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Abstract

In this paper, we show that there are a number of uncertainty principles for the local polynomial Fourier transform
and local polynomial periodogram. Systematic analysis of uncertainty principles is given, explicit expressions of the
uncertainty relations are derived, and an example using the chirp signal and the Gaussian window function is given to
verify the expressions.

1 Introduction
Time-frequency representations are of significant impor-
tance to better describe time-varying signals, i.e, signals
with time-varying frequencies. Among the representa-
tions, the short-time Fourier transform (STFT) is the
simplest and easiest one to implement. However, because
the STFT assumes that the frequencies within a signal seg-
ment are not changing with time, the resolution in the
time and/or frequency domain is often limited for prac-
tical applications. To overcome this drawback, the local
polynomial Fourier transform (LPFT), as a generalized
form of the STFT, was proposed [1]. The kernel of the
LPFT uses extra parameters to approximate the signal’s
phase into a polynomial form. Therefore, the LPFT can
describe the time-varying signals with better accuracy,
and the resolution representing the signal components in
the time-frequency domain can be significantly improved
compared to that achieved by the STFT.
The uncertainty principle plays an important role in sig-

nal processing [2]. In general, the more concentrated the
signal is, the wider band its Fourier transform occupies.
It is impossible to arbitrarily concentrate both a time-
domain signal and its Fourier transform. This trade-off
can be formalized in the form of the uncertainty prin-
ciple. Similarly, the time-frequency concentration of the
transforms belonging to the Cohen class is restricted and
related to an uncertainty principle [3]. The STFT is also
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limited by the uncertainty principle [4], and it is under-
stood that a shorter window used to capture the signal
segment leads to a poor resolution to represent the signal
in the frequency domain, and vice verse. It is not possi-
ble to arbitrarily increase the resolution in both domains
simultaneously. The standard formulation of the uncer-
tainty principle, known as the global uncertainty principle,
is in terms of global standard deviations to involve the
entire time range and the entire frequency range of the
signal. With regard to the local behavior of the signal, the
local uncertainty principle is invoked to present the uncer-
tainty limits on local signal, by defining local quantities as
conditional standard deviations [5]. The conditional stan-
dard deviations can be considered as the local widths or
measures of the local spread in the time and/or frequency
domain. The local uncertainty product of the spectrogram
and a large class of bilinear time-frequency distributions
were considered [5]. It shows that the local uncertainty
product of the spectrogram has a lower bound due to
the windowing approach and cannot be arbitrarily small,
while for a large class of bilinear time-frequency distri-
butions, the local uncertainty product is always less than
or equal to the global uncertainty product and can be
arbitrarily small.
It has been observed that the resolution of the LPFT in

the time-frequency domain is influenced by the window
length which controls the trade-off of bias and variance
[1,6]. A comprehensive study on the uncertainty princi-
ple for the LPFT has been reported in [7]. It was shown
that when the Gaussian window is used to segment the
signal, the uncertainty product of the LPFT is time-
independent if the polynomial coefficients are estimated
correctly. However, the work reported in [7] was mainly
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focused on the uncertainty product obtained by multiply-
ing the duration and bandwidth of the local signal. Other
kinds of uncertainty products of the LPFT, such as the
global uncertainty products, have not been reported in the
literature.
In this paper, systematic analysis regarding the uncer-

tainty principles of the LPFT is given. Several kinds
of uncertainty principles are discussed, including the
global uncertainty principle, the uncertainty principle of
local duration and conditional standard deviation, the
uncertainty principle of local bandwidth and conditional
standard deviation, and the uncertainty principle of the
conditional standard deviations in time and frequency.
The rest of the paper is organized as follows. After

the review on the uncertainty principles of the STFT in
Section 2, the characteristic functions of the second-order
local polynomial periodogram and the uncertainty princi-
ples of the second-order LPFT are discussed in Section 3.
Section 4 presents an example of the uncertainty princi-
ples of the second-order LPFT by using the chirp signals.
Section 5 discusses the uncertainty principles of the Mth-
order LPFT. Finally, conclusions are given in Section 6.

2 Review on the uncertainty principles of STFT
The uncertainty principles of the STFT were derived in
[8], and the definitions and equations will be reviewed in
this section.
Let h(t) represent a window function that segments an

input signal s(t). By multiplying the input signals with the
window function that is peaked around time t, the local
signal is defined as

st(τ ) = s(τ )h(τ − t). (1)

The normalized local signal at the time instant t is

ηt(τ ) = s(τ )h(τ − t)√
P(t)

, (2)

where P(t) = ∫ |s(τ )h(τ −t)|2dτ . For simplicity in the rest
of the paper, the integral without limits implies that the
integration is from −∞ to ∞.
The STFT is the Fourier transform of the local signal

St(ω) = 1√
2π

∫
st(τ )e−jω(τ−t)dτ

= 1√
2π

∫
s(τ )h(τ − t)e−jω(τ−t)dτ . (3)

Similarly, the local spectrum is defined as

Fω(w) = S(w)H(ω − w), (4)

and the normalized local spectrum is

μω(w) = S(w)H(ω − w)√
P(ω)

, (5)

where P(ω) = ∫ |S(w)H(ω − w)|2dw.

The short-frequency time transform is

sω(t) = 1√
2π

∫
S(w)H(ω − w)ejwtdw. (6)

The Fourier transform pairs of the signal and window
are normalized as follows:

S(ω) = 1√
2π

∫
s(t)e−jωtdt,

H(ω) = 1√
2π

∫
h(t)e−jωtdt. (7)

The spectrum of the two-dimensional time-frequency
distribution, the spectrogram PSP(t,ω), is defined as

PSP(t,ω) = |St(ω)|2 = |sω(t)|2, (8)

with its marginals expressed as

PSP(t) =
∫

PSP(t,ω)dω,

PSP(ω) =
∫

PSP(t,ω)dt. (9)

2.1 Properties of the local signal and spectrum
Themean time and duration of the normalized local signal
in (2) are

〈τ 〉t =
∫

τ |ηt(τ )|2dτ ,

T2
t =

∫
(τ − 〈τ 〉t)2 |ηt(τ )|2dτ . (10)

Similarly, from the windowed spectrum, the local fre-
quency and local bandwidth can be defined as follows:

〈w〉ω =
∫

w|μω(w)|2dw,

B2
ω =

∫
(w − 〈w〉ω)2 |μω(w)|2dw. (11)

These quantities pertain to the local signal and local
spectrum. They should not be confused with the local
properties of the spectrogram which is to be considered in
the next subsection.
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2.2 Local and global quantities for the spectrogram
2.2.1 Local quantities
The mean averages and conditional standard deviations
for the spectrogram are [8]

〈ω〉t = 1
P(t)

∫
ωPSP(t,ω)dω

=
∫

η∗
t (τ )

1
j
d
dτ

ηt(τ )dτ

〈t〉ω = 1
P(ω)

∫
tPSP(t,ω)dt

=
∫

μ∗
ω(w)

1
j
d
dw

μω(w)dw

σ 2
ω|t = 1

P(t)

∫
(ω − 〈ω〉)2PSP(t,ω)dω

=
∫

η∗
t (τ )

(
1
j
d
dτ

− 〈ω〉t
)2

ηt(τ )dτ

=
∫ ∣∣∣∣
(
1
j
d
dτ

− 〈ω〉t
)

ηt(τ )

∣∣∣∣
2
dτ

σ 2
t|ω = 1

P(ω)

∫
(t − 〈t〉)2PSP(t,ω)dt

=
∫

μ∗
ω(w)

(
1
j
d
dw

− 〈t〉ω
)2

μω(w)dw

=
∫ ∣∣∣∣
(
1
j
d
dw

− 〈t〉ω
)

μω(w)

∣∣∣∣2 dw. (12)

2.2.2 Global quantities
The spectrogram is constructed from the signal under
observation and the window function. Their mean times
and bandwidth of the signal and the window function are
[8]

〈t〉s =
∫

t|s(t)|2dt

〈t〉h =
∫

t|h(t)|2dt

〈ω〉s =
∫

ω|S(ω)|2dω

〈ω〉h =
∫

ω|H(ω)|2dω

T2
s =

∫ (
t − 〈t〉s)2 |s(t)|2dt

T2
h =

∫ (
t − 〈t〉h

)2 |h(t)|2dt

B2
s =

∫ (
ω − 〈ω〉s)2 |S(ω)|2dω

B2
h =

∫ (
ω − 〈ω〉h

)2 |H(ω)|2dω. (13)

As a two-dimensional density, the spectrogram also has
mean durations and mean standard deviations which are
defined as

〈t〉SP =
∫

tPSP(t,ω)dtdω

〈ω〉SP =
∫

ωPSP(t,ω)dtdω

T2
SP =

∫ (
t − 〈t〉SP

)2
PSP(t,ω)dtdω

B2
SP =

∫ (
ω − 〈ω〉SP

)2
PSP(t,ω)dtdω. (14)

It has been shown that these quantities can be expressed
using the corresponding quantities of the signal and win-
dow as [4]

〈t〉SP = 〈t〉(s) − 〈t〉h
〈ω〉SP = 〈ω〉(s) + 〈ω〉h
T2
SP = T2

s + T2
h

B2
SP = B2

s + B2
h. (15)

3 Uncertainty principles of the second-order LPFT
TheMth-order LPFT of the signal s(t) is defined as [1]:

LPFTs(t,ω) (16)

= 1√
2π

∫
s(t + τ)h(τ )

· exp
{

−jωτ − j
M∑

m=2
ωm−1τ

m/m!

}
dτ ,

= 1√
2π

∫
s(τ )h(τ − t)

· exp
{

−jω(τ − t) − j
M∑

m=2
ωm−1(τ − t)m/m!

}
dτ ,

where h(t) is the window function to segment the signal,
M is the order of the polynomial function, ω1,ω2, ..., and
ωM−1 are the first-order derivative and other higher-order
derivative of the instantaneous frequency of the analyzed
signal. These parameters can be estimated by using the
polynomial time frequency transform [9] or the Lv’s distri-
bution [10]. The energy distribution of the LPFT is called
the local polynomial periodogram (LPP) which is defined
as |LPFTs(t,ω)|2. When M = 2, we can get the second-
order LPFT, which has achieved improved performance
in many applications such as radar imaging [11,12], non-
stationary interference excision in DSSS communications
[13,14], chirp signal detection [15], and source localization
and tracking in nonstationary environment [16]. A review
on the developments and applications of the LPFT can be
referred to [17,18]. In the following, we will focus on the
uncertainty principles of the second-order LPFT and then
generalize to those of theMth-order LPFT.
The characteristic function is a powerful tool for

the study and construction of densities [4]. The two-
dimensional characteristic function of the spectrogram
MSP(θ , τ) is defined as
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MSP(θ , τ) =
∫ ∫

e jθt+jτω |St(ω)|2dtdω

= As(θ , τ)Ah(−θ , τ), (17)

where

As(θ , τ) =
∫

s
(
t + τ

2

)
s∗
(
t − τ

2

)
e jθtdt

is the ambiguity function of the signal, and Ah is the
ambiguity function of the window function.
The distribution function may be obtained from

MSP(θ , τ) by the Fourier inversion,

PSP(t,ω) = |St(ω)|2 =
∫ ∫

MSP(θ , τ)e−j(θt+τω)dθdτ . (18)

Proposition 1. The distribution function of the LPP
PLPP(t,ω) can be presented as

PLPP(t,ω) = |LPFTs(t,ω)|2 (19)

=
∫ ∫

MLPP(θ , τ)e−j(θt+τω)dθdτ ,

where MLPP(θ , τ) is the characteristic function of the
second-order LPP as

MLPP(θ , τ) =
∫ ∫

e jθt+jτω |LPFTs(t,ω)|2dtdω

= As(θ , τ)Ah(ω1τ + θ , τ). (20)

We will prove Proposition 1 as follows.

Proof. Let us expand the right hand side of (19).∫ ∫ ∫ ∫
h
(
x + τ

2

)
h∗ (x − τ

2

)
e j(ω1τ+θ)x

s
(
y + τ

2

)
s∗
(
y − τ

2

)
e jθye−jθt−jτωdxdydτdθ

=
∫ ∫ ∫ 1

2π
h
(
x + τ

2

)
h∗ (x − τ

2

)
e j(ω1τ)x

s
(
y + τ

2

)
s∗
(
y − τ

2

)
e−jτωδ (t − x − y) dxdydτ

=
∫ ∫

h
(
x + τ

2

)
h∗ (x − τ

2

)
e j(ω1τ)x

s
(
t − x + τ

2

)
s∗
(
t − x − τ

2

)
e−jτωdxdτ . (21)

Let a = x + τ
2 and b = x − τ

2 , then

x = a + b
2

, τ = a − b.

With dτdx = |J|dadb, where the Jacobian determinant
is

J =
∣∣∣∣ ∂x

∂a
∂x
∂b

∂τ
∂a

∂τ
∂b

∣∣∣∣ = −1,

(21) becomes
1√
2π

∫
h(a)s∗(t − a) exp(−jaω) exp

(
ja2

ω1
2

)
da

· 1√
2π

∫
h∗(b)s(t − b) exp(jbω) exp

(
−jb2

ω1
2

)
db

= |LPFTs(t,ω)|2.
From Proposition 1, we can easily get the following

Corollary 1 including (22) to (24).

Corollary 1. The total energy can also be given by the
characteristic function evaluated at zero.∫ ∫

PLPP(t,ω)dtdω = MLPP(0, 0)

= As(0, 0)Ah(0, 0)

=
∫

|s(t)|2dt ·
∫

|h(t)|2dt. (22)

The time marginal is obtained by integrating over
frequency,

PLPP(t) =
∫

PLPP(t,ω)dω

=
∫

|L(τ )|2|h(τ − t)|2dτ , (23)

where L(τ ) = s(τ )e jωte−j ω12 (τ−t)2 .
Similarly, the frequency marginal is

PLPP(ω) =
∫

PLPP(t,ω)dt

=
∫

|S′(w)|2|H(ω − w)|2dw, (24)

where S′(w) is the Fourier transform of signal L(τ ).
Since the second-order LPFT can be considered as the

STFT with modulated window function, it is expected
that uncertainty limits for LPP can be derived from corre-
sponding SP limits, that is

PLPP:s(t,ω) = PSP:L(t,ω). (25)

Therefore, we can use the uncertainty principles of the
STFT for signal L(τ ) to discuss the uncertainty principles
of the LPFT for signal s(τ ).
It should be noted that the subscript LPP:s has the same

meaning as the subscript LPP, whichmeans the LPP for the
signal s(τ ). The subscript SP has the same meaning as the
subscript SP:s, which means the SP for the signal s(τ ). The
subscript LPP:s is used together with subscript SP:L with the
same meaning, to indicate the LPP of signal s(τ ) and the
spectrogram of signal L(τ ), respectively.
We apply the results and equations in [6] to the case

in the LPFT/LPP and get the uncertainty principles of
the LPFT/LPP with the Gaussian window as shown in
Table 1. Details of the uncertainty principles are discussed
as follows.
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The first type of uncertainty principle: the global
uncertainty principle
Considering signal L(τ ) and the window h(t) as two sep-

arate functions, each satisfying the uncertainty principle
[4]

T2
LB

2
L ≥ 1

4
,

T2
hB

2
h ≥ 1

4
. (26)

Now, we consider the uncertainty principle for the
global duration and spread of the spectrogram of signal
L(τ ), which is the LPP of the signal s(τ ). We can relate the
global uncertainty product of the LPP to the uncertainties
of the signal and window. Therefore, we have

T2
LPPB

2
LPP

= (T2
L + T2

h
) (
B2
L + B2

h
)

(27)
= T2

LB
2
L + T2

hB
2
h + T2

LB
2
h + T2

hB
2
L.

Using (26) and noting that the last two terms in (27) are
manifestly positive, we always have that

T2
LPPB

2
LPP ≥ 1

2
. (28)

However, the last two terms in (27) can never be zero,
and hence we could obtain a stronger inequality. Assume
that we have a Gaussian signal and window. In this case,
T2
LB

2
L = 1

4 and T2
hB

2
h = 1

4 and therefore,

T2
LPPB

2
LPP = 1

2
+ 1

4

(
T2
L

T2
h

+ T2
h

T2
L

)
.

Because the minimum is achieved when T2
L = T2

h ,
the global uncertainty principle for the LPP of signal s(t)
becomes

T2
LPPB

2
LPP ≥ 1. (29)

The second type of uncertainty principle: local
duration-conditional standard deviation
For the second-order LPFT, the normalized local signal,

ηt(τ ) = s(τ )h(τ − t) exp
{
jωt − jω1

2 (τ − t)2
}

√
P(t)

,

Table 1 Expressions of the uncertainty principles for the
second-order LPFT

Type of uncertainty principle Uncertainty product

1. Global uncertainty principle T2LPPB
2
LPP ≥ 1

2. Local duration-conditional standard
deviation

σ 2
ω|tT2t ≥ 1

4

3. Local bandwidth-conditional standard
deviation

σ 2
t|ωB2ω ≥ 1

4

4. Conditional standard deviations in time
and frequency

σ 2
t|ωσ 2

ω|t > 1
4

which has Tt as its duration, and P(t)=∫ |s(τ )h(τ −t)|2dτ .
The Fourier transform of the local signal is

Ft(ω) = 1√
2π

∫
ηt(τ ) exp

{−jωτ
}
dτ , (30)

whose bandwidth is∫
(ω − 〈ω〉t)2|Ft(ω)|2dω

= 1
P(t)

∫
(ω − 〈ω〉t)2|St(ω)|2dω

= σ 2
ω|t . (31)

That is, the bandwidth of the local signal is the condi-
tional standard deviation of the LPP. Hence, the second
type of uncertainty principle is expressed as

σ 2
ω|tT2

t ≥ 1
4
. (32)

The third type of uncertainty principle: local
bandwidth-conditional standard deviation
The local spectrum is defined as

Fω(w) = S′(w)H(ω − w). (33)

The normalized local spectrum is

μω(w) = S′(w)H(ω − w)√
P(ω)

, (34)

where P(ω) = ∫ |S′(w)H(ω −w)|2dw. The local spectrum
has the following signal as its Fourier transform

fω(t) = 1√
2π

1√
P(ω)

∫
S′(w)H(ω − w)e jwtdw. (35)

The bandwidth of this signal is Bω as given in (11). Its
duration is ∫

(t − 〈t〉ω)2| fω(t)|2dt

= 1
P(ω)

∫
(t − 〈t〉ω)2|sω(t)|2dt

= σ 2
t|ω, (36)

which is the conditional standard deviation of time for a
given frequency of the LPP. Therefore, we have

σ 2
t|ωB2

ω ≥ 1
4
. (37)

The fourth type of uncertainty principle: conditional
standard deviations in time and frequency
We now try to obtain the uncertainty relation which

directly relates the two conditional standard deviations of
the LPP, σ 2

t|ω and σ 2
ω|t . Following the procedure in [8], we

get

σ 2
t|ωσ 2

ω|t ≥
∫ ( d

dτ
|ηt(τ )|

)2
dτ

∫ ( d
dw

|μω(w)|
)2

dw,(38)
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which is called the local uncertainty product in [5]. Fol-
lowing the procedure in [5], the local uncertainty product
of the LPP for a Gaussian window is achieved as

σ 2
t|ωσ 2

ω|t >
1
4
. (39)

It is shown in [5] that for the general case as well as
a large subset of bilinear distributions such as Wigner-
Ville distribution, the local uncertainty product is upper
bounded by the global uncertainty product, and it can be
arbitrarily small even though the product of the global
variance cannot. However, for the STFT/spectrogram, the
local uncertainty product cannot be arbitrarily small, and
there is a lower bound on the local uncertainty product
of the spectrogram due to the windowing operation. This
limitation is an inherent property of the spectrogram and
is not a property of the signal or a fundamental limit. Since
the LPFT/LPP also uses the windowing operation, its local
uncertainty product has a lower bound as the spectro-
gram. In Section 4, examples are given to show that the
local uncertainty product of the LPFT/LPP has a lower
bound and cannot be arbitrarily small.

4 Example
Let us consider an example to verify the expressions in
Section 3 by using the chirp signal

s(t) =
(α

π

)1/4
exp

{−αt2

2
+ ja0t + ja1t2

2

}
, (40)

as the input signal of the second-order LPFT. A Gaussian
window is used to obtain the segments of the signal s(t)

h(t) =
( a

π

)1/4
exp

{
−at2

2

}
, (41)

where a > 0 is the parameter to control the window
width.
Therefore, we have

L(τ ) = s(τ ) exp{jωt} exp
{
−j

ω1
2

(τ − t)2
}

= (
α

π
)1/4 exp

{−ατ 2

2
+ ja0τ + ja1τ 2

2

}

· exp
{
jωt − j

ω1
2

(τ − t)2
}
. (42)

According to the definitions in (23) and (24), we can
calculate that

PLPP(t) =
∫

|L(τ)h(τ − t)|2dτ

=
(

aα
π(a + α)

)1/2
exp

[
− aα
a + α

t2
]
,

PLPP(ω) =
∫

|S′(w)H(ω − w)|2dw

=
(

a′α′

π(a′ + α′)

)1/2
exp
[
− a′α′

a′ + α′ (ω −a0 −ω1t)2
]
.

with

α′ = α

α2 + (a1 − ω1)2
,

β ′ = a1 − ω1
α2 + (a1 − ω1)2

,

a′ = 1
a
.

Since

|ηt(τ )|2 =
(

α + a
π

)1/2
exp

{
−(α + a)

(
τ − at

α + a

)2
}
,

the spectra of the signal and the window are

S′(ω) = exp
{
jωt − j

ω1
2
t2
}

√ √
α/π

α − ja1
exp

{
− (ω − a0 − ω1t)

2(α − ja1)

}
,

H(ω) = 4
√
1/aπ exp

{
−ω2

2a

}
.

Therefore,

|S′(ω)| = (
α′/π

)1/4 exp{−1
2
α′(ω − a0 − ω1t)2

}
,

|H(ω)| = (
a′/π

)1/4 exp{−1
2
a′ω2

}
.

By using these relations and definitions from (10) to (12),
and using PLPP(t) and PLPP(ω) for calculation, we obtain

〈τ 〉t = a
a + α

t

T2
t = 1

2(a + α)

〈ω〉t = a(a1 − ω1)

a + α
t + a0 + ω1t

σ 2
ω|t = 1

2
(a + α) + 1

2
(a1 − ω1)2

a + α

〈w〉ω = a′ω + α′(a0 + ω1t)
a′ + α′

B2
ω = 1

2(a′ + α′)

〈t〉ω = a′β ′

a′ + α′ (ω − a0 − ω1t)

σ 2
t|ω = 1

2
(
a′ + α′)+ 1

2
β ′2

a′ + α′ .
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Global uncertainty principle
Using (13), we can calculate

T2
L = 1

2α

T2
h = 1

2a

B2
L = 1

2α′

B2
h = 1

2a′ .

(43)

Therefore, we have

T2
LPP = 1

2

(
1
a

+ 1
α

)

B2
LPP = 1

2

(
1
a′ +

1
α′

)
= 1

2

(
a+α+ (a1 − ω1)

2

α

)
. (44)

Then

T2
LPPB

2
LPP=1+ (α − a)2

4aα
+ 1
4

(
1
a

+ 1
α

)
(a1 − ω1)

2

α
≥1, (45)

which is consistent with (29). The equality can be achieved
when α = a, and the parameter ω1 is estimated correctly,
that is ω1 = a1.
The second type of uncertainty principle
The duration and conditional standard deviations are

given by

T2
t = 1

2(a + α)

σ 2
ω|t = 1

2
(a + α) + 1

2
(a1 − ω1)

2

a + α
. (46)

Therefore,

σω|tTt = 1
2

√
1 + (a1 − ω1)2

(a + α)2
≥ 1

2
, (47)

which is consistent with the uncertainty principle given in
(32).
The third type of uncertainty principle
We also have the bandwidth and conditional standard

deviations as

B2
ω = 1

2 (a′ + α′)

σ 2
t|ω = 1

2
(
a′ + α′)+ 1

2
β ′2

a′ + α′ .

Therefore,

σt|ωBω = 1
2

√
1 + β ′2

(a′ + α′)2
≥ 1

2
(48)

which is consistent with the uncertainty principle given in
(37).

The fourth type of uncertainty principle
The fourth type of uncertainty principle deals directly

with both conditional standard deviations. It states that

σ 2
t|ωσ 2

ω|t ≥
∫ ( d

dτ
|ηt(τ )|

)2
dτ

∫ ( d
dw

|μω(w)|
)2

dw. (49)

By direct calculation, we have∫ ( d
dτ

|ηt(τ )|
)2

dτ = 1
2
(a + α)∫ ( d

dw
|μω(w)|

)2
dw = 1

2
(
a′ + α′) .

Therefore,

σ 2
t|ωσ 2

ω|t ≥ 1
4
(a + α)

(
a′ + α′) . (50)

The exact calculations of σ 2
t|ω for this example are

σ 2
t|ωσ 2

ω|t = 1
4

[
(a + α)2 + (a1 − ω1)2

a + α

]

×
[(

a′ + α′)2 + β ′2

a′ + α′

]
,

(51)

which implies that (50) is satisfied.
As α goes to zero, the signal in (40) becomes a chirp

signal with constant amplitude, and the local uncertainty
product of the LPP becomes

σ 2
t|ωσ 2

ω|t >
1
4

as α → 0. (52)

It can be easily shown that for arbitrary values of the signal
parameters, theminimum of the local uncertainty product
for the LPP in (51) can be achieved when the Gaussian
window width parameter satisfies a = √α2 + (a1 − ω1)2.
With different width parameters of the Gaussian win-

dow, Figure 1 shows the time-frequency representations
achieved by using the second-order LPFT to process
the signal consisting of chirp components. Following the
definition in (40), the signal components are Gaussian-
modulated chirp components. Expressions of the first two
chirp components and the second two chirp components
are as follows:

s1(t) =
(
0.0001

π

)1/4
exp

(−0.0001(t − 260)2

2

)
× exp

(
j2π

(
0.5t − 0.000481t2

))
+
(
0.0001

π

)1/4
exp

(−0.0001(t − 260)2

2

)
× exp

(
j2π

(
0.4t − 0.000481t2

))
,

(53)

s2(t) =
(
0.0001

π

)1/4
exp

(−0.0001(t − 260)2

2

)
× exp

(
j2π

(
0.35t − 0.000481t2

))
+
(
0.0001

π

)1/4
exp

(−0.0001(t − 260)2

2

)
× exp

(
j2π

(
0.25t − 0.000481t2

))
,

(54)
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(a) the instantaneous frequency of the chirp signal (b) LPP with a=25

(c) LPP with a=2.5 (d) LPP with a=0.25

Figure 1 The second-order LPFT of a chirp signal with different windowwidth parameter a. The image shows the instantaneous frequency of
the chirp signal and the LPP with different window width parameter a. (a) The instantaneous frequency of the chirp signal; (b) LPP with a = 25;
(c) LPP with a = 2.5; (d) LPP with a = 0.25.

and there are five-point spaces between s1(t) and s2(t).
Without loss of generality, the sampling interval is
assumed to be unit. In Figure 1, truncated Gaussian win-
dow is used, and the window length is 1/4 of the signal
length. It is seen that as a decreases or the window width
increases, the chirp components become more concen-
trated in the frequency direction, or equivalently, the
resolution of the signal representation in the frequency
direction is increased. As for the resolution in the time
direction, the signal components in Figure 1b can be
clearly separated in the time instant 260. As the parameter
a decreases, such separation in time direction disappears.
Therefore, from Figure 1b,d, we can observe that the res-
olution in the time direction decreases as the parameter a
decreases. This observation is consistent with the deriva-
tion in (45). For example, decreasing the window param-
eter a leads to the increasing of the signal duration T2

t , or
equivalently, the decreasing of signal time resolution, as
shown in Figure 2a,b,c by sampling the LPP at a particular
frequency instant f = 0.25. At the same time, the condi-
tional standard deviation σ 2

ω|t decreases as a decreases so
that the signal frequency resolution is increased, as shown
in Figure 2d,e,f by sampling the LPP at a particular time
instant t = 400.

5 Uncertainty principle of theMth-order LPFTs
The uncertainty product can be similarly derived for
higher-order LPFTs whose input signals are the same
order polynomial phase signals, as shown in Table 2. For
simplicity, only themajor steps of derivation are presented
in this section.
Let us consider an Mth-order polynomial phase signal

defined as

s(t) =
(α

π

)1/4
e−αt2/2 exp

{
j

M∑
m=1

am−1tm

m!

}
, (55)

where the phase of the signal is

�(t) =
M∑

m=1

am−1tm

m!
. (56)

Because the local signal segment is

L(τ ) = s(τ )ejωte−j
∑M

m=2
ωm−1
m! (τ−t)m , (57)

we have

|S′(ω)| =
(

1
πα

) 1
4
e−

(
ω−j

∑M
m=2

ωm−1
(m−1)! t

m−1
)2

2α . (58)
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(a) time resolution, a=25 (d) frequency resolution, a=25

(b) time resolution, a=2.5 (e) frequency resolution, a=2.5

(c) time resolution, a=0.25 (f) frequency resolution, a=0.25

Figure 2 Signal resolution for a chirp signal with different windowwidth parameter a. (a-c) The signal time resolution for f = 0.25. (d-f) The
signal frequency resolution for t = 400.

The normalized local signal segment is
ηt(τ)

=
s(τ)h(τ − t) exp

{
jωt − j

∑M
m=2

ωm−1
m! (τ − t)m

}
√∫ |s(τ)h(τ − t)|2dτ

=
(

α + a
π

)1/4
exp

{
− a2t2

2(α + a)

}

exp

{
− (α + a)τ2

2
+ aτ t + j

M∑
m=1

am−1tm

m!

}

exp

{
jωt − j

M∑
m=2

ωm−1(τ − t)m

m!

}
,

and

|ηt(τ )|2 =
(

α + a
π

)1/2
exp

{
−(α + a)

(
τ − at

α + a

)2
}
.

The mean time 〈τ 〉t and duration T2
t of the Mth-order

LPFT for the Mth-order polynomial phase signal are the
same as given in Section 4, that is,

〈τ 〉t = at
a + α

,
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Table 2 Expressions of the uncertainty principles for the
Mth-order LPFT

Type of uncertainty principle Uncertainty product

1. Global uncertainty principle T2LPPB
2
LPP ≥ 1

2. Local duration-conditional standard
deviation

σ 2
ω|tT2t ≥ 1

4

3. Local bandwidth-conditional standard
deviation

σ 2
t|ωB2ω ≥ 1

4

4. Conditional standard deviations in time
and frequency

σ 2
t|ωσ 2

ω|t > 1
4

and

T2
t = 1

2(a + α)
.

When the parameters of the LPFT such as ω1,
ω2, . . . ,ωM−1 are estimated correctly, that is, ωM−1 =
�(M) = aM−1, . . . , ωm = �(m+1), . . . , ω1 = �(2) =∑M

m=1
am−1tm−2

(m−2)! , where the values of superscripts in �(m)

are the derivative orders of �, we have

η∗(τ )
d
dτ

ηt(τ )

=
(

α + a
π

)
exp

{
− a2t2

a + α

}
exp

{−(a + α)τ 2 + 2atτ
}

·
{

−(a + α)τ + at + j
M∑

m=1

am−1tm−1

(m − 1)!

}
.

Therefore,

〈ω〉t =
(

α + a
π

)
exp

{
− a2t2

a + α

}

·
∫

exp
{−(a + α)τ 2 + 2atτ

}

·
{
j(a + α)τ − jat +

M∑
m=1

am−1tm−1

(m − 1)!

}
dτ

=
M∑

m=1

am−1tm−1

(m − 1)!

= �(1), (59)

which is the instantaneous frequency of the Mth-order
polynomial phase signals.

(a) LPP with a=25 (d) time resolution, a=25 (g) frequency resolution, a=25

(b) LPP with a=2.5 (e) time resolution, a=2.5 (h) frequency resolution, a=2.5

(c) LPP with a=0.25 (f) time resolution, a=0.25 (i) frequency resolution, a=0.25

Figure 3 Signal resolution for a third order polynomial phase signal with different windowwidth parameter a. (a)-(c): the third order LPP.
(d)-(f): the signal time resolution for f = 0.25. (g)-(i): the signal frequency resolution for t = 400.
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Similar with ωM−1 = �(M) = aM−1, . . . , ωm = �(m+1),
. . . , ω1 = �(2) =∑M

m=1
am−1tm−2

(m−2)! , we have

〈ω2〉 = −
∫

η∗(τ )
d2ηt(τ )

dτ 2
dτ

=
∫ ⎧⎨
⎩a + α +

[
(a + α)τ − at − j

M∑
m=1

am−1tm−1

(m − 1)!

]2⎫⎬
⎭

· exp {−(a + α)τ 2 + 2atτ
}
dτ

= a + α

2
+
[ M∑
m=1

am−1tm−1

(m − 1)!

]2
. (60)

Based on the above derivation, we can conclude that
if the coefficients of the polynomial phase are accurately
estimated, the bandwidth obtained by the LPFTs of any
orderM > 1 is

σ 2
ω|t = B2

t = 〈ω2〉 − 〈ω〉2t
= a + α

2
.

Similarly, we can get that

B2
ω = 1

2
( 1
a + 1

α

) ,
σ 2
t|ω = 1

2

(
1
a

+ 1
α

)
. (61)

Therefore, we have the global uncertainty principle as

T2
LPPB

2
LPP = 1

4

(
1
a

+ 1
α

)
(a + α) ≥ 1, (62)

and

σ 2
ω|tT2

t = 1
4

σ 2
t|ωB2

ω = 1
4

σ 2
ω|tσ 2

t|ω = 1
4
(a + α)

(
1
a

+ 1
α

)
>

1
4

as α → 0. (63)

It means that for the higher-order polynomial phase
signals segmented by a Gaussian window function, the
uncertainty products of theMth-order LPFT are also con-
sistent with the theoretical analysis in Section 3 if the
phase parameters are accurately estimated.
An example using the third-order LPFT to process

the third-order polynomial phase signal is given in
Figure 3a,b,c. Figure 3d,e,f shows the signal time res-
olution by sampling the LPP at a particular frequency
instant f = 0.25, and Figure 3g,h,i shows the signal fre-
quency resolution by sampling the LPP at a particular time
instant t = 400. From Figure 3, we have similar observa-
tions to those from Figures 1 and 2 for the second-order

LPFT processing the chirp signal, that is, as the parame-
ter a decreases, the time resolution is decreased while the
frequency resolution is increased.

6 Conclusions
In this paper, systematic analysis of the uncertainty prin-
ciples of the LPFT are demonstrated to show that as a
windowed transform, the LPFT is limited by the uncer-
tainty principles, including the global uncertainty prin-
ciple, the uncertainty principle of local duration and
conditional standard deviation, the uncertainty principle
of local bandwidth and conditional standard deviation,
and the uncertainty principle of the conditional standard
deviations in time and frequency. Explicit expressions of
the uncertainty principles for the second-order LPFT are
derived, and an example is given in which the uncertainty
relations for a chirp signal is obtained to show that the
relations match with the derived expressions. The uncer-
tainty principles ofMth-order LPFT are also discussed to
show that they are consistent with the theoretical analysis.

Abbreviations
LPFT: local polynomial Fourier transform; LPP: local polynomial periodogram;
STFT: short-time Fourier transform.
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