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Abstract

In this paper, we consider optimization of a two-way multiple-input multiple-output (MIMO) amplify-and-forward
relay network which consists of a pair of transceivers and several relay nodes. Multiple antennas are equipped on the
transceivers and relays. Multiple access broadcast scheme which finishes communication in two time slots is
considered. In the first time slot, signals received by the relays are scaled by several beamforming matrices. In the
second time slot, the relays transmit the scaled signals to the two transceivers. Upon receiving these signals, a MIMO
equalizer is implemented at each transceiver to recover the desired signal. In this paper, zero forcing equalizers are
used. Joint optimization of the beamforming matrices and the equalizers are realized using the following criteria: 1)
the total relay transmission power is minimized subject to the minimal output signal-to-noise ratio (SNR) constraint at
each transceiver, 2) the minimal output SNR of the two transceivers is maximized subject to total relay transmission
power constraint, and 3) the minimal output SNR of the two transceivers is maximized subject to individual relay
transmission power constraint. It is shown that the proposed optimization problems can be formulated as the
second-order cone programming problems which can be solved efficiently. The validity of the proposed algorithm is
verified by computer simulations.

Keywords: Amplify-and-forward; Beamforming; Multiple-input multiple-output; Relaying; Second-order cone
programming; Zero-forcing

Introduction
Relaying technique is capable of extending communica-
tion range and coverage by providing link to shadowed
users via relay nodes, and it received extensive study in
recent years. For collaborative relaying technique, the net-
work with a single pair of users and multiple relay nodes
equipped with single antenna has been widely investi-
gated [1-7]. Zheng [1] assumed perfect knowledge of
channel-state information (CSI) and proposed to opti-
mize the beamforming vector by maximizing the desti-
nation signal-to-noise ratio (SNR) subject to total and
local relay transmission power constraints. In [2], sim-
ilar optimization criterion was used in the case that
only the second-order statistics of CSI are available. In
[3,4], quantized CSI was considered. Quantizer at each
relay and beamforming vectors at destination were opti-
mized to minimize the uncoded bit error rate. In [5],
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the minimizing mean square error (MMSE) criterion was
adopted to optimize the beamforming coefficients. The
advantage of this algorithm lies in its ability to adap-
tively allocate transmission power of each relay. In recent,
a so-called filter-and-forward distributed beamforming
technique was proposed in [6]. Different from previ-
ous algorithms, this method solved the problem of relay
beamforming in frequency selective environments, where
a finite impulse response filter is used at each relay.
Apart from the above mentioned one-way scheme, a two-
way relaying strategy was proposed in [7]. In a two-way
relaying scheme, the relays cooperate with each other to
establish the connection between two transceivers. The
design of the beamformer should simultaneously satisfy
the requirements from the two transceivers. In [8], an
optimization strategy was proposed to optimize the per-
formance of a two-way single-input single-output relaying
network.
Multiple relay nodes create a virtual multiple-input

multiple-output (MIMO) environment at the relay layer.
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With multiple antennas equipped at transmitting and
receiving nodes, user nodes can also employ advantages
of MIMO techniques, such as spatial multiplexing, space-
time coding, and beamforming. Attracted by these mer-
its, more and more algorithms are proposed to optimize
MIMO relay networks [9-14] and virtual MIMO relay
networks [15-18]. Most of these algorithms consider one-
way communication scheme, where various optimization
criteria are adopted, such as maximizing the destination
SNR and minimizing the total system/relay transmission
power, MMSE, ZF (zero force), etc. For a single pair
of users and multiple relays, a unified algorithm which
computes the optimal linear transceivers jointly at the
source node and the relay nodes for two-way amplify-
and-forward (AF) protocols was proposed [14]. The opti-
mization algorithm was designed based on maximization
of sum rate and MMSE. In [16], a two-way scheme was
considered for a relay network with multiple users and
single relay. The network was optimized using MMSE
criterion at the destination subject to power constraint
on relays.
In this paper, we consider a two-way MIMO relay net-

work with one pair of transceivers and multiple relays,
where the two transceivers are each equipped with M
antennas, and every relay is equipped with N antennas.
We assume that relays receive the mixture of signals from
two transceivers in the first time slot. With perfect CSI,
relays scale the received signals and then transmit these
signals to the transceivers in the second time slot. Finally,
a MIMO equalizer is used at each transceiver to recover
the desired signal. To achieve power-efficient communi-
cation, beamforming coefficient matrices are optimized
based on three criteria which are designed based on the
minimal output SNR and relay transmission power.Mean-
while, the MIMO equalizer is optimized by imposing the
ZF constraint. It is shown that the proposed optimiza-
tion problems can be formulated as the second-order
cone programming (SOCP) problems, which can be effi-
ciently solved using the cvx toolbox [19]. Contributions
of this paper are summarized as follows. First, two-way
communication scheme of a MIMO relay network con-
sists of multiple relays with multiple antennas is firstly
considered. Second,the proposed optimization problem
is formulated as an SOCP problem which can be solved
efficiently.
The rest of this paper is organized as follows. The

‘Problem formulation’ section presents the problem for-
mulation. The ‘Mathematical approximation’ section
develops mathematical preparation for optimizing
the considered relay network, and ‘Optimization of the
proposed relay network’ section gives a detailed optimiza-
tion procedure to derive the optimal beamforming and
equalization matrices. In the ‘Computer simulations’
section, computer simulations are conducted to demon-

strate validity of the proposed algorithm. Finally, conclu-
sions and discussions are presented in the ‘Conclusions’
section.

Notation
Bold lower case is used for vectors, while bold capital let-
ters for matrices. I denotes the unit matrix, ∗ denotes the
complex conjugate operation, T denotes the matrix trans-
position operation, and H denotes the complex conjugate
transposition operation. tr(A) is the trace of matrix A.
vec(A) stacks the columns of A into a single column vec-
tor.⊗ denotes the Kronecker product, and (A0⊕. . .⊕AN)

yields a block diagonal matrix with block elements given
by Ai.

Problem formulation
Figure 1 depicts a two-way MIMO relay scheme, where
Wi (i = 1, 2, . . . , L) is the beamforming matrix for the
ith relay and Dj (j = 1, 2) is the equalizer for the
jth transceiver. Transceiver 1 and transceiver 2 are both
equipped with M antennas. It is supposed that L relays
equipped with N antennas are used. Flat fading chan-
nels are considered. We assume that no direct link exists
between the two transceivers. The channel matrix from
transceiver 1 to the ith relay is denoted as Hi (i =
1, 2, . . . , L), and the one from the ith relay to transceiver
2 is denoted as Gi, where Hi ∈ CN×M and Gi ∈ CM×N

consist of independent complex Gaussian variables. It
is assumed that these channels are reciprocal, i.e., the
channel matrix from the ith relay to transceiver 1 is
HT

i , and the one from transceiver 2 to the ith relay is
GT
i . In the first time slot, each transceiver sends mes-

sages to the L relays. With the knowledge of Hi and Gi
(which can be obtained via training), Wi is computed.
In the second time slot, the relays scale the received
signals according to Wi and then transmit these sig-
nals to the two transceivers. After receiving signals, a
MIMO equalizer denoted as Dj, j = 1, 2 is used at
each transceiver. The aim of this paper is to optimize
the performance of the relay network by designing Wi
and Dj.
The mixture of signals received by the ith relay can be

expressed as

ri = His1 + GT
i s2 + vi, (1)

where s1 and s2 are transmitted signals with covariance
matrices P1I and P2I, respectively, and they are indepen-
dent from each other. vi denotes the additive Gaussian
noise (AGN) with covariance matrix Rvi at the ith relay. In
this paper, it is assumed that AGN is white, and its covari-
ance matrix is identical for all relays, i.e., Rvi = σ 2

v I, ∀i =
1, . . . , L.
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Figure 1 A two-way MIMO relay scheme.

In the second time slot, transceiver 1 and transceiver 2
each receives

x =
L∑

i=1
HT

i Wiri + vx, (2a)

=
L∑

i=1
HT

i WiHis1 +
L∑

i=1
HT

i WiGT
i s2

+
L∑

i=1
HT

i Wivi + vx,

y =
L∑

i=1
GiWiri + vy (2b)

=
L∑

i=1
GiWiHis1 +

L∑
i=1

GiWiGT
i s2

+
L∑

i=1
GiWivi + vy,

where vx and vy denote AGN at transceiver 1 and
transceiver 2, and their covariance matrices are assumed
to be σ 2

x I and σ 2
y I, respectively. s1 and s2 are known by

transceiver 1 and transceiver 2, respectively. If Gi, Hi,
and Wi are available to transceivers, terms containing

s1 and s2 can be subtracted from Equations 2a and 2b,
respectively. Equations 2a and 2b are then rewritten as

x =
L∑

i=1
HT

i WiGT
i s2 +

L∑
i=1

HT
i Wivi + vx, (3a)

y =
L∑

i=1
GiWiHis1 +

L∑
i=1

GiWivi + vy. (3b)

A MIMO equalizer is used at each transceiver; thereby,
the restored signal after equalization is expressed as

ŝ2 = D1x, (4a)
ŝ1 = D2y. (4b)

Based on Equations 1 to 4, the total relay transmission
power and terminal SNRs are defined as follows:
1) Total relay transmission power:

Pr =
L∑

i=1
E

[‖Wiri‖22
]

(5)

=
L∑

i=1

[
P1tr

(
WiHiHH

i W
H
i

)
+ P2tr

(
WiGT

i G
∗
i W

H
i

)
+ σ 2

v tr
(
WiWH

i
)]
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2) Terminal SNR at transceiver 1:

SNR1 =
E

[∥∥∥D1
∑L

i=1HT
i WiGT

i s2
∥∥∥2
2

]
E

[∥∥∥D1
∑L

i=1HT
i Wivi + D1vx

∥∥∥2
2

]

=
P2tr

(
D1

(∑L
i=1HT

i WiGT
i

)(∑L
i=1 G∗

i W
H
i H

∗
i

)
DH
1

)
tr

(
D1

(
σ 2
v

∑L
i=1HT

i Wi
∑L

i=1WH
i H

∗
i + σ 2

x I
)
DH

1

)
(6)

3) Terminal SNR at transceiver 2:

SNR2 =
E

[∥∥∥D2
∑L

i=1GiWiHis1
∥∥∥2
2

]
E

[∥∥∥D2
∑L

i=1GiWivi + D2vy
∥∥∥2
2

]

=
P1tr

(
D2

(∑L
i=1GiWiHi

)(∑L
i=1 HH

i W
H
i G

H
i

)
DH
2

)
tr

(
D2

(
σ 2
v

∑L
i=1GiWi

∑L
i=1WH

i G
H
i + σ 2

y I
)
DH

2

) .

(7)

In subsequent sections, Pr, SNR1, and SNR2 will be used
to optimize beamformingmatrices andMIMO equalizers.

Mathematical approximation
From (5) to (7), it seems difficult to directly evaluate Wi
andDj because they appear in both signal and noise terms.
Therefore, before designing beamformers, three lemmas
are derived to makeWi and Dj solvable.

Lemma 1. Total relay transmission power can be ex-
pressed as a quadratic function of w:

Pr = P1wHHw + P2wHGw + σ 2
v w

Hw, (8)

where

wi = vec(Wi), i = 1, . . . , L,

w =
(
wT
1 , . . . ,w

T
L

)T
,

Hik =
(
hTik ⊗ IN

)
,

H =
M∑
k=1

HH
1kH1k ⊕ . . . ⊕

M∑
k=1

HH
LkHLk ,

Gik =
(
gTik ⊗ IN

)
,

G =
M∑
k=1

GH
1kG1k ⊕ . . . ⊕

M∑
k=1

GH
LkGLk ,

are defined. The notation of hik and gik is given in the proof.

Proof. From (5), the kth column of (WiHi) can be
expressed as

(
hTik ⊗ IN

)
wi, where hik denotes the kth col-

umn of matrix Hi. Therefore, the trace of
(
WiHiHH

i W
H
i

)
is given by the Frobenious norm of (WiHi), which can be
computed as

tr
(
WiHiHH

i W
H
i

) = wH
i

M∑
k=1

(
hTik ⊗ IN

)H (
hTik ⊗ IN

)
wi. (9)

Expressing the trace of
(
WiGT

i G
∗
i W

H
i

)
in the similar

way of (9) and substituting it and (9) into (5) yield

Pr = P1
L∑

i=1
wH
i

M∑
k=1

(
hTik ⊗ IN

)H (
hTik ⊗ IN

)
wi

+ P2
L∑

i=1
wH
i

M∑
k=1

(
gTik ⊗ IN

)H (
gTik ⊗ IN

)
wi

+ σ 2
v

L∑
i=1

wH
i wi,

where gik denotes the kth column of matrix GT
i .

Using the definitions in Lemma 1, (8) can be derived.

SNR constraint is usually used in optimizing a relay net-
work. For our problem, constraints on destination SNRs
are expressed as

SNR1 ≥ γ1, (10a)

SNR2 ≥ γ2, (10b)

where γ1 and γ2 are required SNRs at transceiver 1 and
transceiver 2, respectively. From (6) and (7), it is seen that
(10) is related to Wi and Dj in a complicated form. In the
rest of this section, two lemmas are derived to transform
(10) into a manageable form.
The ZF constraint requires that

D1

L∑
i=1

HT
i WiGT

i = I, (11a)

D2

L∑
i=1

GiWiHi = I, (11b)

where D1 and D2 are defined as the left pseudoinverse of∑L
i=1 HT

i WiGT
i and

∑L
i=1 GiWiHi, respectively.
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Lemma 2. From definitions of D1 and D2 given above, if
DH

1 D1 and DH
2 D2 are diagonal matrices, we have

tr
(
DH

1 D1
) =

M∑
i=1

1
| φii |2 σi

, (12a)

tr
(
DH

2 D2
) =

M∑
i=1

1
| φ̃ii |2 σ̃i

, (12b)

where the definitions of φii, φ̃ii, σi, and σ̃i are given in the
proof.

Proof. It is straightforward to show that

D1DH
1 =

( L∑
i=1

G∗
i W

H
i H

∗
i

L∑
i=1

HT
i WiGT

i

)−1

. (13)

If we define H = [
HT

1 , . . . ,H
T
L
]T , W = W1 ⊕ . . .WL,

and G = [G1, . . . ,GL], (13) can be expressed as

D1DH
1 =

(
G∗WHH∗HTWGT

)−1
. (14)

Suppose that the eigendecomposition of H∗HT is given
by

H∗HT = (
U U‖

) (
� 0
0 0

)(
UH

UH‖

)
(15)

= U�UH .

In (15), the diagonal of � consists of M nonzero eigen-
values. The matrix U consists of all the eigenvectors cor-
responding to these nonzero eigenvalues. U‖ consists of
column vectors which are linearly dependent on columns
of U. The dependence of eigenvectors is caused by rank
deficiency ofH∗HT whose effective rank isM.
We define W = WGT , and assume that W can be

represented by the complete orthogonal basis in the NL-
dimensional space, where U is contained in the complete
orthogonal basis, i.e.,

W = (
U U⊥

) (
�

�⊥

)
. (16)

In (16),U ∈ CNL×M , � ∈ CM×M , andU⊥ consist ofN −
M orthogonal basis of the NL-dimensional space, which
can be obtained via Gram-Schmidt procedure based onU.
Substituting (15) and (16) into (14) yields

D1DH
1 =

((
�H �H⊥

) (
UH

UH⊥

)
U�UH (17)

(
U U⊥

) (
�

�⊥

))−1
= (

�H��
)−1 .

From (17), it is seen that

tr| (DH
1 D1

) = tr
(
D1DH

1
) ≤

M∑
i=1

1
| φii |2 σi

, (18)

where φii and σi are the ith diagonal element of � and �,
respectively.
Similarly, for D2, we have

tr
(
DH

2 D2
) ≤

M∑
i=1

1
| φ̃ii |2 σ̃i

, (19)

where σ̃i is the ith nonzero eigenvalue ofGHG. φ̃ii is the ith

diagonal element of ˜�, where WH = (
Ũ Ũ⊥

)(
˜�

˜�⊥

)
,

and Ũ consists of eigenvectors of GHG corresponding to
its nonzero eigenvalues.

Lemma 3. Inequalities (10) can be relaxed as

σ 2
v wHHw + Mσ 2

x
wHdidHi wσi

≤ 1
γ1

, ∀i = 1, . . . ,M, (20a)

σ 2
v wHGw + Mσ 2

y

wH d̃id̃Hi wσ̃i
≤ 1

γ2
, ∀i = 1, . . . ,M, (20b)

wHe∗
ij = 0, ∀i = 1, . . . ,M, j �= i, (20c)

wH ẽ∗
ij = 0, ∀i = 1, . . . ,M, j �= i, (20d)

where

Hik = (IN ⊗ hik)∗ ,

H =
M∑
k=1

H1kHH
1k ⊕ . . . ⊕

M∑
k=1

HLkHH
Lk ,

Gik = (
IN ⊗ gik

)∗ ,

G =
M∑
k=1

G1kG
H
1k ⊕ . . . ⊕

M∑
k=1

GLkG
H
Lk ,

di = Q
(
I ⊗ u∗

i
)
gi,

d̃i = Q
(
I ⊗ ũ∗

i
)
hi,

eij = Q
(
I ⊗ u∗

i
)
gj,

ẽij = Q
(
I ⊗ ũ∗

i
)
hj,

and ui, ũi, gi, hi and Q are defined in the following proof.

Proof. With the ZF constraint, (6) and (7) can be
simplified as

SNR1 = P2M

tr
(
D1

(
σ 2
v

∑L
i=1 HT

i Wi
∑L

i=1 WH
i H

∗
i + σ 2

x I
)
DH

1

)

SNR2 = P1M

tr
(
D2

(
σ 2
v

∑L
i=1 GiWi

∑L
i=1 WH

i G
H
i + σ 2

y I
)
DH

2

) .
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From the property of tr(.), we may relax the inequality
of SNR1 as

SNR1 = P2M
tr

(
D1BDH

1
)

= P2M
tr

(
BDH

1 D1
)

≥ P2M
tr (B) tr

(
DH

1 D1
) , (21)

where B =
(
σ 2
v

∑L
i=1 HT

i Wi
∑L

i=1 WH
i H

∗
i + σ 2

x I
)
.

Substituting (18) into (21) yields

SNR1 ≥ P2M
tr(B)

∑M
i=1

1
|φii|2σi

. (22)

From (16) and the definition ofW, we have

� = UHW = UHWGT (23)

=
⎛⎜⎝ vec(W)H

(
I ⊗ u∗

1
)

...
vec(W)H

(
I ⊗ u∗

M
)
⎞⎟⎠GT .

Therefore, the elements of � can be represented by

φij = vec(W)H
(
I ⊗ u∗

i
)
gj, (24)

where ui denotes the ith column of U and gTj denotes the
jth row of G.
Similarly, for SNR2, we have

SNR2 ≥ P1M
tr(B̃)

∑M
i=1

1
|φ̃ii|2σ̃i

, (25)

where B̃ =
(
σ 2
v

∑L
i=1 GiWi

∑L
i=1 WH

i G
H
i + σ 2

y I
)
, and φ̃ij

can be expressed by

φ̃ij = vec(W)H
(
I ⊗ ũ∗

i
)
hj, (26)

where ũi denotes the ith column of Ũ and hj denotes the
jth column of H. It is assumed that the eigendecomposi-
tion of GHG is Ũ˜�ŨH .
Similar to Lemma 1, the trace of B and B̃ can be

expressed as

tr(B) = σ 2
v w

HHw + Mσ 2
x , (27a)

tr(B̃) = σ 2
v w

HGw + Mσ 2
y , (27b)

where the definitions ofH and G are given in Lemma 3.

Substituting (24) and (27a) into (22) and (26), and (27b)
into (25) yields

SNR1 ≥ P2M(
σ 2
v wHHw + Mσ 2

x
)∑M

i=1
1∣∣∣vec(W)H(I⊗u∗

i )gi
∣∣∣2σi

, (28a)

SNR2 ≥ P1M(
σ 2
v wHGw + Mσ 2

y

) ∑M
i=1

1
|vec(W)H(I⊗ũ∗

i )hi|2σ̃i
. (28b)

From (28), (10) can be relaxed as

P2M
γ1

≥
M∑
i=1

σ 2
v wHHw + Mσ 2

x∣∣∣vec(W)H
(
I ⊗ u∗

i
)
gi

∣∣∣2 σi

, (29a)

P1M
γ2

≥
M∑
i=1

σ 2
v wHGw + Mσ 2

y∣∣vec(W)H
(
I ⊗ ũ∗

i
)
hi

∣∣2 σ̃i
. (29b)

If every term on the right side of (29a) and (29b) is
smaller than P2

γ1
and P1

γ2
, respectively, i.e.,

P2
γ1

≥ σ 2
v wHHw + Mσ 2

x∣∣∣vec(W)H
(
I ⊗ u∗

i
)
gi

∣∣∣2 σi

, ∀i = 1, . . . ,M, (30a)

P1
γ2

≥ σ 2
v wHGw + Mσ 2

y∣∣vec(W)H
(
I ⊗ ũ∗

i
)
hi

∣∣2 σ̃i
, ∀i = 1, . . . ,M, (30b)

(29) can be satisfied.
Because W is block diagonal matrices, there are many

zero elements in vec(W), which do not contribute to the
calculation of (30). SupposeQ is chosen such that

w = Qvec(W) (31)

holds.
To derive (30), we have make assumption that DH

1 D1
andDH

2 D2 should be diagonal. From (17), we may achieve
this by forcing � to be a diagonal matrix. Therefore, the
following equations should be satisfied:

φij = vec(W)H
(
I ⊗ u∗

i
)
gj = 0, ∀i �= j, (32)

φ̃ij = vec(W)H
(
I ⊗ ũ∗

i
)
hj = 0, ∀i �= j. (33)

With (30) to (33) and definitions given in Lemma 3, (20)
can be derived.

Optimization of the proposed relay network
In this section, we introduce optimization of the proposed
two-way MIMO relay network using the following three
criteria.
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Minimizing the total relay transmission power subject to
individualminimal output SNR constraint and ZF constraint
Using this criterion, the optimization problem is formu-
lated as

min
w

Pr, (34a)

subject to (SNR1)lower ≥ γ1, (SNR2)lower ≥ γ2. (34b)

where (SNR1)lower and (SNR2)lower denote the minimal
output SNR at transceiver 1 and transceiver 2, respec-
tively.

Theorem 1. (34) can be approximated as an SOCP prob-
lem given as

min
w

‖U1w‖2 , (35a)

subject to∥∥U2w′∥∥
2 ≤ Real{wHdi}√

γ1
, ∀i = 1, . . . ,M (35b)

∥∥U3w′∥∥
2 ≤ Real{wH d̃i}√

γ2
, ∀i = 1, . . . ,M, (35c)

Imag{wHdi} = 0, ∀i = 1, . . . ,M, (35d)
Imag{wH d̃i} = 0, ∀i = 1, . . . ,M, (35e)
wHe∗

ij = 0, ∀i = 1, . . . ,M, j �= i, (35f)

wH ẽ∗
ij = 0, ∀i = 1, . . . ,M, j �= i, (35g)

w′ =
(
w
1

)
. (35h)

and di, d̃i, eij, and ẽij are given in Lemma 3.

Proof. Define Ai =

⎛⎜⎜⎝
HH

i1
...

HH
iM

⎞⎟⎟⎠ ,Bi =
⎛⎜⎝ GH

i1
...

GH
iM

⎞⎟⎠ and

U1 =
⎛⎝ √

P1(A1 ⊕ . . . ⊕ AL)√
P2(B1 ⊕ . . . ⊕ BL)

σvINL

⎞⎠. From Lemma 1, Pr can

represented as ‖U1w‖22. If we define Ci =
⎛⎜⎝ HH

i1
...

HH
iM

⎞⎟⎠
and U2 =

(
σv (C1 ⊕ . . .CL) 0

0T
√
Mσx

)
, the nomina-

tor of the left side of (20a) can be represented as

∥∥U2w′∥∥2
2. Similarly, we define Ei =

⎛⎜⎜⎝
GH
i1
...

GH
iM

⎞⎟⎟⎠ and U3 =

(
σv (E1 ⊕ . . .EL) 0

0T
√
Mσy

)
, the nominator of the left side

of (20b) can be represented as
∥∥U3w′∥∥2

2. Using these
definitions, (20a) and (20b) can be expressed as

∥∥U2w′∥∥2
2 ≤ wHdidHi w

γ1
, ∀i = 1, . . . ,M, (36a)

∥∥U3w′∥∥2
2 ≤ wH d̃ĩdHi w

γ2
, ∀i = 1, . . . ,M. (36b)

From the fact that Real{x} ≤| x |, (36) can be relaxed by

∥∥U2w′∥∥
2 ≤ Real{wHdi}√

γ1
, ∀i = 1, . . . ,M, (37a)

∥∥U3w′∥∥2
2 ≤ Real{wH d̃i}√

γ2
, ∀i = 1, . . . ,M, (37b)

Imag{wHdi} = 0, ∀i = 1, . . . ,M, (37c)
Imag{wH d̃i} = 0, ∀i = 1, . . . ,M. (37d)

Then, with Lemma 3, (35) can be derived.

Maximizing the minimal output SNR of transceivers
subject to total relay transmission power constraint and ZF
constraint
Assuming that the minimum SNR required by the
two transceivers is t, the optimization problem can be
formulated as

max
w

t, (38a)

subject to (SNR1)lower ≥ t, (SNR2)lower ≥ t, Pr ≤ P. (38b)

where P denotes the maximal total relay transmission
power.

Theorem 2. (38) can be approximated as an SOCP
problem:

max
w

t, (39a)

subject to ‖U1w‖2 ≤ √
P, (39b)∥∥U2w′∥∥

2 ≤ Real{wHdi}√
t

, ∀i = 1, . . . ,M, (39c)

∥∥U3w′∥∥
2 ≤ Real{wH d̃i}√

t
, ∀i = 1, . . . ,M, (39d)

Imag{wHdi} = 0, ∀i = 1, . . . ,M, (39e)
Imag{wHd̃i} = 0, ∀i = 1, . . . ,M, (39f)
wHe∗

ij = 0, ∀i = 1, . . . ,M, j �= i, (39g)

wH ẽ∗
ij = 0, ∀i = 1, . . . ,M, j �= i, (39h)

w′ =
(
w
1

)
. (39i)
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Proof. It can be easily obtained from Lemmas 1 to 3 and
Theorem 1.

Because (39) is quasi-convex, for any given value of t, it
becomes the following SOCP problem:

find w, (40a)
subject to (39b) to (39i). (40b)

The bisection search procedure can be applied to
solve (40).

Maximizing theminimal output SNR of transceivers
subject to individual relay transmission power constraint
and ZF constraint
The optimization problem is given as

max
w

t, (41a)

subject to (SNR1)lower ≥ t, (SNR2)lower ≥ t, (41b)
Pri ≤ Pi, i = 1, .., L, (41c)

where Pi denotes the maximal transmission power
of the ith relay, and Pri = P1tr

(
WiHiHH

i W
H
i

) +
P2tr

(
WiGT

i G
∗
i W

H
i

) + σ 2
v tr

(
WiWH

i
)
.

Theorem 3. (41) can be approximated as an SOCP
problem:

max
w

t, (42a)

subject to
∥∥Ui

1w
∥∥
2 ≤ √

Pi, i = 1, . . . , L, (42b)∥∥U2w′∥∥
2 ≤ Real{wHdi}√

t
, ∀i = 1, . . . ,M, (42c)

∥∥U3w′∥∥
2 ≤ Real{wH d̃i}√

t
, ∀i = 1, . . . ,M, (42d)

Imag{wHdi} = 0, ∀i = 1, . . . ,M, (42e)
Imag{wH d̃i} = 0, ∀i = 1, . . . ,M, (42f)
wHe∗

ij = 0, ∀i = 1, . . . ,M, j �= i, (42g)

wH ẽ∗
ij = 0, ∀i = 1, . . . ,M, j �= i, (42h)

w′ =
(
w
1

)
, (42i)

where Ui
1 is defined as Uri =

⎛⎝ √
P1Ai√
P2Bi

σvIN

⎞⎠.

Proof. It can be easily obtained from Lemmas 1 to 3 and
Theorem 1.

For any given value of t, (42) reduces to the following
SOCP probelm:

find w, (43a)
subject to (42b) to (42i). (43b)

Similar to the solution of (40), (43) is solved by the bisec-
tion search procedure.

Computer simulations
In order to verify the validity of the proposed algorithm,
we devise the following simulation scenario. The num-
ber of antennas of transceiver 1, transceiver 2, and relays
is assumed to be M = N = 3, and the number of
relays is L = 10. The communication channel coeffi-
cients are modeled by complex Gaussian variables with
zero mean and variance σ 2

h and σ 2
g . The two transceivers

transmit independent data streams from different anten-
nas with P1 = P2 = 0 dB. AGN on each antenna is
assumed to be complex Gaussian variable with zero mean
and unit variance, i.e., σ 2

x = σ 2
y = σ 2

v = 0 dB. Sources
are generated from a QPSK constellation. The values of
SNR are computed from 100 independent trials for each
plot. Furthermore, the power consumption to increase the
minimal output SNR2 for 2 dB becomes smaller as the
value of γ1 increases, which means the derived minimal
output SNR approaches the output SNR as the value of
SNR increases. Therefore, less additional power consump-
tion is needed to increase the same amount of output
SNR. This phenomenon can also be demonstrated by
Figure 2.

Minimizing the total relay transmission power subject to
individualminimal output SNR constraint and ZF constraint
We assume that σ 2

h = σ 2
g = 0 dB. Figure 3 depicts the total

relay transmission power Pr against the value of γ1. It is
observed that the required transmission power increases
as the value of γ1 increases. Also, for a given γ1, the total
relay transmission power increases with the increase of γ2.
Figure 2 shows the cumulative distribution function

(CDF) of the output SNR at transceiver 2 with different
values of γ2. In Figure 2, the value of γ2 is assumed to vary
from−6 to 6 dBwith 2 dB stepsize. From the figure, we see
that for a given γ2, the output SNR at transceiver 2 does
not change significantly with the variation of γ1, and the
output SNR2 is about 2 to 3 dB higher than the value of
γ2 with 90% probability. This is reasonable since the pro-
posed optimization problemuses theminimal output SNR
instead of the real output SNR. It can be seen that the dif-
ference between the real output SNR2 and γ2 decreases as
the value of γ2 increases, which is in accordance with the
phenomenon observed in Figure 3.
Figure 4 plots the CDF of output SNR1 with different

values of γ2. It is found that the average output SNR1
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Figure 2 CDF of the output SNR at transceiver 2 with different values of γ2.
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Figure 3 Total relay transmission power Pr versus the value of γ 1.
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Figure 4 CDF of the output SNR at transceiver 1 with different values of γ2.

with γ2 = 6 dB is less than that with γ2 = −6 dB. It
is known that Pr is allocated to the relays such that the
two transceivers can simultaneously meet the required
SNR. It can be concluded from Figure 4 that Pr allocation
tends to emphasize maximizing the output SNR which
has higher requirement under the condition that the lower
SNR requirement can be satisfied. Therefore, SNR1 can
achieve a higher average value when γ2 = −6 dB than
when γ2 = 6 dB.

Maximizing theminimal output SNR of transceivers
subject to total relay transmission power constraint and ZF
constraint
Figure 5 depicts the output SNR at transceiver 1 with
the value of σ 2

h changing from 0 to 10 dB. Total relay
transmission powers of 0 and 5 dB are considered. It is
found that for a given σ 2

h , the output SNR1 increases
with the increase of σ 2

g , while for a given σ 2
g , SNR1

does not keep increasing with the increase of σ 2
h . This

is because as the quality of channels between transceiver
1 and the relays improves, i.e., σ 2

h increases, the desired
transmission power at transceiver 2 to guarantee its out-
put SNR increases [2]. Due to limitation of total relay
transmission power, the output SNR at transceiver 1 can
not increase consistently. When the quality of channels
between transceiver 2 and the relays improves, the output
SNR1 increases with the increase of σ 2

h .
Figure 6 shows the same plot for output SNR2. It is

observed that the output SNR2 increases with the increase

of σ 2
h , it while does not increase with the increase of σ 2

g
especially when σ 2

g is high and σ 2
h is relatively low. The

reason is the same as that for SNR1 versus σ 2
h . Also, as

noticed from Figures 5 and 6, the output SNR1 and SNR2
increases with the increase of the total relay transmission
power.

Maximizing theminimal output SNR of transceivers
subject to individual relay transmission power constraint
and ZF constraint
In this simulation, we assume that the total relay transmis-
sion power is uniformly allocated to the relays. Figures 7
and 8 show the output SNR versus the value of σ 2

h with
individual relay powers of −10 and 0 dB. It is noted that
these plots are similar to those with total relay transmis-
sion power constraint. With the increase of individual
relay transmission power, output SNRs at transceiver 1
and transceiver 2 increase. Compared with Figures 5 and
6, it is found that the output SNR1 and SNR2 are slightly
lower with individual power constraint than those with
total power constraint. This is because individual power
constraint is more restrictive than the total power con-
straint.

Conclusions
In this paper, we focus on the optimization of a two-
way MIMO relay network. The proposed optimization
criteria yield three SOCP problems which can be solved
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Figure 5 Output SNR1 versus the value of σ 2
h . Solid line: with total relay transmission power of 0 dB, dash line: with total relay transmission power

of 5 dB.

Figure 6 Output SNR2 versus the value of σ 2
h . Solid line: with total relay transmission power of 0 dB, dash line: with total relay transmission power

of 5 dB).
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Figure 7 Output SNR1 versus the value of σ 2
h . Solid line: with individual relay transmission power of −10 dB, dash line: with individual relay

transmission power of 0 dB.
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efficiently. Computer simulation demonstrates validity of
the proposed algorithm. Furthermore, it is straightfor-
ward to see that the proposed algorithm can be imple-
mented distributively as long as U and Ũ are broadcasted
to all the relays. With w replaced by wi, U1 replaced

by Uri, U2 replaced by
(

σvCi 0
0T σx

)
, and U3 replaced by(

σvDi 0
0T σy

)
, (35), (39), and (42) can be solved at each

relay. The performance of distributed implementation will
be analyzed in our future work.
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