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Abstract

We present a system for the automatic separation of solo instruments and music accompaniment in polyphonic
music recordings. Our approach is based on a pitch detection front-end and a tone-based spectral estimation. We
assess the plausibility of using sound separation technologies to create practice material in a music education
context. To better understand the sound separation quality requirements in music education, a listening test was
conducted to determine the most perceptually relevant signal distortions that need to be improved. Results from the
listening test show that solo and accompaniment tracks pose different quality requirements and should be optimized
differently. We propose and evaluate algorithm modifications to better understand their effects on objective
perceptual quality measures. Finally, we outline possible ways of optimizing our separation approach to better suit
the requirements of music education applications.

1 Introduction
Sound source separation is the signal processing task that
deals with the extraction of unknown signals or sources
from an audio mixture. In the case of musical signals, a
possible sound source separation task would be to obtain
independent signals for the saxophone, piano, bass, and
percussion, given a recording or audio mixture of a jazz
quartet.
This paper focuses on a particular case of sound source

separation called solo and accompaniment separation,
also referred to as lead or main instrument separation or
de-soloing. For this specific task, the goal is to separate the
audio mix into two sources only: the main instrument or
solo and the accompaniment. The accompaniment refers
to one or more instruments playing along with the solo.
In the jazz quartet example, solo and accompaniment
separation would result in an independent track for the
saxophone (assuming that the saxophone plays the solo
part in the track) and an accompaniment track composed
of the piano, bass, and percussion. As the term backing
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track is commonly used in the audio production commu-
nity to refer to the accompaniment tracks, these two terms
are used interchangeably throughout the paper. For the
solo/accompaniment separation task, the solo is assumed
to be the instrument playing themain melody of the piece.
In an attempt to have a clear definition to work with, the
music information retrieval (MIR) community commonly
refers to main melody as the single (monophonic) pitch
sequence that a listener might reproduce if asked to whis-
tle or hum a piece of polyphonic music and that a listener
would recognize as being the ‘essence’ of that music [1].
After many years of sound separation research, results

suggest that separation performance can be improved
when prior information about the sources is available. The
inclusion of known information about the sources in the
separation scheme is referred to as informed sound source
separation (ISS) and comprises, among others, the use of
musical instrument digital interface (MIDI)-like musical
scores, the use of pitch tracks of one or several sources,
oracle sound separation where the original sources are
available, and the extraction of model parameters from
training data of a particular sound source. The reader is
referred to [2] for a general overview of informed sound
source separation approaches.
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The system described in this paper attempts to sep-
arate solo instruments from music accompaniment in
polyphonic music using pitch as prior information.
This approach will be referred to as pitch-informed
solo/accompaniment separation.

2 Research goals and paper outline
2.1 Research goal
We attempt to develop of a system for solo and accom-
paniment separation to be used in the music education
context. The system should be capable of separating main
instruments from music accompaniment, regardless of
the type of solo instrument used, musical genre of the
track, or type of music accompaniment. For the solo
instrument, only pitched instruments are considered and
no attempt is made to separate percussive instruments.
We focus on the monophonic case, where the solo instru-
ment is assumed to play only one note at a time. Only
the single-channel or monaural separation problem is
addressed where no spatial or panning information can
be used. The algorithm should be lightweight and pro-
cessing times should be minimized to allow its use in
real-world applications. The usability of our algorithm in
‘music education and practice’ applications is addressed
by considering efficiency and quality requirements in
this context and proposing algorithm enhancements to
meet such requirements. A perceptual listening test in
the context of musical instrument learning is conducted
to obtain practical insights on how to optimize our algo-
rithm for this context. Refer to Section 5 for a short
introduction about the use of MIR technologies in music
education.

2.2 Main contributions
The main contributions of this research work are listed
in the following categorized as major and minor contri-
butions. Major contributions: (1) an efficient method for
pitch-informed solo/accompaniment separation based on
spectral estimation of tone objects. The tone-based pro-
cessing is a musically meaningful segmentation of the
audio signal that allows the inclusion of known charac-
teristics of instrumental tones such as the post-processing
stage presented in Subsubsection 4.1.5 and common
amplitude modulation presented in Subsection 4.3 and
(2) a novel method to include common amplitude mod-
ulation (CAM) characteristics in the separation scheme.
Minor contributions: (3) a novel listening test setup
to evaluate the use of solo/accompaniment separation
in music education applications. Results from the lis-
tening test give clear directions on how to optimize
separation algorithms to meet quality requirement of
music education applications, and (4) collection of a new
dataset for solo/accompaniment separation where both
vocal and instrumental solos from different genres are

included. The dataset is publicly available to the research
community.

2.3 Paper outline
To introduce the reader to the state-of-the-art of separa-
tion research and put our approach into context, a brief
overview of current sound source separation approaches
is provided in Section 3. In Section 4, the details of
the proposed system are described and its evaluation
is presented in Subsection 4.2. Algorithm modifications
and their evaluation are presented in Subsection 4.3. In
Section 5, we evaluate the use of solo/accompaniment
separation in ‘music education’ applications. Final com-
ments and future directions are presented in Section 6.

3 Related work
Several techniques have been proposed in the literature
for the solo and accompaniment separation task. Each
approach takes advantage of different signal properties or
models the separation problem in slightly different ways:
sparsity constraints, spatial cues, source models, and prior
information are all different approaches that have been
applied in the separation task.
Signal sparsity for example, has been exploited in several

approaches. In [3], a system for singing voice separation
is proposed where the singing voice is modeled as a high-
rank but sparse signal in the time-frequency domain. On
the other hand, the accompaniment is modeled as a low-
rank signal due to its assumed repetitive structure. Robust
principal component analysis (RPCA) is used as factor-
ization scheme to extract the desired sources. Another
approach that takes advantage of the repetitive structure
of the accompaniment is presented in [4]. The system
first identifies the repeating period p of the signal using
an autocorrelation approach to calculate a beat spectrum.
The algorithm thenmodels the repeating segment S as the
element-wise median of the r segments of length p in the
spectrogram. The repeating patterns are finally extracted
using a soft masking approach.
Other approaches have used spatial cues for source

localization to perform the separation task. In [5], an
approach for singing voice extraction in stereo recordings
is presented. Here, panning information in conjunction
with a probabilistic pitch tracking approach is used. A
latency of 250 ms is achieved allowing online process-
ing. Other approaches that have used spatial cues in the
separation task are presented in [6] and [7].
Source/filtermodels are often used tomodel solo instru-

ments and the voice. The system described in [8] proposes
a mid-level representation of the audio signal assuming an
instantaneous mixture model (IMM) of the target source
and the residual. The solo instrument is represented with
a source/filter model where the source carries pitch infor-
mation and the filter timbral information. Non-negative
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matrix factorization (NMF) and soft masking are used to
extract the final signals.
Pitch has also been used as prior information when

performing separation. Some approaches make use of f 0
(fundamental frequency) sequences extracted with pitch
detection algorithms as front-ends. Others, directly use
MIDI-like symbolic music representations. While using
pitch detection is a flexible approach that only requires the
original mix, separation performance completely relies
on the results obtained from the pitch detection front-
end. Score-informed separation removes the difficulties
inherent to pitch extraction but also comes with its own
challenges. Due to artistic liberties taken in musical per-
formances, audio recordings will never be completely syn-
chronized with music scores. It is then necessary, before
any separation is attempted, to align score and audio as
precisely as possible. A common approach to address this
issue is the use of dynamic time warping (DTW) to find
the optimal match between the two sequences. In [9]
for example, a system for high-resolution synchroniza-
tion of audio streams via chroma-based onset features is
presented. In [10], the authors present a score-informed
separation algorithm based on probabilistic latent com-
ponent analysis (PLCA). PLCA can be understood as a
probabilistic interpretation of NMF which decomposes
the magnitude spectrogram as a sum of outer products
of spectral and temporal components; its major bene-
fit being the possibility to incorporate prior distributions
in the decomposition. The system uses score informa-
tion to separate the harmonic instruments in the audio
mix and DTW to synchronize the score to the audio
track. Synthesized versions of the score parts correspond-
ing to each audio source are decomposed into temporal
and spectral components using PLCA. These components
are then used as prior distributions in the PLCA decom-
position of the original mix. In [11], a method for solo
instrument separation in stereo recordings is proposed.
The system uses MIDI-like scores of the lead instrument
as prior information and chroma-based DTW to address
global misalignments between the score and the audio
signal. A MIDI confidence measure is proposed to deal
with small-scale misalignments. The confidence measure
gives a lower weight to attack and offset regions of each
note and a higher weight to the sustained part of the
notes. The aligned score information is used as a rough
pitch estimate of the lead instrument and used to guide
a pitch tracking stage. A two-step Viterbi algorithm is
used to refine the pitch track obtained from the score.
For each frame, a set of probabilities is computed based
on the score information, pitch likelihood, and a transi-
tion probability based on frequency continuity. The first
Viterbi step delivers one f 0 value per frame; the sec-
ond Viterbi step finds the best path in the matrix. A
harmonic mask and a pan-frequency mask are used to

filter the solo instrument from the mixture. The system
is tested on a specially produced dataset of 13 excerpts
where the solo instrument is played by a human per-
former and centrally panned. The accompaniment is spa-
tially distributed and synthetically produced with sound
libraries. Other score-informed separation approaches are
presented in [12] and [13], and a thorough overview
of score-informed separation approaches is presented
in [14].
An interesting approach is presented in [15] where

computational auditory scene analysis (CASA) elements
are introduced in the separation scheme. The system
attempts to separate sound sources in monaural record-
ings usingmulti-pitch information of the sources obtained
either from a MIDI-like score or from the multi-pitch
detection algorithm presented by Klapuri in [16]. The
multi-pitch information is used to differentiate over-
lapped harmonics from non-overlapped ones. This is per-
formed by assuming harmonicity of the sources and by
the use of a frequency threshold that assigns a set of
frequency bins to a given harmonic. Harmonic masks
are created for each of the sources by first refining the
pitch estimates as the weighted average of the instan-
taneous frequency of the harmonics divided by their
harmonic number. A new set of frequency bins is then
assigned to each harmonic based on the refined pitch
estimate. In the case of overlapped harmonics, the CAM
principle (which is further explained in Subsection 4.3)
is applied in a least square estimation. The underlying
assumption here is that the amplitude envelopes of the
harmonic components of a source are correlated. In this
system, the envelope of the strongest non-overlapped har-
monic is used to estimate the envelopes of the overlapped
ones. The system is evaluated with a dataset created
from 20 MIDI files of Bach quartets where either two
or three of the voices are created by inserting instru-
ment notes taken from the RWC music instruments
dataset.
One of the main difficulties of pitch-informed sound

separation is the fact that errors in the pitch detection
stage inevitably propagate to the separation stage. Bear-
ing this in mind, some approaches have been proposed
for supervised pitch extraction with a consequent separa-
tion scheme [17-19]. In [20] for example, a probabilistic
model of the constant Q transform (CQT) is proposed
for the estimation of polyphonic pitch content. Notes are
modeled with time-frequency activations and normalized
harmonic spectra. A sparseness prior is introduced for
the note activations to guarantee that the data will be
represented with the least amount of active notes possi-
ble. Through a specially designed interface, the user can
choose the pitches to be extracted by clicking on them.
Separation is performed with time-frequency masking in
the CQT domain.
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Tensor factorization approaches have also been pro-
posed to address the separation task [21]. In [22], a gen-
eralized coupled tensor factorization (GCTF) approach
is used to jointly include harmonic information from an
approximate score and spectral information from instru-
ment recordings. The system uses music scores as prior
information but relaxes the alignment constraint between
score and audio. The authors showed that a strict align-
ment between audio and score is not necessary when note
co-occurrences, which are the same in the score and audio
signal, are exploited.
Some systems have been proposed that use existing

example signals to perform separation. In [23], prior infor-
mation is given in the form of multi-track signals of a
cover interpretation of the song that guide the separa-
tion process. In [24], the user provides a version of the
target source by humming the desired melody line. Sim-
ilarly, in [25], an approach for common signal extraction
is proposed with the goal of extracting a common music
accompaniment among a set of soundtracks with lyrics in
different languages. The common signal is in this case, the
accompaniment music plus effects which is the same in all
the soundtracks.

4 Proposed system
In the following sections, our proposed method is
described and evaluated. First, an overview of the sys-
tem is presented where each of the processing stages is
described. The performance of the algorithm is then eval-
uated on a new dataset described in Subsubsection 4.2.1.
To place our algorithm in context of state-of-the-art
approaches, results from the Signal Separation Evaluation
Campaign (SiSEC 2013) are presented. Finally, a series of
algorithm variations are described and their effects on the
quality of resulting tracks are evaluated.

4.1 System overview
In this section, themain processing stages of our proposed
method, developed to be used in music education applica-
tions, are described. For reference, a block diagram of the
proposed algorithm is presented in Figure 1.
The main characteristic of the proposed algorithm is

its tone-based separation approach. In this work, a tone
is defined as a sound with distinct pitch and duration
and it is characterized by its onset, offset, and frame-

wise frequency values. Instead of performing the sep-
aration task on a frame-by-frame basis, the algorithm
gathers information of complete tones for processing.
This allows more musically and acoustically meaning-
ful processing as known characteristics of tone objects
can be exploited in the separation scheme. Additionally,
a post-processing stage is proposed to remove artifacts
and possible interferences from other sources. This stage
is computationally efficient and particularly effective for
removing interference from percussive events in the solo
signal.
In the next sections, the following notation applies: Let

F(k, n) be the short-term Fourier transform (STFT) of
length N of a monaural signal f (t) and |F(k, n)| its mag-
nitude spectrogram, with k the frequency bin index and
n the time frame index. We aim to decompose |F(k, n)|
into a solo component |S(k, n)| and an accompaniment
component |A(k, n)|. The magnitude spectrogram of the
audio signal is modeled as follows: |F(k, n)| = |A(k, n)| +
|S(k, n)|.
4.1.1 Pitch detection
In our system, the pitch detection algorithm proposed
in [26] is used as a front-end. The author addresses the
task of melody extraction from polyphonic music with
an approach divided in four processing stages: (1) spec-
tral representation, (2) pitch candidate detection and tone
formation, (3) voice formation, and (4) main melody
selection. A spectral representation is obtained start-
ing with a multi-resolution spectrogram that provides a
good trade-off between time resolution for higher fre-
quencies and frequency resolution in the lower range.
Magnitude and instantaneous frequency (IF) values are
obtained for each peak within the frequency range of 55
Hz to 5 kHz. The magnitude of each spectral peak is
weighted using its instantaneous frequency value. This
way, higher frequency peaks which frequently have lower
magnitudes but can still be valid fundamental frequen-
cies, are boosted. Each spectral peak is either assigned
to a previously existing tone (if it can be explained by
the spectral envelope of such tone) or is used to detect
new salient pitches. To detect new salient pitches, a
pair-wise evaluation of spectral peaks, which tries to
detect partials with successive harmonic numbers, is
used in conjunction with a set of perceptually motivated

Tone 
Formation

Pitch Detection
Harmonic 

Series 
Post-

Processing
Spectral
Masking

Re-synthesis

A

Figure 1 Block diagram of the proposed algorithm. The intermediate signals passed between processing stages are also displayed. The lower
arrow connecting the input signal and block A indicates that the complex-valued spectrogram F(k, n) is used in all the processing stages contained
in A.



Cano et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:23 Page 5 of 19
http://asp.eurasipjournals.com/content/2014/1/23

ratings. These ratings include a harmonicity threshold
defined as a maximum deviation of 120 cents from the
exact harmonic interval between the peaks, a measure
to guarantee a degree of spectral smoothness, and a
harmonic impact measure that reduces the impact of
higher harmonics. In the voice formation stage, each voice
is characterized by its magnitude and frequency range.
A tone is assigned to a voice if it passes the magni-
tude threshold and lies within the frequency range of
the voice. After different voices have been created, the
most salient stream is selected as the main melody. In
cases where no clear difference exists between the mag-
nitude of two voices, a frequency weighting is applied
that gives lower weight to voices in the lower frequency
range.
During pitch extraction, an analysis frame of 46 ms

was used in conjunction with a hop size of 5.8 ms. The
pitch detection algorithm returns fundamental frequency
sequences f 0(n) of the main melody on a frame-by-frame
basis. Unpitched frames are marked with f 0(n) = 0 Hz.

4.1.2 Tone formation
The goal of the tone formation stage is to create
tone objects from the f 0(n) sequence delivered by the
pitch detection stage. The importance of the tone-
based separation is that it allows a musically meaningful
segmentation of the audio signal. This segmentation
takes advantage of known characteristics of musical
tones (such as the post-processing stage presented in
Subsubsection 4.1.5 and the common amplitude modula-
tion approach described in Subsection 4.3). Furthermore,
it yields an efficient processing with minimal memory
requirements.
The raw f 0 estimates from the pitch detection stage

are analyzed over time to create tone objects. When no
melody is detected, the pitch detection stage delivers f 0
values equal to 0 Hz. A new tone is only started when
an f 0 value in the [65 Hz, 2,000 Hz] range is found. This
range roughly corresponds to 5 octaves starting in C2 and
ending in B6. After the start of a tone has been detected,
a moving average filter of length La = 3 frames is used
to calculate the mean frequency value ˆf 0(n) in the time
interval defined by the filter length La. That is:

ˆf 0(n) = 1
La

La−1∑
j=0

f 0(n − j) (1)

The end of a tone is defined either by a new f 0 = 0 Hz
(no tone was detected) or by a mean frequency variation
larger than a semitone (a new tone has started). Low and
high semitone intervals from ˆf 0(n) are calculated using
the cent units of measure. The interval is then given by
[ ˆf 0(n)/2(100/1,200) , 2(100/1,200) ˆf 0(n)]. To remove any spu-
rious tones, a minimum tone length of 100 ms which is

roughly a 16th note at 140 bpm is defined. After this stage,
each tone object is defined by its start frame ni, end frame
nf , and an IF value for each of the frames in the tone.
Capturing frame-wise IF values allows minor pitch varia-
tions that can occur within a tone. We define ni and nf as
the vectors containing the start and end frames of all the
detected tones, respectively.

4.1.3 Harmonic series estimation
The goal of this stage is to construct a harmonic series
that represents the solo instrument and that is consistent
with the tone objects found in the previous stage. Two
underlying principles are used: (1) each harmonic com-
ponent is allowed to have an independent deviation from
the calculated ideal location of the harmonic, i.e., multi-
ple integer of the fundamental frequency. (2) The acoustic
differences between the voice, string, and wind instru-
ments need to be considered when harmonic components
are located. Namely, inharmonicity characteristics differ
between instrument families. A well known characteristic
of conical bore instruments, for example, is the flatten-
ing of upper resonances in relation to the fundamental
component due to open end corrections in the tone hole
lattice [27]. In contrast, string instruments experience
inharmonicty patterns that deviate to the higher end of
the calculated harmonic location [28]. The harmonic esti-
mation stage is kept consistent with either lower or higher
deviations from harmonic locations but never a mix of
both.
We use the index p as the partial index, with p = 1

representing the fundamental frequency and p = pmax
representing the highest partial considered in each tone.
We also define kp(n) as the frequency bin of the ideal par-
tial location of partial p (calculated as integer multiple
of the fundamental frequency). Finally, we define δmax as
the maximum frequency deviation that each partial p is
allowed to have from its ideal harmonic location.
For each time frame n in the range defined by [ni, nf ],

where ni is the initial detected frame of the tone, and nf
is the final frame of the tone, we define a frequency band
given by [kp(n) − δmax, kp(n) + δmax] where we search
for the observed partial location. We conduct an iterative
search in the vicinity of the ideal partial location kp(n) for
all partials with partial index p = 2, . . . , pmax. For each
partial index p, the search returns the frequency bin k̂p(n)

where we detect the observed harmonic with the largest
amplitude. A detection mask D(k, n), where we mark the
observed harmonics with 1 for each frame, is defined for
k in the [1,N/2] range:

D(k, n) =
{
1 if k = k̂p(n)

0 otherwise
(2)
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4.1.4 Spectral masking
After the complete harmonic series has been estimated,
initial binary spectral masks for the solo MS(k, n) and
accompaniment MA(k, n) are created. At this stage, each
time-frequency tile is defined either as part of the solo
instrument or part of the accompaniment. To compensate
for spectral leakage in the time-frequency transform, a tol-
erance band � centered at the observed partial location
k̂p(n), is included in the masking procedure. Thus, for a
frequency range k̂p(n) − � ≤ k ≤ k̂p(n) + � and time
frame n ∈ [ni, nf ] we have:

(MS(k, n),MA(k, n)) =
{

(1, 0) if D(k, n) = 1
(0, 1) otherwise

(3)

4.1.5 Post-processing
The post-processing stage evaluates each tone as a whole
and addresses the following: (1) attack frames, and (2)
interference of transients in the solo signals.
The pitch detection algorithm requires a few processing

frames before a valid f 0 value can be detected. This delay
is because clear spectral peaks are needed for the estima-
tion, and this mostly happens in the sustained part of the
tone.
To compensate for this inherent delay, a region of 70 ms

before the initially found start of each tone ni, is modified.
The observed harmonic structure MS(k, ni) in frame ni is
replicated in all the frames 70 ms before ni.
Overlapping of spectral information from different

sources often causes percussion hits and attacks from
other sources to be detected as part of a tone of the
target source. Bearing in mind that percussion onsets
are evident in the spectrogram as vertical events occur-
ring in a short time interval [29], an additional analysis
is performed where sudden magnitude peaks occurring
simultaneously in several harmonic components, are
detected.
An example saxophone tone where such events can

be observed is shown in Figure 2. The figure shows the
estimated tone before post-processing. The red arrows
indicate two percussive hits that were initially estimated as
part of the solo signal. Even when the magnitudes of these
events are not particularly large in comparison to the
lower partials of the tone, the perceptual impact of such
events is considerable, being in most cases clearly audible
and disturbing. It can be observed that these events are
common to all harmonics and occur in a short interval of
time.
To detect these transients in the solo signal, the tempo-

ral envelope of each partial, denoted ep(n), is smoothed
with a median filter of length L. Let M denote median
filtering. The smoothed magnitude envelopes are thus
obtained as follows: ēp(n) = M{ep(n), L}. The smoothed
magnitude envelopes ēp(n) are normalized to the [0, 1]

range. As the perceptual impact of transients is stronger
for higher partials, we define plow as the lowest partial
index considered for the detection of transients. This
analysis is only performed for partials with partial index
p > plow. We define a magnitude threshold γL, and for
all partials with partial index p > plow, we detect the
time frames where the normalized smoothed magnitude
envelopes have amplitudes larger than γL. As the sudden
magnitude peaks should be simultaneously observed in
several partials, we define minp as the minimum number
of partials where a magnitude value larger than γL has to
be observed for the event to be considered a transient.
To remove the detected transients, the value of the solo

spectral mask MS(k, n) in the time frame where the tran-
sient was detected is replaced by the mean magnitude
value of the normalized smoothed magnitude envelope μe
in the L time frames before the transient was detected:
Let kt and nt be the frequency bin and time frame where
the transient was detected, respectively. The mean value
μe is then calculated as follows: μe = 1

L
∑L

j=1 ēp(nt − j).
The new value of the spectral mask is then given by
MS(kt , nt) = μe. This introduces a smoothness constraint
in the temporal envelopes of the partials. The number
of time frames that determine the smoothness constraint
of the temporal envelopes is given by the filter length L.
The new spectral mask is no longer binary and is denoted
M̂S(k, n). The accompaniment mask is also recalculated as
M̂A(k, n) = 1 − M̂S(k, n).
The effect of the transient removal stage can be

observed in Figure 3 where the same saxophone tone from
Figure 2 is shown after post-processing. The red arrows
indicate the location where the percussive events were
located. It can be seen that this processing stage guaran-
tees a degree of smoothness in the temporal envelopes of
the tone. It also has to be noted that the attack frames
included in the previous processing stage are not consid-
ered in the transient detection stage. This has the advan-
tage that the transient-like characteristics of attacks are
preserved in the solo signal; however, this approach fails
to remove percussion hits that coincide with the attacks of
the solo instruments.
The post-processing stage is a lightweight but effec-

tive approach to remove transients from the solo signal
and to improve the attack portions of the tone. It has
the benefit of only being performed in the time frames
where the solo instrument has been detected and removes
the need of performing a previous harmonic/percussive
separation to avoid percussive interference in the solo
signal.

4.1.6 Re-synthesis
The complex valued spectrogram from the original mix is
masked and independent solo and accompaniment tracks
are re-synthesized by means of the inverse short-term
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Figure 2 Estimated saxophone tone before post-processing. The red arrows indicate the places where elements from two percussive events
are mistakenly taken as being part of the solo instrument.

Fourier transform (ISTFT). In our approach, no attempt
is made to estimate the phase of the target sources, and
the phase of the original mix is used for re-synthesis of
both sources. The solo and accompaniment spectrograms
are given by S(k, n) = F(k, n) ⊗ M̂S(k, n) and A(k, n) =
F(k, n) ⊗ M̂A(k, n), respectively. Here, ⊗ denotes the
Hadamard product. The resulting solo and accompani-
ment tracks are then s(t) = ISTFT (S(k, n)) and a(t) =
ISTFT (A(k, n)).

4.2 Evaluation
In this section, the performance of our proposed method
is evaluated. Three important factors were considered for

this evaluation. (1) As algorithm robustness under var-
ious signal conditions is of critical importance for our
proposed application, special effort was made to cre-
ate a dataset as varied as possible containing both vocal
and instrumental tracks. (2) The quality of both the solo
and the accompaniment tracks are of critical importance
for the proposed application, and for that matter, the
evaluation and analysis of results are always conducted
separately for solo and accompaniment tracks. (3) Bear-
ing in mind that quality requirements are different for
all applications, the importance of each of the quality
measures is highly dependent on the application at hand.
For this matter, the general quality of the signals as
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Figure 3 Estimated saxophone tone same as in Figure 2 after the post-processing stage has been applied. The red arrows indicate the
places where elements from two percussive events had been originally assigned to the solo instrument. As can be observed, the post-processing
stage greatly reduces the interference from percussive hits in the solo signal.
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well as the particular distortion measures (explained in
Subsubsection 4.2.2) are analyzed independently.

4.2.1 Dataset
To guarantee robustness in the performance of our algo-
rithm over a wide range of signal conditions, musical
genres, and instrumentations, a new dataset ofmulti-track
recordings was collected. Several important factors were
considered when collecting the dataset. (1) All the signals
had to be copyright-free to allow the dataset to be made
publicly available. (2) Both vocal and instrumental tracks
had to be included. The new dataset contains both female
and male singers, as well as instrumental solos from the
clarinet, saxophone, trumpet, electric guitar, acoustic gui-
tar, whistle, and kazoo. (3) Different musical genres such
as classical, pop, rock, and jazz were included in the new
dataset. In particular, different instrumentations includ-
ing percussive instruments were considered. Percussive
instruments have proven to be challenging in solo instru-
ment separation often creating undesired artifacts and
transients in the solo signals.
The dataset is composed of 17 multi-track recordings:

10 tracks with vocal solos and 7 tracks with different
instrumental solos. The recordings were collected from
different sources: SiSEC [30], TRIOS Dataset [31], and
CCMixter [32]. All the signals were re-mixed to obtain
solo, backing, and mix signals. The dataset used and a
description of the individual signals are available on our
project website [33].

4.2.2 Results
The PEASS toolbox [34] was used to evaluate quality
of the separated signals. This toolbox presents a fam-
ily of four objective measures to assess the perceptual
salience of the target distortion, interference, and arti-
facts. The family of objective measures is composed of the
overall perceptual score (OPS), the target-related percep-
tual score (TPS), the interference-related perceptual score
(IPS), and the artifacts-related perceptual score (APS). All
the measures take values from 0 to 100 with higher values
indicating better perceptual quality. The PEASS toolkit
was chosen for the evaluation as it is the only available set
of quality measures that incorporates both objective and
subjective elements. Furthermore, this toolkit is widely
used in the separation community and it is the cho-
sen evaluation method in public separation campaigns as
SiSEC (see Subsubsection 4.2.4 for more information on
the SiSEC campaigns). Using state-of-the-art quality mea-
sures allows comparison of results with other approaches.
Additionally, the resulting signals are also made available
for listening on our results website [33].
The entire dataset was processed with our method, and

perceptual quality measures were calculated. The follow-
ing processing parameters were used: pmax = 25 based on

observations of different instrument spectra.Wind instru-
ments in particular can exhibit up to 25 clear harmonic
components. The tolerance band was set to � = 1. Larger
values of � would result in perceptible interference from
other sources in the target source. For the post-processing
stage, plow = 9 was selected as higher values showed to
be too restrictive and failed to remove certain percussive
interferences. The minimum number of partials used for
transient detection was set to minp = 6. A filter length
value L = 5 and γL = 0.6 were used as they showed to be
a good balance between proper handling of spectral leak-
age and magnitude variations in magnitude envelopes. An
analysis frame of 46 ms was used in conjunction with a
hop size of 5.8 ms.
In order to better assess the performance of our pro-

posed method, all the tracks from the dataset were manu-
ally processed by musical experts to extract ground truth
pitch information. The Songs2See Editor interface [19]
was used for this matter. The pitch sequences of the solo
instrument were manually corrected up to the time and
frequency precision offered by the software; however, a
frame-wise precision cannot be guaranteed. The extracted
ground truth pitch sequences were used as prior infor-
mation for our proposed method (bypassing the pitch
detection stage), and separation was conducted for the
complete dataset.
The resulting objective perceptual measures are pre-

sented in Figure 4. Results are displayed separately for
the solo and backing tracks both with the fully auto-
matic method and with ground-truth pitch information.
Mean values with 95% confidence intervals are pre-
sented. In this section, results for the automatic algorithm
will be referred to as solo and backing. Results using
ground-truth information will be referred to as solo-U and
backing-U.
Consistently high IPS were obtained for the solo signals.

This evidences the fact that special care was taken, spe-
cially in the post-processing stage (Subsubsection 4.1.5),
to remove all traces of interference in the solo signals.
However, such IPS scores come at the expense of low
TPS and APS. These results suggest that our spectral
estimation approach might be too strict, resulting in tar-
get sources reconstructed out of accurate but restricted
time-frequency information. For the backing tracks, more
homogeneous measures were obtained. Results for the
backing tracks show high TPS as well as high APS. These
results support once again the fact that a very conser-
vative solo extraction approach has been taken, resulting
in a minimum amount of intervention for the extraction
of backing tracks and resulting in high APS and TPS
scores.
Important conclusions can also be drawn by analyz-

ing the scores obtained with ground truth information.
As expected, all the scores obtained for solo-U and



Cano et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:23 Page 9 of 19
http://asp.eurasipjournals.com/content/2014/1/23

OPS TPS IPS APS
0

20

40

60

80

100

Solo Solo−U Backing Backing−U

Figure 4 Objective perceptual quality measures obtained with our proposedmethod for the entire dataset. Overall perceptual score (OPS),
target-related perceptual score (TPS), interference-related perceptual score (IPS), and artifact-related perceptual score (APS). Results are displayed
separately for solo and backing tracks. Red (triangle) and blue (square) markers display results from our proposed method for the solo and backing,
respectively. Gray markers (triangle and square) display results obtained using ground-truth pitch information.

backing-U are higher than the ones obtained for solo
and backing, with the exception of the APS obtained for
backing-U and the IPS obtained for the solo-U. How-
ever, this result is consistent with our previous remarks.
By having more accurate and complete pitch informa-
tion, more algorithm intervention is performed in the
attempt to extract solo tracks and more algorithm arti-
facts might be created in the process. Similarly, more
time-frequency information from the backing sources is
taken as part of the solo, explaining the slightly lower
IPS score for the solo-U. It is important to note that
as expected, having accurate pitch information results
in improved separation quality. However, even with
ground-truth pitch information, perceptual scores are
still far from reaching maximum values. This is a clear
indication that spectral estimation and masking limit
separation quality much more than pitch extraction.
Bearing in mind that masking techniques on the mag-
nitude spectrogram as the ones used here have their
own theoretical boundaries, these results suggest that
more complete knowledge about the time and frequency
characteristics of sound sources and alternative mask-
ing techniques that possibly include phase information
might be needed to consistently improve separation
quality.

4.2.3 Evaluation of pitch detection front-ends
Our solo and accompaniment separation algorithm relies
on the use of the pitch sequence of the solo instrument

as prior information. In this section, we test the perfor-
mance of our separation algorithm using an alternative
pitch detection approach as front-end (Alg2) and com-
pare results with the original algorithm (Alg1) described in
Subsubsection 4.1.1. Both algorithms were chosen as they
have shown superior performance in the MIREX cam-
paigns in recent years. See [1] for a thorough comparison
of the performance of pitch detection algorithms in the
past MIREX. As previously mentioned, robustness under
different signal characteristics is of critical importance for
the application proposed. It is then necessary to guaran-
tee that all the processing blocks are capable of handling
different types of musical signals without considerable
quality variations. For this matter, an evaluation of the two
melody detection algorithm is conducted with two main
goals. (1) Test the algorithms under a new dataset where
the characteristics of the tracks used are entirely known.
This dataset allows independent analysis for instrumental
and vocal tracks. (2) Evaluate the pitch detection algo-
rithms within the separation scenario. The performance
of these algorithms will only be assessed within the sepa-
ration scheme, that is, we only evaluate which of the two
algorithms results in better separation performance. A
thorough evaluation of pitch detection performance goes
beyond the reach of this paper and will not be conducted.
The goal of this study is to assess the effect and contribu-
tion of pitch detection within the method proposed.
In the following, the two pitch-detection algorithms are

described:
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1. Algorithm 1: pitch estimation by pair-wise
evaluation of spectral peaks
The first algorithm to be evaluated is the system
presented in [26] which was thoroughly described in
Subsubsection 4.1.1.

2. Algorithm 2: melody extraction using pitch contour
characterization
In [1], the authors propose a method for melody
extraction from polyphonic music by pitch contour
extraction and characterization. In this approach,
pitch contours are defined as time continuous
sequences of f 0 candidates grouped based on
auditory streaming cues such as harmonicity, pitch
continuity, and exclusive allocation. This approach
is divided in four processing stages: (1) sinusoid
extraction, (2) salience function, (3) pitch contour
creation, and (4) melody selection. For the sinusoid
extraction, an equal loudness filter is first applied to
enhance the frequencies to which the human
auditory system is more sensitive. The STFT is
applied and IF and instantaneous amplitude values
are obtained using phase differences. In order to
obtain a salience function, an approach which
computes the salience of a given frequency as the
sum of the weighted magnitudes at integer multiples
of that frequency is used. A compression parameter
and a magnitude threshold are defined to prune the
peak candidates and a frequency range of 55 Hz to
1.76 kHz is considered. To create the pitch
contours, initial peak candidates are filtered using a
salience threshold and a deviation threshold. The
salience threshold is computed in relation to the
highest peak in the frame, and the deviation
threshold is calculated using the salience mean and
standard deviation of all remaining peaks. The final
peaks are grouped into contours using heuristics
based on auditory streaming cues. For each contour
a set of features is calculated: pitch mean, pitch
standard deviation, contour mean salience, contour
total salience, contour salience deviation, length,
and vibrato presence. For the melody selection
stage, an initial voicing detection stage determines
when the main melody is present and when it is not
by setting a voicing threshold slightly below the
average contour mean salience. Octave errors are
also addressed by comparing pitch trajectories,
which in case of octave relationships, will be almost
identical with an octave separation. The correct
contour is always assumed to be the most salient of
the two and has to be somehow continuous with the
other melody contours. If more than one contour
are still present in a certain frame, the melody is
selected as the peak belonging to the contour with
the highest total salience.

An example plot that demonstrates the performance
of the algorithm is presented in Figure 5. The
original spectrogram of the signal is displayed as
well as the detected melody (shown in green). White
markers indicate two sections where the algorithm
failed to recognize the main melody, and
consequently, these frames were marked as
unvoiced.

Implementation aspects As both pitch detection algo-
rithms deliver frame-based f 0 sequences, an intermediate
processing stage was implemented where f 0 sequences
are converted into tones. This stage was required as in
our proposed method, a tone-based separation scheme
is proposed. The details of the tone formation stage are
described in Subsubsection 4.1.2.
For Algorithm 1 (Alg1), a C++ implementation was

used that delivers f 0 sequences as output. The result-
ing sequences are then used as input to the separation
scheme. For Alg2, the available VAMP plug-in for Sonic
Visualiser [35] was used and annotations were used as
inputs to our separation algorithm.

Results The complete dataset described in Subsubsec-
tion 4.2.1 was processed using pitch information extracted
from the two pitch detection algorithms. Objective per-
ceptual measures were calculated, and mean values with
95% confidence intervals are presented in Figure 6. It is
important to bear in mind that results obtained with Alg1
correspond to the same results as the ones presented in
Subsubsection 4.2.2 for our proposed approach. In this
section, we further evaluate results by presenting inde-
pendent scores for the backing and solo tracks with the
vocal and instrumental tracks separately. Furthermore,
results obtained with the ground-truth pitch information
are also presented for reference (referred to as Prior in the
figure). Figure 6a,b shows the scores for the solo tracks for
the voice and instrument datasets, respectively. Similarly,
Figure 6c,d shows the scores for the backing tracks for the
voice and instrument datasets, respectively.
Results show very minor overall performance differ-

ences between the two algorithms, obtaining in general
comparable perceptual scores. However, a few impor-
tant differences can be outlined: Alg2 shows in general
more variability of results obtaining slightly larger confi-
dence intervals. This indicates that Alg1 can better handle
signals with different spectral and acoustical character-
istics. Additionally, we focus on the IPS of the backing
tracks as a good indicator of the quality of pitch detec-
tion - the only source of interference, in this case, is the
solo instrument. Alg1 obtained a slightly higher IPS score
for the backing tracks with the instrument dataset. Alg2
obtained a higher IPS score for the backing tracks with
the voice dataset. Both of these IPS scores are slightly
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1

2

Figure 5 Example excerpt processed with Alg2. The original spectrogram is shown in the background, and the detected melody is shown in
green. Two segments where the algorithm fails to detect the main melody are marked with a white marker.

lower than the ones obtained with Prior, which repre-
sents the performance boundary for the proposed sep-
aration scheme. These results suggest that Alg1 might
be more suitable to handle instrument tracks and Alg2
slightly better for vocal datasets. For both algorithms,
scores obtained for the instrument dataset are higher than
the ones obtained with the voice dataset. These results
suggest that independently of the pitch detection used,

our separation approach can better handle instrumen-
tal signals than vocal ones. However, it should also be
noted that larger confidence intervals are also obtained
for the instrument dataset, suggesting that some instru-
ments are better handled than others. It is particularly
noticeable that Alg2 consistently results in higher APS
and TPS scores, sometimes even higher than the ones
obtained with Prior. These results might seem surprising,
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Figure 6 Objective perceptual quality measures. (a) Solo: voice dataset. (b) Solo: instrument dataset. (c) Backing: voice dataset. (d) Backing:
instrument dataset. Overall perceptual score (OPS), target-related perceptual score (TPS), interference-related perceptual score (IPS), artifact-related
perceptual score (APS). Results with the two pitch detection algorithms (Alg1, Alg2) are presented. For comparison purposes, results obtained with
ground-truth prior information are also presented (Prior).
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but careful analysis of the extracted audio tracks show that
Alg2 somehow benefits longer and more continuous pitch
contours [33]. This allows the spectral estimation to bet-
ter characterize each of the tones and to capture more
accurately their attacks and releases. This comes at the
cost of slightly lower IPS scores for the solo. As already
mentioned in Subsection 4.2, our proposed method, and
thus Alg1, might be too strict in the discrimination of the
time-frequency information assigned to the solo and this
becomes clear with the perceptual scores with low APS
and TPS scores. Finally, resulting signals have also shown
that Alg2 can discriminate more accurately voiced from
unvoiced segments in the tracks, but octave errors occur
more often.

4.2.4 Algorithm performance and state-of-the-art
approaches

The performance of our proposed algorithm was com-
pared to state-of-the-art approaches under the Signal
Separation Evaluation Campaign (SiSEC 2013) in the Pro-
fessionally Produced Music Recordings task. The pitch
detection method used for this evaluation was Alg1.
A total of 15 algorithms were submitted and evaluated

under a common dataset. The full table of results and
algorithm details can be found at the campaign’s website
[36]. It has to be noted that the dataset used in this cam-
paign is entirely composed of commercial vocal tracks,
and no instrumental solos are used in the evaluation. In
Table 1, the results obtained with our proposed method
and with three other algorithms designed for separation of
solo instruments (or specifically singing voice) frommusic
accompaniment are presented for reference. The results
from vocal extraction on the test datasets are presented.
The algorithm Marxer1 is a low-latency main instru-

ment separation approach for stereo mixtures presented
in [5] and described in Section 3. The authors report
that the algorithm allows real-time performance. The
method uses a probabilistic pitch extraction approach in
conjunction with panning masks to perform separation.
The algorithm Marxer2 is presented in [37], and it is an
NMF-based approach which extends the work of [8] to
specifically address the problem of singing voice extrac-
tion and fricative modeling in the separation scheme.
The authors report a performance time of approximately

Table 1 Results from the SiSEC13 Evaluation Campaign for
vocal extraction on the test dataset

Cano Marxer1 Marxer2 REPET

OPS 19.5 22.0 20 22.8

TPS 5.0 49.3 18.2 54.6

IPS 62.0 49.5 64.1 35.7

APS 8.7 29.3 16.5 49.4

three times the length of the audio segment. Finally, the
REPET algorithm presented in [4] takes advantage of the
repetitive structure of most commercial songs to separate
singing voice from music accompaniment. The authors
report processing times of 0.04 s for 1 s of audio on a
3.4-GHz computer.
Our proposed method has a processing time of 0.25 s

for 1 s of audio on a 2.6-GHz computer, allowing real-
time processing. As previously explained, our algorithm
separates solo instruments from their music accompa-
niment on monaural (single-channel) mixtures without
making any assumptions of the type of solo instrument
to be separated. Furthermore, our approach only uses
spectral information from the previous time frames of
the tone to perform separation. This minimizes memory
usage as the only spectral information saved in memory
is the one that corresponds to the current tone. Addition-
ally, processing is efficient as spectrogram calculations are
only performed on a tone by tone basis, avoiding large
matrix operations which can be computationally demand-
ing. Our algorithm obtained comparable OPS scores to
the other approaches described, exhibiting particularly
high IPS scores at the expense of lower APT and TPS
scores.

4.3 Algorithm variations and performance analysis
In [38], we presented a study that evaluates the perfor-
mance of our proposed method when processing param-
eters of the algorithm are slightly modified, but its main
processing chain remains unchanged. The main goals of
this study were on the one hand, to get a better under-
standing of the behavior and performance of the algo-
rithm under different conditions, and on the other hand,
to find ways of maximizing perceptual quality of sepa-
rated solo and backing tracks under our current approach.
Here, we extend this evaluation to include our currently
larger dataset, an alternative weighting approach for har-
monic amplitude envelopes, and a second pitch detection
front end (Alg2 described in Subsubsection 4.2.3). The
main goal behind this analysis is to clearly understand the
effects of each of the algorithmmodifications on the qual-
ity of separated tracks. We focus not only on the general
perceptual quality (OPS) but also on the effects on each
of the distortions measures (APS, IPS, TPS). This anal-
ysis becomes very relevant when separation algorithms
need to be optimized to meet the quality requirements of
a certain application. If we assume for example that for
automatic music transcription, interferences from other
sources should be minimized to obtain better results, then
the algorithm variation which maximizes the IPS score is
the most suitable one for such an application. Our goal
is to conduct such an analysis for the particular case of
music education applications. In this section, the effects
of the algorithm variations are analyzed. In Section 5,
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the use of separation technologies in music education is
addressed.
The following four algorithm versions are considered

and evaluated with the two pitch detection front-ends:

(a) Proposed algorithm: as presented in Section 4.
(b) Data-driven CAM: even though amplitude

envelopes of musical instruments have proven to be
difficult to model, different harmonics of the same
source exhibit similar amplitude envelopes and can
be, in many cases, highly correlated. This is known
as CAM, and it is an important cue in human
auditory perception [39]. Being CAM an observed
characteristic in musical instrument spectra, some
separation approaches have attempted to include
CAM in their processing chains. In [15] for example,
CAM is used as a mean to resolve overlapped
harmonic components in a least squares estimation
framework. In [40], the authors propose a
spectro-temporal modeling of harmonic magnitudes
and test their method on isolated instrument notes.
They also test their estimation algorithm in the
separation context by creating random mixes of a
maximum of six instrumental tones.
To impose CAM in the estimation of solo signals, it
is necessary to first obtain a reference temporal
envelope that all the harmonic components of the
tone should follow. However, as opposed to [15] and
[40] where prior knowledge of the f 0s of all the
sources allowed the differentiation between clean
and overlapped envelopes, this prior information is
not available in our proposed method. In our
solo/accompaniment separation context,
determining where harmonic components overlap is
not plausible without having a good idea of the
spectral content of the other sources. Similarly,

extracting clean envelope information from at least
one of the harmonics is not straightforward either as
the presence of other sources is impossible to
predict in our current approach. Consequently, we
propose to use CAM in a different way. We
introduce CAM into our system by estimating the
partial magnitude envelope which is most similar to
all other partial envelopes and use it as a reference
to impose CAM in our spectral estimation. It works
in the following way. (1) We first estimate the
temporal magnitude envelopes of all partials as
described in Subsubsection 4.1.3; (2) as estimation
of lower partials is more robust than for higher ones,
only the first pCAM partials are used at this stage.
The goal is to find the partial among the first pCAM
partials, whose temporal envelope has the highest
mean cross-correlation with the other pCAM − 1
envelopes. For this matter, we calculate the
cross-correlation rij between the temporal envelopes
of the i th and j th partials for all i, j ≤ pCAM and
i �= j. (3) We calculate the mean cross-correlation r̄p
for each partial by averaging the pCAM − 1
cross-correlation coefficients rij obtained for each
partial. The partial with the maximum mean
cross-correlation r̄p is taken as the reference. That
is, pref = argmax

p

(
r̄p

)
. (4) The temporal envelope of

the reference partial is normalized to [ 0, 1] and used
as a weighting function for all the other partial
envelopes. Even when only the first pCAM partials
are used to obtain the reference envelope, the
temporal envelopes of all partials p = 1 · · · pmax are
weighted with the reference curve.
The effects of imposing CAM in the spectral
estimation of a saxophone tone are shown in
Figure 7. For visualization purposes, only the first
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Figure 7 Effects of common amplitude modulation (CAM) on the estimation of a saxophone tone. The three plots show the temporal
envelopes of the five first partials of the tone. (a) Initial estimation of the tone before CAM. (b) Estimated tone after CAM has been applied.
(c) Original saxophone tone extracted from the original saxophone recording (ground-truth).
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five partials of the tone are shown. In Figure 7a, the
estimated tone before CAM is displayed. In
Figure 7b, the estimated tone after CAM is shown.
Finally, in Figure 7c, the original tone taken from the
original saxophone recording (ground-truth) is
shown for reference. It can be seen that the use
CAM results in temporal envelopes closer to the
original ones. Particularly noticeable is its effect on
the f 0 envelope (blue curve) where the estimation of
the initial time frames of the tone are clearly
affected by overlapping of spectral components of
other sources. This causes the initial estimation to
show considerable differences with the original
tone. However, the use of CAM reduces the impact
of initial misestimations and results in solo signals
with reduced interference from other sources.

(c) Wiener masking: the final masking stage described
in Subsubsection 4.1.4 is replaced by a soft masking
approach based on Wiener filtering. Additionally,
range compression is applied to the magnitude
spectrogram. In [29] and [41] for example, range
compression has been applied as it resulted in better
perceptual quality of separation. In this case, the
spectral components are raised to the power of 0.3
as informal listening test showed that better
separation quality was obtained than with a series of
values tested between 0.3 and 2.

(d) Noise spectrum: the spectral estimation stage in our
proposed method models tone objects under the
assumption that tones exhibit a harmonic behavior.
However, it is clear that noise-like elements can also
be present in tone objects, e.g., attacks in wind
instruments, fricative sounds in voice signals,
bow/string interaction in string instruments,
mechanical interactions in instruments related to
key and hammer movement. To model these events
within our spectral estimation, a noise spectrum is
included in every tone object. After all harmonic
components of the tone have been determined as
explained in Subsubsection 4.1.3, the included noise
spectrum is limited to the frequency bins ranging
from p = 1 to p = pmax. This is meant to minimize
interference from other sources in the extracted
solo. Similar approaches have also been used in [8].

Results for the four algorithm versions are presented in
Figure 8 for solo and backing tracks independently. Mean
values with 95% confidence intervals are presented. The
following name conventions are used in the plots: Own1
and Own2 (and their short versions O1 and O2) refer
to our proposed method using Alg1 and Alg2 as pitch
detection front-ends, respectively. The subscripts ‘CAM’,
‘Wiener’, and ‘Noise’ are used for algorithm versions b,
c, and d, respectively. For easier visualization, a vertical

dotted line separates the results obtained with Alg1 and
Alg2.
Results for the solo tracks show a considerable improve-

ment in IPS scores when CAM is used in the spectral
estimation stage. Furthermore, a clear inverse relation-
ship can be observed between both TPS and APS scores,
and IPS scores of the solo tracks: those algorithm ver-
sions that result in an increase of IPS for the solo, also
result in a decrease in both TPS and APS scores. Simi-
larly, those algorithm versions that bring an increase in
TPS and APS for the solo, result in lower IPS scores.
OPS for the solo are relatively constant for all algo-
rithm version, and only minimum variations are observed.
This is clearly due to the fact that for all the algorithm
modifications presented, a benefit in a particular percep-
tual measure comes at the cost of a decrease in another
perceptual score(s). The inclusion of a noise spectrum
results in more homogeneous scores for the solo sig-
nals, with less differences between the different perceptual
scores.
Results for the backing tracks considerably differ from

the ones obtained for the solo tracks. In this case, the use
of CAM results in decreased IPS and TPS scores and con-
sequently in considerably lower OPS scores. However, a
considerable improvement is observed in APS scores for
the backing tracks when CAM is used. An inverse rela-
tionship is also observed, this time between TPS and IPS
scores, and APS scores of the backing: increased APS
scores always come with decreased TPS and IPS scores
and vice versa.
Confirming our findings from the preliminary study

presented in [38], results suggest that for our current
approach, perceptual quality of solo and backing tracks is
optimized differently. Modification that improve quality
of solo tracks do not necessarily result in better back-
ing tracks. This is in essence a simple concept but its
use implies removing the additivity constraint that lies in
the traditional definition of sound separation: retrieve the
original sources from the mix which naturally implies that
the mix can be exactly reconstructed from the extracted
sources. When different parameters are applied to the
different target sources, this hard constraint, |F(k, n)| =
A(k, n) + S(k, n) in our case, can no longer be imposed
and the magnitude spectrogram is better modeled as
|F(k, n)| ≈ A(k, n) + S(k, n).

5 Sound separation for music education
applications

As mentioned in the introductory sections, our goal is to
study the usability of solo/accompaniment separation in
music education and practice applications. In this section,
we introduce the music education context and con-
duct tests to assess quality requirements for this specific
field.
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Figure 8 Objective perceptual quality measures for four algorithm versions and two pitch detection front-ends (Alg1, Alg2). Overall
perceptual score (OPS), target-related perceptual score (TPS), interference-related perceptual score (IPS), artifact-related perceptual score (APS). The
vertical dotted line divides results obtained with Alg1 and Alg2. (a) Solo results. (b) Backing results.

In most music practice scenarios, users learning a musi-
cal piece at home have limited options concerning avail-
able material that can make their learning process easier
and more productive. Musicians either practice by them-
selves in the traditional way, or in some cases, play along
to audio recordings of a musical piece [42]. In some cases,
learning material in the form of commercial play along
tracks might be available but content is often limited. In
[43], we present a thorough overview of the use of MIR in
music education and describe the types of practice mate-
rial available. Among many of the MIR techniques that
can be applied to music education, sound source sep-
aration represents a very powerful tool for creation of
practice material from commercial music recordings of
all types. The concept of backing tracks to play along to
or the idea to develop a system for karaoke have been
around for many years. Many studies have been made
to assess the general technical challenges involved in the
de-soloing task. However, the question that we wish to
answer with this study is the following: which are the
quality requirements expected from separation algorithms
for them to be suited for music education and practice
applications? It is common practice in separation research
to assess the performance of separation approaches in
terms of the types of signal distortions introduced by the
algorithm, that is, target distortions, interference from
other sources, and artifact distortions [34]. With this
in mind, we wish to understand which types of sig-
nal distortions introduced by separation algorithms are
acceptable in music education applications and get clear
directions on how to optimize our algorithm for this
matter.

To address these questions, we have developed and con-
ducted a listening test procedure that brings music prac-
tice and separation research together. The characteristics
of this test are presented in the following section.

5.1 Listening test procedure
A total of 12 subjects conducted the listening test which
took place in the music practice room at Fraunhofer
IDMT. The subjects were all intermediate to advanced
musicians from 15 to 34 years old: 4 guitar players, 3
bass players, 3 piano players, 1 trumpet player, and 1 sax-
ophonist. For each instrument, commercial multi-track
recordings were used to create the test material. Due
to copyright restrictions, this dataset cannot be made
publicly available.
The subjects were asked to perform a short piece of

music featuring their musical instrument. With the goal
of making the subjects as comfortable as possible and as
close to a real practice session as possible, a musical score,
a piano-roll view, and tablature for guitar and bass were
made available for them to choose their preferred option.
The Songs2See Game interface [19] was used for this mat-
ter. All the audio material was played through a pair of
AKG K701 semi-open headphones, and the subjects were
allowed to modify both the playback level of the tracks
and of their instruments to their own personal taste. The
choice of headphones over speakers was made based on
the fact that in real practice scenarios, themost commonly
used playback devices are portable audio players, tablets,
and cell phones in combination with a pair of headphones.
The order in which the signals were presented to each user
in the two sections of the test was randomized. The users
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were asked to rate how comfortable they felt practicing the
musical piece with each of the different signal versions.
The listening test consisted of a training phase and an

evaluation phase. During the training phase, the users
were given a short introduction to the listening tests,
its goals, and evaluation procedure. Furthermore, the
users were presented with test material (example signals
from the listening test) so they could make themselves
familiar with the types of signals and distortions in the
evaluation.
The evaluation stage was composed of two sections:

(1) solo track evaluation and (2) backing track evaluation.
In the two evaluation sections, subjects were presented
with four different versions of solo and backing tracks, as
well as the original recording (mix). Three signal versions
(v1, v2, v3) where created so that each one specifically
described one of the signal distortions (interference, arti-
facts, target). The fourth version (v4) was obtained with
our proposed separation algorithm. The original record-
ing (mix) was always used as a comparison, as in most
music practice scenarios, this track is the only one avail-
able to the users. To create versions 1, 2, and 3, a similar
approach as the one proposed in [34] was taken:

1. Artifacts: this version was obtained as the sum of the
original target signal and an artifacts signal. The
artifacts signal was created by randomly taking 1% of
the time-frequency coefficients of the target source
(and thus setting 99% of the time-frequency
coefficients to zero) and synthesizing this very sparse
signal. The loudness of the artifacts signal was
adjusted to that of the target. This artifacts signal is
then added to the original target signal (clean) to

artificially create a signal with artifact distortions.
Randomly taking 1% of the time-frequency
coefficients results in a very sparse time-frequency
representation that sounds like clicks, breaks, and
musical noise when re-synthesized.

2. Target: this version was crated by low-pass filtering
the original source signal to a 3.5-kHz cutoff
frequency and by randomly setting 20% of the
time-frequency coefficients to zero.

3. Interference: this version was obtained as the sum of
the original source signal and an interference signal.
The interference signal in this case is the backing
track, whose loudness was adjusted to that of the
target.

In the first section of the test (solo track evaluation), the
users were asked to practice the musical piece and play it
as fluidly as possible with the aid of the solo track versions.
In the second section of the test (backing track evalua-
tion), the users were asked to play the given melody with
the accompaniment of the backing tracks (as resembling
a real musical scenario). The subjects were then asked to
evaluate the provided backing tracks. All ratings in the
listening test that were performed in a continuous scale
from 0 to 100 were additional descriptive hints and were
given as follows: Bad (0 to 20), Poor (20 to 40), Fair (40
to 60), Good (60 to 80), and Excellent (80 to 100) [44].
Users were also allowed to submit any comments that they
found relevant about their experience in the listening test.

5.2 Listening test results
The results of the listening tests are presented in
Figure 9a. As recommended in [44], mean values with
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(b) Listening test: mixture vs separation(a)
Figure 9 Listening tests results. (a) Signal distortions, (left) solo tracks, (right) backing tracks. Mean values with 95% confidence intervals are
shown. Ratings for the original recording (mix), signals obtained with the proposed algorithm (own), interference signal (Interference), artifacts
signal (Artifacts), and target signal (Target) are presented. (b)Mixture/separation preference.
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95% confidence intervals are presented for the original
recording (mix) and the four signal versions (interference,
artifacts, target, own). Results for the solo signals are pre-
sented in the left pane of the figure and results for the
backing on the right.
For both the solo and accompaniment tracks, the high-

est mean scores were obtained by the interference signal,
being the mean values in both cases, very close to the ones
obtained by the mix. This evidences the importance of
preserving the signal’s quality with a minimum of intro-
duced artifacts, regardless of the fact that traces of the
other source are still present. Mean values for the solo
show that users find the artifacts signal most disturbing
during practice time. Subjects’ comments after the listen-
ing test emphasized the fact that artifacts are distracting
and make it more difficult to keep the rhythm. For the
backing tracks, target distortions are most disturbing. The
importance of a clear bass to follow was mentioned by
the users and due to the somehow smoothed (low-pass
filtered) target versions, onsets and bass notes were no
longer so clear. The solo tracks obtained with the pro-
posed algorithm received the lowest mean values with a
fairly large variance between users. A possible explanation
for such a large variation might be that different musical
instruments pose different quality requirements for the
solo signal. One can imagine for example, that a bass and
a trumpet player might look for different signal character-
istics. However, no final conclusions in this sense can be
drawn with a sample size of this kind, and further experi-
ments need to be conducted in that direction. The backing
tracks extracted with the proposed algorithm, on the other

hand, obtained mean values superior to the target and
artifacts signals.
The high mean values obtained for the reference mix

might be due to the user’s familiarity with original record-
ings, as in most cases, this is the only version available to
them. To confirm this hypothesis, we conducted an addi-
tional listening test where subjects were asked to compare
the original mix with the original solo and accompani-
ment tracks (obtained from the multi-track recordings)
while playing their musical instruments. Using original
tracks removes the ‘quality’ element from the evaluation
as all the signals are high-quality original recordings. This
is of course a hypothetical scenario that tries to asses
the usability of solo and accompaniment tracks in music
education applications given that very high-quality sepa-
ration can be achieved. For this listening test, the same
laboratory setup was used as in the first one. However,
in this case, no independent evaluation was made for the
solo and backing tracks. Subjects were allowed to play
with either the solo, the backing, or with a mixture of the
two. The mixer options within the Songs2See Game were
used to allow subjects to get the desired balance between
the tracks. Having the option to freely mix the solo and
backing tracks is a functionality that is available to the
users when sound separation is performed. In Figure 10,
the Songs2See game interface with its mixer options are
displayed.
A total of 10 subjects conducted this test. The subjects

were all beginner to advanced musicians between 27 and
34 years old: 3 bass players, 1 trumpet player, 3 guitar
players, 2 piano players, and 1 saxophonist. Results from

Figure 10 Songs2See Game interface. The mixer menu where subjects can modify the solo/backing track balance is displayed.
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the listening test are displayed in Figure 9b. Mean val-
ues with 95% confidence intervals are presented. Results
clearly show that subjects prefer having the possibility
of playing with separated tracks than with the origi-
nal mix. Performing separation allows users to control
the playback levels depending on their skills and prefer-
ences: completely mute the solo, add a little of the solo
to the backing track for reference, or re-mix the tracks
again to get the mix. The separated tracks obtained a
mean value of 95.22 and a confidence interval of only
3.3. The mixture obtained a mean value of 62.88 with
a slightly large confidence interval of 14.87. This listen-
ing test confirms the somehow expected results that the
use of sound separation in music education applications
brings beneficial functionalities for the practice sessions.
This results are also supported by the great availability of
music education practice literature, where solo and back-
ing tracks (specially recorded for this purpose) are avail-
able. See [43] for a thorough overview of music education
material.

6 Conclusions
In this work, we propose an efficient method for pitch-
informed solo/accompaniment separation based on a
tone-based estimation of the solo instrument and a post-
processing stage that addresses transient-like interfer-
ences in the solo signals, attack sections, and the use of
CAM in the estimation of the harmonic components of a
tone.
We designed and conducted a listening test proce-

dure to evaluate the plausibility of using such separa-
tion techniques within a music education context. Results
from the listening test revealed that quality require-
ments for the solo and backing tracks are different,
and such differences should be considered if a separa-
tion method is to be optimized for this particular appli-
cation.
Two pitch detection front-ends as well as different

algorithm modifications were evaluated with the goal of
getting a better understanding of their impact in the per-
ceptual quality of separated tracks. As evidenced in the
listening test results, higher APS and TPS scores for the
solo is a desired outcome if we aim at optimizing our
method for its use in music education applications. Sim-
ilarly, results from the listening test also showed that
minimizing interference from other sources in the solo
signal does not play a major role. With this in mind,
Alg2 as a pitch detection front-end slightly benefits qual-
ity requirements of music education applications. The use
of CAM has shown an important improvement of the
APS score of the backing track which is a desirable out-
come if the separation algorithm is optimized for music
education applications. Similarly, the use of noise spec-
trum for the solo track shows an improvement in TPS

and APS scores which is also a desired outcome for music
education applications.
Future research directions include further evaluation

of the differences in spectral characteristics and quality
requirements of different musical instruments and the
voice and better characterization of musical instrument
tones both in time and frequency within the separation
approach.
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