
(HL)
� 0.8411 (7.22%) 0.8409 (7.10%) 0.8339 (7.77%) 0.9562 (2.52%) 0.9538 (2.79%) 0.9545 (2.55%)

γ
(RGB)
� 0.8425 (7.32%) 0.8420 (7.26%) 0.8355 (7.79%) 0.9564 (2.50%) 0.9540 (2.78%) 0.9548 (2.56%)

γ
(SP)
� 0.8388 (7.34%) 0.8387 (7.22%) 0.8360 (8.04%) 0.9566 (2.49%) 0.9541 (2.76%) 0.9301 (5.70%)

Histogram

RP γ
(HL)
� 0.8330 (9.55%) 0.8389 (8.83%) 0.8341 (9.08%) 0.9204 (5.99%) 0.9204 (5.98%) 0.9220 (5.84%)

γ
(RGB)
� 0.8286 (9.71%) 0.8320 (9.14%) 0.8283 (9.39%) 0.9221 (5.84%) 0.9220 (5.84%) 0.9226 (5.78%)

γ
(SP)
� 0.8313 (9.69%) 0.8348 (9.20%) 0.8266 (9.60%) 0.9221 (5.78%) 0.9220 (5.78%) 0.9215 (5.82%)

DSPF γ
(HL)
� 0.8353 (7.84%) 0.8347 (7.81%) 0.8295 (8.28%) 0.9555 (2.50%) 0.9539 (2.74%) 0.9520 (2.97%)

γ
(RGB)
� 0.8363 (8.01%) 0.8355 (8.01%) 0.8305 (8.35%) 0.9550 (2.56%) 0.9537 (2.79%) 0.9517 (3.04%)

γ
(SP)
� 0.8350 (7.85%) 0.8342 (7.82%) 0.8322 (8.70%) 0.9544 (2.57%) 0.9530 (2.78%) 0.9372 (4.70%)

The arrows indicate the column or row. Italicized values indicate the configuration used in the remaining experiments.

that every image contains the skin (i.e., both thresholds
are set to zero), then δnsfp for the HGR set is extremely high,
while for ECU it is at a moderate level. This is because the
images in the ECU set contain uncontrolled multi-colored
background, while the background in many images from
the HGR set is uniform. In such cases, after adaptation,
the entire background is classified as skin, while for ECU
only some objects in the background are misclassified.
Overall, we use T P

seed = 0.12 and T P
r = 0.24 (italicized

in Table 2), which does not decrease the scores for skin
images significantly, while δnsfp is at an acceptable level.
The scores obtained depending on the Rseed ratio are

presented in Figure 4. It can be seen from the plots that
the algorithm is quite sensitive to this parameter; however,

in case of both data sets, the optimal value is around
Rseed = 0.05 (marked with a vertical dashed line), and
this value has been used in our experiments. In the case
of the HGR set, the scores for the DSPF-based propaga-
tion deteriorate when Rseed surpasses 0.05, but then (at
about 0.15) they start improving again. In order to inves-
tigate this, we measured the precision and potential recall
in the seeds (the plots are presented in Additional file 2).
We have found that for the HGR set, the potential recall
in the initial and expanded seeds temporarily decreases
(for Rseed ∈ [0.1; 0.15]), because the true-positive blobs
are eliminated due to the size-based filtering. However,
for smaller values of Rseed, the size-based filtering helps
achieve higher precision in the initial seeds.

(a) (b)

Figure 5 Skin segmentation scores obtained with different total path cost thresholds T� used to build the expanded seeds.
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Table 4 F-measure andminimal error δmin (given in brackets) obtained using different local skin color models

γp → RP-based DSPF-based

↓ Local skin color model ECU data set HGR data set ECU data set HGR data set

Gaussian 0.8535 (7.96%) 0.9135 (6.74%) 0.8411 (7.22%) 0.9562 (2.52%)

Histogram, 256 bins 0.8308 (9.42%) 0.9215 (5.80%) 0.8347 (8.00%) 0.9556 (2.51%)

Histogram, 128 bins 0.8348 (9.20%) 0.9220 (5.78%) 0.8353 (7.84%) 0.9555 (2.50%)

Histogram, 64 bins 0.8400 (8.82%) 0.9217 (5.86%) 0.8348 (7.56%) 0.9563 (2.43%)

Histogram, 32 bins 0.8328 (9.01%) 0.9145 (6.59%) 0.8257 (7.90%) 0.9559 (2.49%)

Histogram, 16 bins 0.8107 (9.95%) 0.9134 (6.67%) 0.8125 (8.62%) 0.9533 (2.69%)

Histogram, 8 bins 0.7906 (10.96%) 0.9138 (6.67%) 0.7982 (9.62%) 0.9481 (3.06%)

The arrows indicate the column or row. Italicized values indicate the selected configuration.

In Table 3, we present the scores obtained using differ-
ent local costs utilized to build the expanded seeds

(
γ E
�

)
and to propagate the final ‘skinness’

(
γ F
�

)
. The local skin

color model was trained using either a single multivari-
ate Gaussian, or using the color histogram with 128 bins
per channel. It may be seen from the table that the RP-
based propagation is more sensitive to the costs used, and
different settings are optimal for the ECU and HGR sets.
In some cases, the F-measure for the ECU set is higher
using RP, but overall it is the DSPF-based propagation
which delivers high scores for both the ECU and HGR

sets. The italicized values indicate the configuration used
in the remaining experiments.
The seeds are expanded depending on the total path

cost boundary T� , and the sensitiveness to this parame-
ter is demonstrated in Figure 5. It may be observed that
the scores are little dependent on this value, and we used
T� = 3 in our experiments (marked with a vertical dashed
line in the plots).
We have trained the local skin color model using a

single multivariate Gaussian as well as using the color
histogram with different numbers of bins per channel.

Table 5 Skin detection scores computed in the seeds at subsequent processing steps

ECU data set HGR data set

F-measure prec recseed F-measure prec recseed

Initial seeds 0.9233 90.64% 94.08% 0.9943 99.22% 99.65%

Seeds expanded using the RP domain
and γ

(SP)
� local costs to expand the seeds

Expanded seeds 0.9279 90.10% 95.64% 0.9961 99.49% 99.73%

Adapted seeds (Gaussian) 0.9536 91.63% 99.41% 0.9967 99.72% 99.63%

Adapted seeds (H-256) 0.9511 92.32% 98.08% 0.9828 99.85% 96.76%

Adapted seeds (H-128) 0.9527 92.24% 98.50% 0.9845 99.83% 97.11%

Adapted seeds (H-64) 0.9518 91.49% 99.18% 0.9881 99.64% 98.00%

Adapted seeds (H-32) 0.9419 89.35% 99.58% 0.9954 99.35% 99.73%

Adapted seeds (H-16) 0.9153 84.56% 99.76% 0.9936 98.83% 99.90%

Adapted seeds (H-8) 0.8834 79.18% 99.88% 0.9918 98.38% 99.98%

Seeds expanded using the DSPF domain
and γ

(HL)
� local costs to expand the seeds

Expanded seeds 0.9337 91.41% 95.41% 0.9957 99.42% 99.73%

Adapted seeds (Gaussian) 0.9539 91.78% 99.29% 0.9958 99.43% 99.73%

Adapted seeds (H-256) 0.9515 92.91% 97.52% 0.9882 99.79% 97.87%

Adapted seeds (H-128) 0.9533 92.81% 98.00% 0.9888 99.74% 98.04%

Adapted seeds (H-64) 0.9546 92.06% 99.12% 0.9923 99.54% 98.92%

Adapted seeds (H-32) 0.9455 89.97% 99.62% 0.9959 99.29% 99.89%

Adapted seeds (H-16) 0.9246 86.13% 99.80% 0.9944 98.92% 99.97%

Adapted seeds (H-8) 0.8960 81.26% 99.85% 0.9919 98.42% 99.98%

H-n is the color histogram with n bins per channel.
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Table 6 Skin detection scores obtained using different methods for the ECU data set

Acceptance threshold Acceptance threshold
Method set to maximize F-measure set to minimize δmin

F-measure prec rec δnsfp δmin rec δfp δnsfp

Global Bayesian classifier [16] 0.7772 73.15% 82.89% 9.13% 12.13% 89.27% 13.52% 13.52%

Global model in ESS [14] 0.7434 68.07% 81.88% 11.79% 14.13% 87.76% 16.03% 16.03%

Chen’s global model [15] 0.6896 55.30% 91.61% 23.11% 15.75% 91.61% 23.11% 23.11%

Wavelet-based hybrid detector [61] 0.7894 76.34% 81.73% 9.01% 12.28% 88.74% 13.31% 13.78%

Face-based adaptation in ESS [40] 0.7672 69.67% 85.35% - 13.95% 89.85% 17.74% -

Spatial analysis using RP [59] 0.8177 75.79% 88.78% 8.45% 9.87% 92.32% 12.06% 10.32%

Spatial analysis using DSPFs [9] 0.8303 78.09% 88.65% 9.06% 7.68% 93.28% 8.64% 12.08%

Face-based adaptive seeds [11] 0.8661 82.70% 90.92% - 7.17% 94.06% 8.39% -

Proposed method (RP-based) 0.8348 81.07% 86.04% 8.40% 9.20% 90.85% 9.25% 10.44%

Proposed method (DSPF-based) 0.8411 79.10% 89.79% 12.67% 7.22% 94.14% 8.57% 16.57%

Italicized values indicate the best score.

The obtained scores are presented in Table 4 (the itali-
cized values indicate the selected configuration). For the
ECU set, both RP-based and DSPF-based propagations
deliver the best scores when the local model is learned
with a Gaussian; however, in the case of RP, the scores
for the HGR set are much worse than when using the
histogram-based model. Also, analysis of the plots in
Additional file 2 allows us to conclude that the Gaus-
sian offers higher generalization than the histogram-based
model.
Finally, in Table 5, we present the scores computed in

the seeds at subsequent steps of their extraction. Here,
we show the results for RP- and DSPF-based propagation,
using different local costs γ E

�. It may be seen that for the
ECU set, the potential recall and the F-measure increase
substantially between the initial and adapted seeds. In the
case of the HGR set, the potential recall is high already in
the initial seeds; as in many cases, there is a single skin
blob in these images, and it is already covered by the initial
seeds. Overall, it is clear that the scores improve during

the seed extraction process, which justifies its subsequent
steps.

5.3 Quantitative comparison
The scores obtained using a number of alternative state-
of-the-art methods are presented in Tables 6 and 7. ROC
and precision-recall curves are rendered in Figures 6
and 7. In the case of the ECU set, we have included two
face-based adaptation methods [11,40]. Naturally, they
were omitted for the HGR images as they do not present
human faces. In the tables, we demonstrate the scores
for two values of the acceptance threshold, for which
the F-measure is maximal and the error δmin is minimal,
respectively.
The methods operating in the ESS [14,40] offer binary

skin classification, but we extended them so that they pro-
duce the continuous response. In the plots in Figures 6
and 7, each result for the original binary decision is indi-
cated with a cross (obviously, it is positioned on the ROC
or precision-recall curve).

Table 7 Skin detection scores obtained using different methods for the HGR data set

Acceptance threshold Acceptance threshold
Method set to maximize F-measure set to minimize δmin

F-measure prec rec δnsfp δmin rec δfp δnsfp

Global Bayesian classifier [16] 0.9031 89.72% 90.92% 5.11% 7.05% 91.53% 5.63% 5.63%

Global model in ESS [14] 0.9090 90.76% 91.04% 4.31% 6.56% 91.81% 4.92% 4.92%

Chen’s global model [15] 0.8607 89.33% 83.03% 7.26% 12.11% 83.03% 7.26% 7.26%

Wavelet-based hybrid detector [61] 0.8991 91.38% 88.49% 3.91% 7.50% 90.24% 5.25% 5.38%

Spatial analysis using RP [59] 0.9086 87.77% 94.17% 29.83% 5.91% 94.49% 6.30% 43.18%

Spatial analysis using DSPF [9] 0.9391 92.90% 94.94% 8.39% 3.06% 96.24% 2.37% 8.94%

Proposed method (RP-based) 0.9220 92.66% 91.74% 26.52% 5.78% 91.85% 3.41% 31.88%

Proposed method (DSPF-based) 0.9562 95.32% 95.92% 10.51% 2.52% 96.92% 1.96% 11.71%

Italicized values indicate the best score.
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(a) (b)

Figure 6 ROC (a) and precision-recall (b) curves for the ECU data set. The most relevant part is magnified in the bottom row.
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(a) (b)

Figure 7 ROC (a) and precision-recall (b) curves for the HGR data set. The most relevant part is magnified in the bottom row.
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The method utilizing the face-based adaptive seeds [11]
delivers the best scores for the ECU set, especially in
terms of the precision-recall and the F-measure. The
ROC curve and minimal error δmin are virtually identi-
cal with those obtained with our DSPF-based approach.
However, it must be noted that this method requires addi-
tional information delivered by a face detector. Here, we
carefully selected those images, in which the faces are
correctly detected, in order to demonstrate the maxi-
mal advantage that can be achieved using the face-based
adaptation over the proposed self-adaptive method. The
second face-based adaptation technique, which operates
in ESS, improves the global skin color model in ESS, but
it is not competitive compared with other techniques. For
the HGR set, our adaptation scheme with DSPF-based
propagation outperforms other methods, offering very
high skin segmentation accuracy (F-measure is 0.9562 and
δmin = 2.52%).
We have also measured the false-positive rate (δnsfp ) for

images that do not present human skin. As it was already
mentioned, we used the same ECU and HGR images,
in which the skin regions were excluded from process-
ing, and we applied the same values of the acceptance
threshold as in the case of the original images. In this
way, we investigated whether and how the absence of skin
regions influences the false-positive rate. This experiment
was not executed for the face-based adaptation schemes,
because after excluding the skin regions, the faces should
not be detected at all. Obviously, for pixel-wise classifica-
tion schemes, the false-positive rate is identical regardless
of whether the skin is present in the image. For other
methods, the false-positive rate is generally higher, as each
of them adapts to some extent to the image. Overall, using
the self-adaptive seeds with the DSPF-based propagation
domain (the RP-based domain is more sensitive here), δnsfp
is from 3.05% (ECU, δmin) to 6.08% (HGR, δmin) higher
than obtained with the Bayesian classifier. This shows that
the incorrect adaptation is a potential problem; however,
we managed to limit its impact using a simple image-
level skin detector. Also, this problem is common to all
the adaptive methods, including the face-based schemes
in case of false-positive face detection. Last, but not least,
there are many applications, including hand pose estima-
tion, where efficient skin segmentation is critical, and such
errors can be mitigated at further processing stages (e.g., a
hand shape would be unlikely to be matched, if the entire
detected skin region is falsely-positive).
The average processing times required to process a

512× 512 image are quoted in Table 8. It may be observed
that almost half of the computation time (i.e., 216.6 ms)
is consumed to create the adaptive seeds. When a video
stream is processed, the adaptation does not have to be
performed for every frame as the scene usually does not
change with a high frequency rate. This means that the

Table 8 Average processing times for a 512 × 512 image

Method Time (ms)

Global Bayesian classifier [16] 5.2

Global model in ESS [14] 4.8

Chen’s global model [15] 0.8

Wavelet-based hybrid detector [61] 4,952.5

Face-based adaptation in ESS [40] 24.1

Spatial analysis using RP [59] 92.9

Spatial analysis using DSPF [9] 361.1

Face-based adaptive seeds [11] 130.5

Proposed method (RP-based) 232.9

Skin detection using global model 5.29

Skin seeds initialization 56.34

Expansion of the seeds 77.97

Adaptation of the seeds 19.49

Final spatial analysis 73.81

Proposed method (DSPF-based) 548.2

Skin detection using global model 5.34

Generation of the DSPF skin map 192.43

Skin seeds initialization 46.18

Expansion of the seeds 79.30

Adaptation of the seeds 91.17

Final spatial analysis 133.78

skin model can be adapted once for a given scene and
then the stream can be processed at ca. three frames per
second. Also, it may be seen that the RP-based propaga-
tion is much faster, because (i) the DSPF skin map does
not have to be computed and (ii) the histogram-based
adaptation is much faster than using a Gaussian model.
Excluding the adaptation phase, the RP-based approach
requires 79.1 ms, which allows processing over 12 frames
per second. Overall, there are two time-consuming oper-
ations which could potentially be optimized, namely
(i) generation of the DSPF skin map and (ii) the distance
transform. The former includes a number of independent
operations (the basic features are computed in several ker-
nels), which may be executed in parallel to reduce the
processing time. The main problem with the distance
transform lies in non-linear access to the memory while
processing the pixels popped from the priority queue used
in the Dijkstra algorithm. Possibly, this may be improved
by including the neighborhood criteria into the priority
measure to avoid referring to the pixels far from each
other in the memory, but this needs to be investigated.

5.4 Qualitative comparison
In Figures 8 and 9, we present several examples of skin
detection in ECU and HGR images, respectively. For
images I to VIII in Figure 8, our method segments the
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8 Examples of skin segmentation for the ECU data set obtained using different methods. The presented images come from the
publicly available ECU benchmark data set [65].

skin regions with high precision. Images IX and X are the
examples of incorrect adaptation. Here, the background
has a skin-like color, and the seeds are detected both in
the skin, and in the background, resulting in very high
false-positive errors. However, it is worth mentioning that
the alternative detectors fail in these cases as well, except

for two face-based adaptation methods [11,40]. We also
present several cases, in which the face-based adapta-
tion is incorrect. In image VI, the face is rotated, and the
facial region includes some background pixels, resulting
in high false-positives. Also, images VII and VIII are
quite interesting as the beard VII and the soother VIII
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(a) (b) (c) (d) (e) (f)

Figure 9 Examples of skin segmentation for the HGR data set obtained using different methods. The presented images come from the HGR
data set [9].

appear inside the facial region, leading to incorrect adap-
tation. Naturally, this problem does not appear in our
self-adaptive approach.
For the HGR images presented in Figure 9, our DSPF-

based method offers almost perfect skin segmentation,
and it clearly outperforms all the alternative algorithms.
Also, comparing the results with [9], it is evident that
using the adaptive seeds is more effective than the
threshold-based seeds extraction.

6 Conclusions
In this paper, we proposed a newmethod for creating self-
adaptive seeds for spatial-based skin segmentation. From
the seeds, the ‘skinness’ is propagated either using the raw

skin probability obtained from a global skin color model
or using the probability computed in the DSPF space. Our
extensive experimental study demonstrated that the DSPF
domain is less sensitive to the method’s parameters and
outperforms all of the investigated methods both for the
ECU and HGR data sets, except for our earlier face-based
adaptation [11]. The raw probability domain is muchmore
sensitive, which makes it difficult to tune; however, in
some cases (for the ECU set), it delivered better results
than the DSPF and also it is much less time consuming.
Overall, we found it worth being reported as well.
Our main contribution consists in providing the adap-

tiveness without making the method dependent on any
other information sources. This is the main advantage
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over the face-based adaptation schemes, and we demon-
strated that using the self-adaptive seeds, it is possible to
obtain results comparable with the face-based adaptation.
The benefits in case of images that do not present human
faces are obvious, while there are also many examples
presented in the paper, when the proposed adaptation
method outperforms the face-based ones.
Our current research plans include combining the intro-

duced adaptation technique with the face-based schemes,
which may help in cases when the background pixels
appear in the detected facial regions. Furthermore, we
intend to improve the image-level skin detection; we have
demonstrated in our experimental study that this is an
important, while often disregarded, problem in adaptive
skin color modeling. Last, but not least, the algorithm
should be parallelized and optimized in order to make it
suitable for processing video sequences.
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