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Abstract

For speech enhancement or blind signal extraction (BSE), estimating interference and noise characteristics is decisive
for its performance. For multichannel approaches using multiple microphone signals, a BSE scheme combining a
blocking matrix (BM) and spectral enhancement filters was proposed in numerous publications. For such schemes,
the BM provides a noise estimate by suppressing the target signal only. The estimated noise reference is then used to
design spectral enhancement filters for the purpose of noise reduction. For designing the BM, ‘Directional Blind
Source Separation (BSS)’ was already proposed earlier. This method combines a generic BSS algorithm with a
geometric constraint derived from prior information on the target source position to obtain an estimate for all
interfering point sources and diffuse background noise. In this paper, we provide a theoretical analysis to show that
Directional BSS converges to a relative transfer function (RTF)-based BM. The behavior of this informed signal
separation scheme is analyzed and the blocking performance of Directional BSS under various acoustical conditions is
evaluated. The robustness of Directional BSS regarding the localization error for the target source position is verified
by experiments. Finally, a BSE scheme combining Directional BSS and Wiener-type spectral enhancement filters is
described and evaluated.

1 Introduction
Blind signal extraction (BSE) aiming at extracting one
source signal from a mixture of an unknown number
of acoustic sources in noisy environments is a generic
task in acoustic signal processing. It has a wide range of
applications in many fields: As popular examples, hands-
free interfaces for acoustic communications and human-
machine interaction offer many challenging and relevant
application scenarios, such as teleconferencing, interac-
tive television, humanoid robots, and gaming. Moreover,
acoustic signal extraction techniques are also highly rele-
vant for assistive devices, such as hearing aids.
If multiple microphones are available, data-dependent

multichannel approaches for signal extraction can be
classified into unsupervised and supervised approaches.
The class of unsupervised methods does not require
prior knowledge on the spatial distribution of sources
and sensors. The lack of prior knowledge is compen-
sated by exploiting fundamental signal characteristics.
Conventional unsupervised signal extraction approaches
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are, e.g., independent component analysis (ICA)-based
[1,2] or sparseness-based blind source separation (BSS)
algorithms [3,4]. However, conventional ICA-based
approaches cannot be used for underdetermined cases,
where the number of sensors is less than the number
of sources, and sparseness-based methods are highly
dependent on the sparsity of the mixing signals. Recently,
model-based multichannel approaches gained a lot of
attention. These are, e.g., approaches based on a spa-
tial covariance model [5] or multichannel nonnegative
matrix factorization (NMF) methods based on model-
ing complex Gaussian distributions [6,7]. As opposed to
[1-4] they do not solely rely on the independence or the
sparsity of the underlying signals and can be used for
underdetermined source separation.
Unlike unsupervised methods, the class of super-

vised methods needs reference information. Typical
supervised signal extraction approaches are, e.g., multi-
channel Wiener filtering (MWF) [8,9] or beamforming
approaches, such as linearly constrained minimum
variance (LCMV) beamformer [10]. MWF approaches
are based on minimum mean square error (MMSE)
estimators requiring noise and interference statistics as
references. The LCMV beamformer requires reference
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signal(s) represented by linear constraints in order to sup-
press interfering sources and to preserve target signal(s)
from known directions [11]. As an alternative form of
the LCMV beamformer, the generalized sidelobe can-
celer (GSC) was proposed in [12], which converts the
constrained optimization problem into an unconstrained
problem.
Under realistic acoustic conditions, prior information

is often exploited for practical realizations of supervised
and unsupervised signal extraction approaches. This leads
to the class of informed signal processing algorithms,
where relevant information of the underlying conditions
is exploited to realize the signal extraction algorithms or
to render these algorithms more robust and reliable for
practical conditions. Prior knowledge, which can be spa-
tial information in terms of the direction of arrival (DoA)
of source signals, coherence or diffuseness of the sound
field, etc., may be given or estimated from the acquired
sensor data. An overview of the relevant work belonging
to this class is given in the following.
To realize the MWF, an estimate of the second-order

statistics (SOS) of the noise signals is required. Based on
the assumption of a diffuse noise field, several methods
are derived for estimating the SOS of the noise compo-
nents in terms of the auto-power spectral density (PSD)
[13-15] or the cross PSDs between all channels for both
the target source(s) and the noise and interference com-
ponents [16]. Furthermore, it was recently proposed to
exploit the direct-to-diffuse ratio (DDR) to realize the
MWF for stationary noise and babble noise conditions
[17]. It was also suggested to exploit the position informa-
tion to estimate the cross PSDs of directional speech inter-
ferences [18]. For unsupervised algorithms, prior spatial
information such as information about the source posi-
tions or the sensor constellation is often incorporated
to improve the robustness. Model-based multichannel
approaches [6,7] can incorporate the directional infor-
mation by initialization of a part of the spatial model.
Parra and Alvino [19] proposed to combine an ICA algo-
rithm with geometric constraints in order to improve
the separation performance, where BSS was regarded as
a set of beamformers whose response is constrained to
a set of DoAs for recovering all sources from the mix-
ture. Inspired by [19], Directional BSS [20] was proposed
to serve as a blocking matrix (BM) when using a differ-
ent constraint for the opposite purpose: this constraint
forces essentially a spatial null towards a certain direc-
tion in order to suppress the target source and to preserve
the interfering and noise components. The precondition
not only for Directional BSS but also for Parra’s method
is that the DoA information on the target source(s)
must be given. Furthermore, based on the noise estimate
produced by Directional BSS, a two-unit source extrac-
tion/noise reduction scheme combining a BM and a noise

reduction unit was proposed in [21], where the spectral
weights in the noise reduction stage are designed based
on a diffuse noise field assumption. In this paper, we
focus on the discussion of Directional BSS operating as
a BM.
The concept of a BM was originally proposed in [12]

for the structure as shown in Figure 1. The structure sep-
arates the LCMV beamformer into two main processing
paths: the first path comprises a fixed beamformer (FB)
with constraints on the target signal. The second path
contains a BM and an adaptive interference canceler (AIC)
that adaptively minimizes the noise power in the output.
The BM is defined as a matrix used to reject (block) the
target signal at its output, hence providing references of
all undesired interference signals and noise components
required for interference cancellation schemes.
Originally in [12], the BM was designed for time-

invariant free-field environments and rejected the source
signal from one direction only, requiring precise source
location information. This BM can be regarded as mini-
mum variance distortionless response (MVDR) BM as the
MVDR beamformer imposes the distortionless constraint
only for the desired direction. For the dual-channel case,
the conventional MVDR BM is given by the delay-and-
subtract beamformer (DSB) and can only suppress the
direct path of the target source. Theoretically, the con-
ventional LCMV BM can suppress the direct path and
reflections by formulating the corresponding constraints
in the BM if the perfect knowledge on the angle of arrival
for each reflection is given [22]. However, the conven-
tional LCMV/MVDR BM will likely lead to target signal
leakage as it is conceived for time-invariant scenarios, and
any movement of the target source will lead to a steering
error relative to the true DoA for the target signal and its
reflections. To improve the robustness against the steer-
ing error, an adaptive BM was proposed in [23,24], which
needs an adaptive control requiring source activity infor-
mation. In [25], the relative transfer function (RTF)-based
BM for LCMV/MVDR beamforming was proposed. The
RTF-based BM can perfectly suppress the target signal
if the RTFs are given. However, estimating RTFs usually
requires estimation of the source activity or a double-talk
detector, as noise-only frames or time segments where
both the transfer functions (TFs) and the noise signals
are assumed to be stationary need to be available for RTF
estimation [25-27].
More recently, ICA-based BSS algorithms were pro-

posed to realize a BM [20,28]. The approach presented in
[28] is very efficient in noise estimation but can only be
used for overdetermined/determined scenarios (i.e., the
number of sensors is larger than or equal to the number
of sources) as [28] is a generic ICA-based BSS algorithm.
In [20] exploiting Directional BSS as a BM for noise esti-
mation (here the noise including interfering sources and
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Figure 1 Structure of a general sidelobe canceler.

diffuse background noise) was proposed. This approach
can be applied in both determined and underdetermined
scenarios. Unlike for beamforming approaches, correlated
components arriving from other directions, i.e., reflec-
tions and reverberation will also be suppressed to the
greatest extent possible by Directional BSS. This con-
cept can deal with underdetermined scenarios such that
a meaningful instantaneous estimate for all undesired
signals comprising interfering speech signals and diffuse
background noise can be obtained using only two micro-
phones and regardless of the noise statistics. Note that
for applying the directional constraint, the directional
information on the target source must be given or esti-
mated by a source localizer. Even with a source localizer,
a predefined angular range of the target source must be
given. This range was set to be −20° to 20° in front of
the microphone array [20]. The algorithm of Directional
BSS was introduced and its efficiency was shown in [20]
with respect to the blocking performance. In this paper,
we provide an in-depth analysis of the heuristically moti-
vated BM in [20] and provide new insights with respect
to several decisive aspects: (1) the relation of the ICA-
based BM to other BMs, (2) the blocking performance if
the target source arrives from directions which are differ-
ent from broadside direction, (3) the robustness against
localization errors, and (4) the BSE/speech enhancement
performance when using the noise estimate produced by
Directional BSS for Wiener-type spectral enhancement.
Additionally, a BSE scheme combining Directional BSS
and spectral enhancement filters under various acoustical
conditions will be evaluated. Therefore, the main contri-
butions of this paper compared to our earlier work are the
following: For one, we show by a theoretical analysis and
by experimental results that Directional BSS converges to
an RTF-based BM. In addition, the performance of the
proposed method is for the first time analyzed regarding
some practically highly relevant aspects, e.g., the block-
ing ability for sources impinging from arbitrary directions
and the noise reduction performance of the applied noise
reduction scheme.

The paper is organized as follows: In Section 2, the
generic BSS algorithm is reviewed. In Section 3, we
provide a theoretical analysis to show that Directional
BSS converges to an RTF-based BM and describe the
algorithm of Directional BSS. Moreover, the relation/
difference of Directional BSS to other conventional/state-
of-art BMs is discussed. Furthermore, in Section 4,
experimental results with respect to the blocking per-
formance and the robustness against localization errors
in various acoustical scenarios are presented. Finally, a
BSE scheme combining Directional BSS and Wiener-type
spectral enhancement filters is presented and evaluated
in Section 5. Note that in this paper, we restrict our
consideration to two-channel cases.

2 Determined blind source separation: generic
ICA-based BSS algorithm

In this section, we briefly review a two-channel ICA-based
BSS algorithm. Figure 2 depicts the basic two-channel BSS
signal model for two point sources s1, s2. The microphone
signals can be described in the discrete time domain by

xp(k) =
2∑

m=1
hmp(k) ∗ sm(k), p ∈ {1, 2}, (1)

where * represents convolution and hmp(k), m ∈ {1, 2}
denote the finite acoustic impulse responses from themth
point source to the pth microphone in discrete time and k
is the discrete time index.
BSS algorithms aim at determining demixing filters to

extract the individual sources from the mixed signals. The
output signals of the demixing system yq, q ∈ {1, 2} are
described by

yq(k) =
2∑

p=1
wpq(k) ∗ xp(k), q ∈ {1, 2}, (2)

where wpq(k) denotes the demixing filter from the pth
microphone to the qth output channel.
The various criteria used for identifying wpq in (2) (see

e.g., [1,2,29]) are essentially based on the assumption that



Zheng et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:26 Page 4 of 24
http://asp.eurasipjournals.com/content/2014/1/26

Figure 2 Basic two-channel linear BSS signal model.

sources are statistically independent. In this paper, we use
triple-N independent component analysis for convolutive
mixtures (TRINICON) [30] for BSS, where mutual infor-
mation between the output channels y = [yT1 (k), yT2 (k)]T
should be minimized. As the algorithm is derived for
block processing of convolutive mixtures, for each output
yq(k), a sequence ofD output samples corresponding toD
successive time lags is taken into account.
The generic cost function used to determine a demixing

systemW is then given by [31]

JBSS(W) = Ê
{
log

p̂y,PD(y)∏P
q=1 p̂yq ,D(yq)

}
, (3)

where Ê{·} is the estimate of the statistical expectation,
with ensemble averaging being replaced by temporal aver-
aging over N blocks assuming ergodicity within the indi-
vidual blocks. p̂y,PD is an estimate of the joint probability
density function (pdf) of dimension PD over all P (here,
P = 2) output channels, and p̂yq ,D is the estimated multi-
variate pdf for channel q of dimension D. Matrix W cap-
tures all the impulse response coefficients of the demixing
filters, with a detailed description of its structure given in
[31,32]. Minimizing JBSS(W) corresponds to minimizing
the Kullback-Leibler divergence (KLD) between p̂y,PD(y)
and

∏P
q=1 p̂yq ,D(yq), which leads to maximization of the

statistical independence of the output vectors yq.

3 Directional blind source separation as a
blockingmatrix

In this section, we firstly discuss the relation of Directional
BSS with a conventional RTF-based BM in Subsection
3.1. The Directional BSS algorithm is described in
Subsection 3.2 before comparing it to alternative
approaches in Subsection 3.3.

3.1 From system identification to RTF-based blocking
matrix

In [33], the relation between the optimum broadband
solution of blind source separation and blind system

identification was presented. For a single-input/multiple-
output (SIMO) system as shown in Figure 3, the perfect
suppression of a broadband source implies for system
identification:

h11(k) ∗ w11(k) + h12(k) ∗ w21(k) = 0
⇒ h11(k) ∗ w11(k) = −h12(k) ∗ w21(k). (4)

The optimum filters fulfilling (4) read in the z-domain
[33]:

W11(z) = αH12(z),
W21(z) = −αH11(z). (5)

As a precondition for identifying this solution, H11(z) and
H21(z) may not have common zeros and the filter lengths
equal the lengths of room impulse responses. Obviously,
the optimum filters can only be determined up to a scaling
factor α.
Let us consider the case wherew21 is forced to be a delay

τ , then (4) reads in the z-domain:

W11(z) = −H12(z)
H11(z)

z−τ ,

W21(z) = z−τ . (6)

Figure 3 Blind system identification based on a SIMOmodel.
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In the frequency domain, (6) can be expressed by:

w11(�) = −h12(�)

h11(�)
e−j�τ ,

w21(�) = e−j�τ , (7)

where underlined characters denote frequency-domain
representations. The normalized frequency � is given as
2π f
fs , where fs denotes the sampling frequency. The ratio of

the two frequency responses h12(�)

h11(�)
is known as the RTF

or the TF ratio.
If we divide w11(�) by w21(�), we get:

h̃RTF = −h12(�)

h11(�)
, (8)

which is exactly the form of the RTF-based BM proposed
in [25].
For a multiple-input/multiple-output (MIMO) system,

in [33], it is shown that the optimum BSS solution is the
generalization of the SIMO identification solution. This
holds however only for determined cases. For an under-
determined scenario as shown in Figure 4, there is no
determined solution. However, here, our aim is not to find
a determined BSS solution in underdetermined scenarios,
but to exploit BSS as a BM to suppress the target source s1
only. Therefore, it still follows that

s1(k) ∗ h11(k) ∗ w11(k) + s1 ∗ h12(k) ∗ w21(k) = 0

⇒ h11(k) ∗ w11(k) = −h12(k) ∗ w21(k), (9)

which is the same as in (4) for the system identification
in a SIMO system. As BSS has no determined solution in
underdetermined scenarios, the problem is how to force
BSS to suppress the target source only and preserve the
other sources to form a joint noise estimate. For this
purpose, we combine the generic BSS with a geometric
constraint to force a spatial null towards the direction of
the target source. We denote the combined algorithm as
‘Directional BSS’ and analyze it in the following sections.

3.2 Algorithm
Blind source separation can be regarded as ‘blind adaptive
beamforming’ (blind ABF) [34] as BSS and ABF have sim-
ilar goals and a similar structure: Both attempt to extract
a target signal and reduce the interference by multichan-
nel array processing as described in [35,36]. In [34] it is
shown that BSS is equivalent to a set of adaptive beam-
formers which form multiple null-beams steered towards
the directions of interfering sources and its reflections.
On the other hand, there are fundamental (characteris-
tic) differences between BSS and ABF: generic BSS usually
does not require prior information on source locations
and sensor constellations, while ABF requires the spatial
information on the locations of sources and sensors. In
[19] a method was proposed to combine BSS and beam-
forming for achieving a better separation performance by
utilizing the geometric information of sources. The kind
of combination is known as geometric source separation,
where the response of BSS demixing filters is additionally
constrained to a set of directions.
The original algorithm of geometric source separation

was described in the discrete Fourier transform (DFT)
domain. The response of BSS at the qth BSS output is
constrained to the direction θ , which can be expressed by

wT
q (�)d(�, θ) = ξ , (10)

where ξ denotes the constraint, wq (�) =
[w1q(�),w2q(�)]T describes the demixing filters for the
qth BSS output channel at the frequency � = 2πν

N (ν is
the frequency bin and N is the length of the demixing
filter) in the DFT domain; {·}T is the transpose operator;
d(�, θ) is the steering vector pointing to direction θ :

d(�, θ) = [e−jζ , 1]T , (11)

ζ = �dmicfs sin θ

c
, (12)

where c is the sound velocity. Note that both the micro-
phone spacing dmic and the angle θ relative to the array

Figure 4 ICA-based BSS for an underdetermined scenario.
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axis must be given. For simplicity, we omit the frequency
variable � in the sequel.
More generally, to constrain the response of the BSS

demixing matrix to a set of P = 2 directions 
, we write:

WD(
) = C, (13)

where W = [w1,w2]T is the BSS demixing matrix and
D(
) = [d(θ1), d(θ2)] contains steering vectors point-
ing to 
 = [θ1, θ2]. The 2 × 2 matrix C refers to the
constraints.
Two constraints were proposed in [19], and they are

diag(WD(
)) = I, (14)

or WD(
) = I, (15)

where I refers to a 2×2 identity matrix. As both of the two
constraints aim at extracting the sources, not at blocking
the sources, we will not discuss them here, but a detailed
discussion can be found in [19,37]. The constraint for
blocking sources was proposed in [37]:

offdiag(WD(
)) = 0, (16)

which restricts the output channels to have a zero
response for the signals arriving from the directions
given in 
, i.e., it forces each output channel to form a
null beamformer steered to the source which should be
blocked in this output channel.
The constraint (16) can be incorporated into the overall

cost function for the source separation (3) as an additional
penalty term:

JC(W) = ∥∥offdiag(WD(
))
∥∥2
F , (17)

where ‖A‖2F = trace
{AAH}

is the Frobenius norm of the
matrixA. {·}H refers to the conjugated transpose operator.
Combining this with the cost function for the generic BSS
algorithm given in (3), we obtain:

Jtotal(W) = JBSS(W) + ηCJC(W), (18)

where the weighting parameter ηC can be chosen to con-
trol the importance of the geometric constraint relative to
the separation criterion represented by JBSS (3).
As Directional BSS serves as a BM for a single desired

source, only the target source needs to be suppressed.
Therefore, JC(W) is modified by considering the following
conditions:

• The direct path for the target signal is suppressed by
the penalty term analogously to null-steering
beamforming, i.e, a spatial null is forced toward the
direction θ of the target source.

• As only the target signal needs to be suppressed, only
one BSS output channel is controlled by the
geometric constraint. Without loss of generality, the
output channel 1 is chosen to be controlled with the
penalty term JC(W) in the sequel.

• In order to converge to the RTF-based BM, w21 is set
to be a pure delay and remains unchanged during
adaptation of the demixing system. Note that we
could equivalently use the first channel as the
reference and in that case w11 is a pure delay.

The simplified cost function for the constraint then
reads:

JC(W) =
∥∥∥∥ [wT

1 d(θ)]
0

∥∥∥∥2
F
. (19)

As JC(W) is complex-valued, the gradient-descent
update for the constrained part for W is obtained by tak-
ing the derivative of the cost function JC(W) with respect
to WH [38]. Besides, as we want to keep w21 fixed, the
constraint must be applied to the demixing filter w11 only.
Thus, the filter update term for the constraint part in the
DFT-domain yields:

∂JC(W)

∂WH =
⎡
⎣ [wT

1 d(θ)][wT
1 d(θ)]H

∂w∗
11

0

0 0

⎤
⎦

=
⎡
⎢⎣

(w11d−jζ +w21)(w∗
11d

jζ +w∗
21)

∂w∗
11

0

0 0

⎤
⎥⎦

=
⎡
⎣ w21e

j�dmicfs sin θ

c + w11 0

0 0

⎤
⎦ , (20)

where a∗ refers to the complex conjugate of a. It should
be noted that both frequency-domain and time-domain
BSS algorithms can be associated with the geometric
constraint. As we use the time-domain TRINICON SOS-
based algorithm given in [32], the filter is updated in the
time-domain for block m̆ after iteration k̆ as follows:

Wk̆+1(m̆) = Wk̆(m̆) − μ̆
Wtotal, (21)

where μ̆ is stepsize and 
Wtotal is given as [20]


Wtotal = ∂JBSS(W)

∂W + ηCDFT−1
{

∂JC(W)

∂WH

}
, (22)

where DFT−1{·} denotes the inverse discrete Fourier
transform yielding a nonzero update contribution of the
same length as the demixing filter length N. ∂JC(W)

∂WH is
already given in (20). In [32] a detailed description for the
applied TRINICON-based update ∂JBSS(W)

∂W can be found.
The natural gradient update is given as [32]:

∂JBSS(W)

∂W = 2
∞∑
ĭ=0

β(ĭ, m̆)Wk̆(m̆)

×[Ryy − bdiagRyy] bdiag−1Ryy,

(23)
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where Ryy denotes the 2D × 2D correlation matrix of
the output signal vector y of length 2D, bdiag refers to
considering block matrix and describes the operation of
setting all off-diagonal block matrices of the block matrix
to zero. β(ĭ, m̆) is a weighting function normalized to∑m̆

ĭ=0 β(ĭ, m̆) = 1 allowing for online, offline or block-
online realization of the algorithm [32].
By applying Directional BSS, the target source s1 should

be suppressed in BSS output channel 1. Thus, the noise
estimate n̂ is given by the output y1 as follows:

n̂ = y1 = w11 ∗ x1︸ ︷︷ ︸
v1

+w21 ∗ x2︸ ︷︷ ︸
v2

= w11 ∗ (xs,1 + xn,1)︸ ︷︷ ︸
v1

+w21 ∗ (xs,2 + xn,2)︸ ︷︷ ︸
v2

≈ w11 ∗ xn,1 + w21 ∗ xn,2, (24)

where xs,p and xn,p denotes the target and the noise com-
ponent contained in microphone p, respectively.
Besides, in [19] the efficiency of a proper geometrical

initialization was shown. For the geometric constraint,
the direction of the target source needs to be known a
priori or it needs to be estimated. If the target source
position is not known, an additional source localizer is
necessary. Many localization algorithms can be used as,
e.g., GCC-PHAT [39] or an ICA-based source localizer
[40]. With the given DoA information, we can initial-
ize the filter structure corresponding to a DSB in order
to accelerate convergence. The initialization is performed
after each movement of the target source. Defining a
vector dsub(θ) = [−1, e−j�dmicfs sin θ

c ]T , for the constraint-
controlled channel 1, the filter coefficients can be initial-
ized as follows:

w1 = dsub(θ). (25)

3.3 Comparison to alternative approaches
The original BM proposed by Griffith and Jim [12] is con-
structed by subtracting pairs of time-aligned signals with
respect to the target signal. For the dual-channel case,
this is exactly a DSB, which is attractive for its simple
structure. However, a major limitation in real acoustic
scenarios is that the performance of a DSB will signif-
icantly degrade for an imprecise target source position
information, i.e., for steering errors. Additionally, due to
reflections of the target signal impinging from directions
other than the steering direction, significant signal leak-
age into the noise reference needs to be expected. As
a possible countermeasure, an adaptive BM (ABM) with
coefficient constraints was proposed in [23]. In this con-
ventional ABM, the output of the FB (see Figure 1) is
used as a reference signal for the target source and adap-
tively subtracted from the microphone signal. The least
mean squares (LMS) algorithm is usually used for the

ABM adaptation. However, the adaptation can only be
carried out in time segments, where only the target source
is active. Therefore, a double-talk detector is necessary,
which requires significant sophistication and will still be
imperfect in complex acoustic scenarios. The difference of
our approach to this BM is that (1) the adaptation criterion
is different and very important for its practical relevance,
and (2) a double-talk detector is not required.
The transfer-function-generalized sidelobe canceler

(TF-GSC) was proposed by Gannot et al. [25], where the
BM is constructed based on RTFs. This approach takes
the reverberant nature of the enclosure into account. The
RTFs are estimated by a least squares method and for
this, two assumptions are necessary: (1) the RTFs change
slowly over time compared to the time variations of the
signals, which effectively precludes movements of the
source, and (2) time segments are available, where both
the TFs and the noise signal are assumed to be station-
ary. In Section 3.1 we already show that our approach
converges to an RTF-based BM. In contrast to [25], our
approach does not rely on such time segments but only a
coarse DoA estimation is required.
Warsitz et al. presented a BM based on a general-

ized eigenvalue decomposition. They construct the BM
directly by using the beamformer filter coefficients result-
ing from maximizing the output signal-to-noise ratio,
where the filter coefficients are computed iteratively by
solving a generalized eigenvalue problem [41,42]. This
approach indirectly estimates the RTFs and does not
require periods of absence of noise and the DoA of the
target source. On the other hand, it works only for station-
ary noise while our approach can work in a nonstationary
multispeaker scenario.
Recently, a subspace approach for estimating RTFs in

multiple-noise scenarios was proposed in [27], which was
used to construct the RTF-based BM efficiently. However,
this approach needs an estimation for source activities.
The conventional noise estimation methods other than

BM-based approaches are mostly based on source activity
estimation [43] or minimum statistic noise power estima-
tion [44,45]. For those approaches, it is usually assumed
that the sources are statistically independent and the noise
is more stationary than the target signal. The recently
well-studied model-based NMF approaches [5-7] can be
used directly for noise reduction [46,47] or for noise esti-
mation [48]. Those methods usually rely on the prior
knowledge of the noise type (point source or diffuse noise)
to define the model parameters. Therefore, they can only
be as efficient as the models match the current scenario
and are prone to fail if the model assumptions do not
hold or the parameters could not be properly learned.
The latter is especially crucial for online algorithms in
time-varying scenarios. On the other hand, Directional
BSS will fail if the interfering source arrives from the
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same direction as the target source, as then Directional
BSS is not able to provide an estimate for the interfer-
ing source. Compared to these alternative approaches, the
main advantage of the proposed approach is that no tar-
get source activity estimation or prior knowledge on the
source characteristics is necessary and no model needs to
be matched, but only a coarse DoA estimation is required.

4 Evaluation of blockingmatrices
In order to evaluate the proposed BM, comprehensive
experiments were carried out. The system behavior and
the target suppression performance of Directional BSS
in single-source scenarios (only one directional source
is active) and multiple-source scenarios (multiple direc-
tional sources are simultaneously active) are evaluated.
For showing the system behavior, Directional BSS is com-
pared to (1) an ideal RTF-based BM and (2) a BM based
on a DSB. The ideal RTF-based BM is calculated from
the measured room impulse responses (RIRs). In order to
evaluate the target suppression performance, Directional
BSS is compared to (1) a perfect adaptive BM (we name it
ideal ABM) and (2) a BM based on a DSB. The ideal ABM
is adapted in a single-source scenario. It should be noted
that state-of-art BMs are mostly based on an estimation
of source activities and require perfectly detected target
source-only time segments. Therefore, we compare Direc-
tional BSS always with the DSB and not to other BMs as
only these two BMs do not require estimating any source
activities. The comparison to the ideal ABM can show
us how close Directional BSS can reach to the perfectly
supervised case. Besides, the robustness of Directional
BSS against localization errors is analyzed in Section 4.3.

4.1 Experimental setup
Two real rooms were considered for evaluation: (1) room
A: a living-room-like environment with a moderate rever-
beration time of T60 ≈ 250 ms and a critical distance
[49] of 1.3 m and (2) room B: a more reverberant liv-
ing room with T60 ≈ 400 ms and a critical distance of
0.9 m. As source-array, distances 1 and 2 m were consid-
ered. The experiments are based on RIR measurements
carried out with a two-channel array. The measurements
were performed for two different microphone spacings,
dmic ∈ {6, 11.5} cm at a sampling frequency of 48 kHz
using the maximum length sequences (MLS)method [49].
For the following evaluation, the RIRs were downsampled
to a sampling frequency fs = 16 kHz.We combine the effi-
cient SOS-based online BSS algorithm presented in [32]
with the geometric constraint (22) to perform Directional
BSS. The filter length of the finite impulse response (FIR)
filters wpq (21) is 1024, the block length for estimation
of the correlation matrix Ryy (23) is 2048. The number
of iterations per data block of 125 ms is 15 (see [32] for
details on the adaptation). Three male and female speech

signals of length 10 s were used as source signals. Diffuse
background noise components were simulated using the
method proposed in [50]. All sources (including speech
sources and diffuse source signals) are continuously active
and normalized to equal average power. For the experi-
ments, the DoA information of the target source is given.
However, as in practice, a source localizer is necessary to
estimate the target DoA, in Section 4.3, the robustness of
Directional BSS against localization errors is investigated.

4.2 Performance of the blockingmatrices
As performance measures, we use (1) the frequency
response of the overall system to show the system behav-
ior in different scenarios under various acoustical condi-
tions, (2) the target suppression gain and the root mean
square error between the estimated RTF and the true
RTF to measure the blocking performance, and (3) the
signal-to-interference ratio (SIR) difference between the
BM input and the BM output signal to measure the ability
of the BM to preserve all interfering signals. Note that here
the interference includes interfering sources and diffuse
background noise.

4.2.1 Frequency response of the overall system
To study the overall system behavior, we investigate the
frequency response of the transfer function for a BM sup-
plied with perfect localization information. The transfer
function for different source positions −90° ≤ φ ≤ 90°
is evaluated as depicted in Figure 5. The spatiotemporal
frequency response associated with the BM is given by

htrans(φ) = n̂s
s

= h11(φ)w11 + h12(φ)w21, (26)

where n̂s refers to the residual of the target signal com-
ponent s in the noise estimate n̂ (‘leakage’). This charac-
terization is similar to but not equal to a beam pattern
in the usual sense where it is assumed that the acous-
tic waves propagate in free field and no scattering is
considered. Instead, (26) also considers the acoustic envi-
ronment by accounting for the transfer functions from
the source position to the microphones. Thereby, htrans
captures reflections of source signals determined by the
given source positions. Thus, if (26) exhibits a minimum
for a certain angle relative to a certain distance to the
microphone array, it indicates that all signal components
originating from this angle at this distance, including pos-
sible reflections at surfaces in the acoustic environment,
are suppressed to the given extent.
We show themagnitude response of (1) Directional BSS,

(2) the ideal RTF-based BM, and (3) a DSB. With the
ideal RTF-based BM, the target component is perfectly
suppressed. Directional BSS is expected to converge to
this ideal solution. For the BM based on a DSB, the fil-
ter coefficients are calculated according to the fractional
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Figure 5 System to evaluate the frequency response of different BMs.

delay between the two microphone signals. For Direc-
tional BSS, the BM coefficients are a set of converged
BSS demixing filters of length 1024 adapted for the
corresponding scenarios. We first show the magnitude
response for the BMs adapted/calculated for single-source
scenarios.
In Figure 6 the magnitude responses for three BMs

(ideal RTF-based BM, Directional BSS, DSB) steered

towards 0° are depicted for the array of dmic = 6 cm and
dmic = 11.5 cm, respectively, in room A with 1-m source-
array distance. Comparing all plots in Figure 6, the three
BMs have similar magnitude responses. For all three BMs,
spatial aliasing is unavoidable at f > 5 kHz (dmic = 6 cm)
and at f > 3 kHz (dmic = 11.5 cm). Besides, they do not
have a significant spatial selectivity for low frequencies
(lower than 300 Hz), and it is observed that the frequency

(a) (b)

(c) (d)

(e) (f)
Figure 6Magnitude responses for all three BMs steered to 0° (roomA, 1 m). (a) Ideal RTF-BM (dmic = 6 cm). (b) Ideal RTF-BM (dmic = 11.5 cm).
(c) DirBSS (dmic = 6 cm). (d) DirBSS (dmic = 11.5 cm). (e) Dsub BF (dmic = 6 cm). (f) Dsub BF (dmic = 11.5 cm).
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range with no spatial selectivity is larger for dmic = 6 cm
than for dmic = 11.5 cm. In this frequency range, not
only the target source but also interferers located at posi-
tions differing from 0° is suppressed to a large extent and
consequently, no noise estimate can be obtained. Despite
similar behaviors in the range of low frequencies, it is
clearly noticeable that both the ideal RTF-based BM and
Directional BSS achieve a more pronounced spatial null
than the DSB, which reflects a much better suppression
performance of these two BMs compared to the DSB.
In Figures 7 and 8, the magnitude responses for three

BMs are depicted for steering directions −45° and −90°
in room A with 1 m source-array distance. Obviously, the
behaviors of the BMs change if the target source moves
towards−90°. For the steering direction of −45°, the ideal
RTF-based BM can still perfectly suppress the source but
the null becomes broader. For Directional BSS and a DSB,
the spatial null becomes apparently weaker and broader.
Besides, it is observed that the spatial null reaches only up
to approximately 4 kHz. In practice, it will not affect the

performance of Directional BSS for suppressing speech
signals too significantly, as most of the energy of speech
signals is usually in the frequency range below 4 kHz.
For the steering direction of −90°, the spatial null of
Directional BSS becomes broader especially at low fre-
quencies, whereas almost no spatial null can be observed
for the DSB. The target suppression gain (discussed in
Section 4.2.2) for Directional BSS degrades from 20 dB for
the target signal at 0° to about 10 dB for the target signal
at 90°, where the target suppression performance is still
acceptable, but the missing selectivity will suppress inter-
fering sources located close to the target source as well. In
the following experiments, we limit the target source posi-
tion to the range [−20°, 20°] relative to the broadside of the
microphone array. Besides, we note that the spatial null
of the proposed method is limited to frequencies below
4 kHz, which is due to the fact that we use speech signals
as the test signals and the energy of speech signals is con-
centrated to the frequency range below 4 kHz. However,
it should be noted that the spatial null can be extended to

(a) (b)

(c) (d)

(e) (f)
Figure 7Magnitude responses for all three BMs steered to -45° (roomA, 1m). (a) Ideal RTF-BM (dmic = 6 cm). (b) Ideal RTF-BM (dmic = 11.5 cm).
(c) DirBSS (dmic = 6 cm). (d) DirBSS (dmic = 11.5 cm). (e) Dsub BF (dmic = 6 cm). (f) Dsub BF (dmic = 11.5 cm).
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(e)

(a) (b)

(c) (d)

(f)
Figure 8Magnitude responses for all three BMs steered to -90° (roomA, 1 m).(a) Ideal RTF-BM (dmic = 6 cm). (b) Ideal RTF-BM (dmic = 11.5 cm).
(c) DirBSS (dmic = 6 cm). (d) DirBSS (dmic = 11.5 cm). (e) Dsub BF (dmic = 6 cm). (f) Dsub BF (dmic = 11.5 cm).

a higher frequency range by using other wideband-signals
with sufficient support at those frequencies.
In Figure 9a, the magnitude response of Directional

BSS for different rooms and different source-array dis-
tances are depicted. It can be seen that the spatial null of
Directional BSS becomes slightly weaker with increased
reverberation.
To explain the performance degradation, we plot the

magnitude squared coherence (MSC) of the target signal
between the two microphones for each testing scenario
in Figure 9e-9h. The MSC is estimated by using Welch’s
averaged periodogram method. The block length for esti-
mating the MSC is 2048, which is the same as the block
length for BSS adaptation. As can be seen, the target sig-
nal for room A with 1-m distance is strongly correlated
(MSC ≈ 1). With the increasing reverberation, the coher-
ence of the target signal becomes weaker. Consequently,
the blocking performance of Directional BSS degrades. If
we increase the block length to be larger than the length
of the measured RIRs, the bias of the coherence towards

zero will reduce according to [51]. The MSC will be close
to 1 again. Therefore, theoretically, increasing both the fil-
ter length of the demixing system and the block length will
increase the performance. However, a deteriorating con-
vergence of the BSS algorithm must be expected for very
long demixing filters. This is a general problemof adaptive
filtering realized in the time domain.
In the above figures, we showed the behavior of the

three BMs in single-source scenarios. For multiple-source
scenarios, the ideal RTF-based BM and the BM based
on a DSB remain unchanged. However, the adaptation
of Directional BSS is affected due to the existence of
the interfering sources. Consequently, the performance
of Directional BSS is different from the performance in
single-source scenarios. Figure 10 illustrates the magni-
tude responses of Directional BSS steering at 0°, with one
interfering point source at 30°. It can be seen that the
spatial null is only slightly weaker compared to the single-
source case (Figure 9), especially at low frequencies. This
indicates that the target source is slightly less suppressed
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 9Magnitude responses for Directional BSS and MSC of target signal under various testing conditions (dmic = 6 cm). (a) Room A,
1 m. (b) Room A, 2 m. (c) Room B, 1 m. (d) Room B, 2 m. (e)MSC (room A, 1 m). (f)MSC (room A, 2 m). (g)MSC (room B, 1 m). (h)MSC (room B, 2 m).

(degration about 1 to 4 dB in terms of the target suppres-
sion gain) due to the existence of the interfering signal.

4.2.2 Target suppression performance
The blocking performance should be quantified to show
how well the target source can be suppressed.We propose
to use two measures to evaluate the performance. One
is the target speech suppression gain which is defined as
follows:

Gainsup = 1
2

2∑
p=1

10 log10

{
σ 2
xs,p

σ 2
n̂s

}
, (27)

where σ 2
a denotes the (long-term averaged) signal power

of the signal a, xs,p denotes the target component con-

tained in pth microphone, and n̂s denotes the target
residual contained in the noise estimate. The target sup-
pression gain of the ideal RTF-based BM is infinity. A
higher target suppression gain indicates a higher blocking
performance for the signal from the target source direc-
tion. This measure is very similar to the ‘signal blocking
factor’ used in [52]. We compare the target suppression
performance with (1) the DSB and (2) a simulated ideal
ABM, where one microphone channel is simply adap-
tively subtracted with a LMS-type algorithm from the
other. For this simulation, an ideal case is assumed, i.e.,
the microphone signal contains only the target signal. The
simulated ABM can be regarded as an ideal version (in
a supervised case) of a conventional ABM using an LMS
algorithm as proposed in [23,24].
Additionally, we calculate the normalized squared error

(NSE) between the estimated RTFs and the ideal RTF
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(a) (b)

(c) (d)
Figure 10Magnitude responses for Directional BSS with one-point interfering source at -30° (dmic = 6 cm). (a) Room A, 1 m. (b) Room A,
2 m. (c) Room B, 1 m. (d) Room B, 2 m.

calculated from the measured RIR to evaluate the esti-
mation of the RTF. The NSE is calculated as follows:

NSEBM = 10 log10

{∑N−1
k=0

( ˜RTFBM(k) − RTFtrue(k)
)2∑N−1

k=0 RTFtrue(k)2

}
,

(28)

where ˜RTFBM denotes the RTF estimated by a BM, e.g.,
˜RTFDirBSS refers to the RTF estimated by Directional

BSS, k is the time sample index, and N is the filter
length of the BM; in our experiments, it was chosen to
be 1024.
The scenarios as depicted in Figure 11a are consid-

ered for evaluating the blocking performance. In sce-
narios 1 to 3, only point sources are active. One male
speech signal of 10 s was used as the target source. A
female speech signal of the same length was used as the
interferer in scenario 2. For scenario 3, a female and a
male speech signal were used as the interferers. In sce-
nario 4, additional diffuse background noise is added to
the microphone. All test signals are normalized to equal
power.
Figure 11b shows the target suppression gain for the

three BMs. As the DSB is only dependent on the target
direction and the target source-array distance, the tar-
get suppression gain of the DSB for scenarios 2 to 4 is
the same as for scenario 1. We simulate the ideal ABM
by adapting the BM filter in a single-source scenario, i.e.,

scenario 1. Therefore, the performance of the ideal ABM is
only shown for this scenario. It can be seen that in a single-
source scenario, the target suppression gain of an ideal
ABM is only slightly higher than Directional BSS, which
indicates that in a single-source scenario, Directional BSS
can reach to the upper limit. For scenarios 2 to 4, the target
suppression gain of Directional BSS degrades but is always
over 10 dB and clearly superior compared to the DSB.
In Figure 11c, the NSEDirBSS and NSEidealABM are shown.
For scenario 1, where only the target source is active, the
NSEs of the both BMs are very close and very low, which
indicates that in a single-source scenario, the estimated
RTFs are very close to the true RTF. With an increased
number of sources or with more complicated acoustical
conditions (higher reverberation time and larger source-
array distance), it is more difficult to estimate the RTF.
We can see that NSEDirBSS increases and the target sup-
pression gain degrades. However, even in such complex
scenarios, Directional BSS can produce an acceptable esti-
mate of the RTF without any source activity detection. In
the latest work [53], more evaluation results for compar-
ing the estimated RTFs with the true RTFs are shown. The
performance of Directional BSS is somewhat dependent
on the signal characteristics (stationary or nonstationary,
speech signal or white noise) of the involved sources. The
energy of a white noise is distributed over full band while
the energy of speech-like sources is usually limited to
low frequencies. Besides, nonstationary sources make the
adaptation of Directional BSS difficult as it needs to catch
the variation of the signals within short frames. There-
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(a)

(b)

(c)
Figure 11 Test scenarios and performance comparison for evaluating the BMs (dmic = 6 cm). (a) Testing scenarios. (b) Target suppression
gain. (c) Normalized squared error.

fore, different signal characteristics will lead to different
results.

4.2.3 Preservation of interfering sources
The target suppression gain can only be used to evaluate
the blocking performance for the target signal. From the
magnitude response for the overall system, it can be seen
that spatial aliasing appears in a certain frequency range.
The goal of a BM is to produce a noise reference by sup-
pressing the target source, which indicates that the noise
signals should be well preserved while the target source
should be well suppressed. Therefore, besides the target
suppression gain, we need to measure how well the noise

signals are preserved. To this end, we define the SIRdiff as
follows:

SIRdiff = SIRin − SIRoutBM, (29)

where SIRin and SIRoutBM are given by

SIRin = 1
2

2∑
p=1

10 log10

{
σ 2
xs,p

σ 2
xn,p

}
,

SIRoutBM = 10 log10

{
σ 2
n̂s

σ 2
n̂n

}
, (30)
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where n̂s and n̂n denote the target and the noise com-
ponent contained in noise estimate n̂, respectively. The
higher SIRdiff , the better the noise signals are preserved
relative to the target signal. We carried out a test for the
scenario shown in Figure 12a, where the target source is
located at 0°, while the interfering source is located at
varying DoA from −90° to −10°.
Figure 12b,c shows the SIRdiff achieved by Direc-

tional BSS and the DSB for the testing scenario. We
observe that due to the increased reverberation, SIRdiff
decreases. The interfering sources located near to the tar-
get source, e.g., the interfering source at −20° or −10°
BSS may treat them as one source. Both the interfering
sources and the target source are suppressed to a cer-
tain extend. Comparing the performance of Directional
BSS and the DSB, it can be seen that Directional BSS

is clearly superior to the DSB especially in reverberant
environments.
As the target source is defined to impinge from the

range −20° to 20° relative to the broadside of the micro-
phone array, the blocking performance including the
preservation of the interfering source for the target
located other than 0° is of interest. Figure 13 shows the
obtained Gainsup and SIRdiff for a scenario where the tar-
get is located at −10° or −20°, and an interfering source is
located at 60° and diffuse noise is active. It can be seen that
Directional BSS can still achieve a target suppression gain
of more than 10 dB. Here, the results of DSB for the same
scenarios are not shown as even for the source located
at 0°, only less than 10 dB Gainsup can be obtained (see
Figure 11b). For the source located off 0°, the performance
of the DSB degrades further.

(a)

(b)

(c)
Figure 12 Comparison of SIRdiff achieved by Directional BSS and DSB (dmic = 6 cm). (a) Scenario for measuring the SIRdiff. (b) SIRdiff of
directional BSS. (c) SIRdiff of DSB.
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(a)

(b)
Figure 13 Performance of Directional BSS for different target direction (dmic = 6 cm). (a) Target suppression gain. (b) SIR difference.

4.3 Robustness against localization errors
In practical applications, usually the target direction is
unknown and needs to be estimated using a source
localization algorithm [39,40] so that estimation errors
must be expected. Hence, the robustness of Directional
BSS against localization errors is of special interest. To
this end, we experimentally evaluate the sensitivity of
Directional BSS with respect to the localization errors.
The scenario for evaluation is illustrated in Figure 14a,
where the target source is always located at 0°, and one
active interferer varies its direction from −90° to −10°.
The target localization error is 5°, 10°, or 15°. Vari-
ous values for ηC from 0.1 to 0.8 are applied for the
constraint.
In Figure 14b-14g, the target suppression results are

shown. The performance of SIRdiff for measuring the
preservation of the interfering sources as discussed in
Section 4.2.3 is shown in Figure 15. From Figure 14b,d,f
and Figure 15a,c,e, it can be seen that for dmic = 6 cm,
a localization error of 15° can be tolerated, the Gainsup
is above 10 dB and SIRdiff is above 6 dB if the inter-
ferer is far from the target source. However, as indicated
above, if the interferer is close to the target source, BSS
might treat th e interferer and target source as a single

source and jointly suppress the target source and the inter-
ferer. This leads to a certain confusion in BSS adaptation,
which results in a performance degradation (low SIRdiff
for the interferer close to the target source). Similar results
are observed for dmic = 11.5 cm. It shows that with
larger microphone spacing, BSS is more sensitive to the
localization error, especially if the interfering sources are
near to the target source. Besides, for a large localiza-
tion error, with lower ηC, Directional BSS achieves a
better performance. Basically, if BSS runs freely with-
out any constraint (ηC = 0), it automatically adapts to
the true source direction for source separation. How-
ever, this holds only for determined cases, which means
for a scenario with only two sources, only two micro-
phones are available. For an underdetermined case with
more than two simultaneously active point sources, BSS
will always try to produce mutually statistically indepen-
dent outputs. Therefore, in an underdetermined situation,
a determined BSS will divide the sources into two groups,
which leads to an unpredictable suppression/separation
of the sources, e.g., it may treat the target source and
the nearest interfering source together as one source/one
group and produce a compromise suppression. There-
fore, we need to constrain BSS to suppress the source
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(a)

(b) (c)

(d) (e)

(f) (g)
Figure 14 Target suppression gain as a function of the localization error and the weighting parameter ηC. (a) Scenarios for evaluating the
sensitivity against localization errors. (b) dmic = 6 cm, error = 5°. (c) dmic = 11.5 cm, error = 5°. (d) dmic = 6 cm, error = 10°. (e) dmic = 11.5 cm,
error = 10° (f) dmic = 6 cm, error = 15°. (g) dmic = 11.5 cm, error = 15°.

from a predefined direction only but not to constrain
BSS too much in order to tolerate a possible localization
error. This is balanced by the weighting factor ηC in (22)
which controls the importance of the geometric con-
straint relative to the separation criterion. A lower ηC
indicates less weight for the geometric constraint, and the
estimation of the demixing filters is more based on statis-
tical independence for source separation. Hence, a lower
ηC should be chosen for unreliable DoA information so

that Directional BSS can better adapt to the true target
direction.

5 Application of a DirBSS-based noise estimate to
blind signal extraction

In this section, a two-channel BSE scheme combining
Directional BSS as BM andWiener-type spectral enhance-
ment filters will be presented and evaluated.
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(a) (b)

(c) (d)

(e) (f)
Figure 15 SIRdiff as a function of the localization error and the weighting parameter ηC. (a) dmic=6 cm, error = 5°. (b) dmic=11.5 cm,
error = 5°. (c) dmic=6 cm, error = 10°. (d) dmic=11.5 cm, error = 10°. (e) dmic=6 cm, error = 15°. (f) dmic=11.5 cm, error = 15°.

5.1 A two-unit scheme: BM plus spectral enhancement
filters

The noise estimate obtained by the above method can
be used for various applications. Conventionally, it can
be used for a realization which relies on a noise estimate
produced by an RTF-based BM [25,53] or for the MWF
which requires an SOS estimate of the noise [54]. In this
section, we discuss one generic application to show the
effectiveness of the noise estimation of the proposed BM.
A two-channel BSE scheme combining Directional BSS as
BM and Wiener-type spectral enhancement filters will be
presented. The scheme is depicted in Figure 16a. It com-
prises two units. In the first unit, an estimate of noise
components is produced by a BM. The noise estimate as
well as the microphone signals is fed into the noise reduc-
tion unit so that the desired speech components can be
extracted from the microphone signals.
Typical approaches which can be considered for the

speech enhancement unit include an interference canceler
or Wiener-type spectral enhancement filters. However, in
underdetermined cases, an interference canceler is not

able to suppress all noise sources [55]. Therefore,Wiener-
type spectral enhancement filters based on the obtained
noise estimate are used for the noise reduction unit. The
real-valued spectral weights for frequency � at output
channel p are given by [56]

gp = max

[
1 − μ

Ŝn̂n̂
Ŝvpvp

, gmin

]
, (31)

where, Ŝaa represents the auto-PSD of a, vp = wp1 ∗
xp denotes the pth microphone signal filtered by Direc-
tional BSS, gmin refers to the minimum value of the
spectral weights (spectral floor), and μ is a real num-
ber which is used to achieve a trade-off between noise
reduction and speech distortion. Note that the spectral
weights can be designed in many forms, e.g., can be
derived from Bayesian estimation using maximum like-
lihood (ML) method, maximum a posteriori (MAP), or
MMSE estimator [57].
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(a)

(b)
Figure 16 Speech enhancement/blind signal extraction scheme and test scenarios for evaluating its performance. (a) Speech
enhancement/blind signal extraction scheme. (b) Test scenarios.

The spectrum of the enhanced signal at the pth output
channel is thus given by

zp = gpxp. (32)

5.2 Improved noise estimate by assuming an ideal diffuse
noise field

The obtained noise estimate n̂ is biased relative to the
original noise components as (1) the noise estimate n̂ is
spectrally shaped by the BSS filters and (2) n̂ is a sum
of all the filtered interference and noise components. A
bias correction function is proposed based on an assumed
coherence [21,56]. If the noise field is approximated as
spherically isotropic [49], the theoretical noise coherence
function reads:

�diffuse = −sinc
�dmicfs

c
. (33)

The noise estimate is corrected with the noise coherence
function [21]:

Ŝ′
n̂n̂ = Ŝn̂n̂

2(1 + 
{�diffuse}) , (34)

where 
 denotes the real part of a complex value. Note
that �diffuse and Ŝ′

n̂n̂ are frequency-dependent. The spec-
tral weights are then calculated with the corrected noise
estimate:

g′
p = max

[
1 − μ

Ŝ′
n̂n̂

Ŝvpvp
, gmin

]
. (35)

This correction function was discussed in detail in [21].
Other possible correction functions could be based on
coherence measurements during target inactivity [54,58]
or a method combined with minimum statistics [59].
However, a more detailed discussion of the possible cor-
rection functions and choices of spectral enhancement
filters is outside the scope of this paper.
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5.3 Experimental results
In this section, the performance of the proposed scheme
with two spectral enhancement filters ((31) and (35)) is
evaluated in terms of signal-to-interference ratio improve-
ment (SIRgain) and speech distortion (SD) for various
scenarios under various testing conditions. Besides, we
show the performance of the proposed scheme based on
the noise estimate provided by the ideal RTF-based BM
and the DSB for comparison.

5.3.1 Experimental setup
Two different rooms and two source-array distances are
considered for evaluating the BMs. The scenarios as
shown in Figure 16b are considered for evaluating the per-
formance of the speech enhancement scheme. All tested
signals are the same as used in the experiments for evalu-
ating the performance of BMs.
The same algorithm of Directional BSS and the same

parameters are used as in Section 4 (see (22) and (23)).
The frequency-domain Wiener filter is implemented with
a polyphase filter bank [60] using a prototype FIR filter
of length 1024, with 512 complex-valued subbands and a
downsampling rate of 128.

5.3.2 Performancemeasures
The performance of the proposed scheme is evaluated in
terms of SIRgain and SD using the following definitions:

SIRgain = SIRout − SIRin, (36)

SIRin = 1
2

2∑
p=1

10 log10

{
σ 2
xs,p

σ 2
xn,p

}
, (37)

SIRout = 1
2

2∑
p=1

10 log10

{
σ 2
zs,p

σ 2
zn,p

}
, (38)

SD = 1
2

2∑
p=1

10 log10

{
Ê{(xs,p(k − τg) − zs,p(k))2}

σ 2
xs,p

}
,

(39)

where xs,p and zs,p denote the target speech components at
the pth input and the pth output of the proposed scheme,
respectively; σ 2

xs,p and σ 2
zs,p denote the (long-term) sig-

nal power of the target speech components at the pth
input and the pth output; whereas σ 2

xn,p and σ 2
zn,p denote

the (long-term) signal power of all noise and interference
components at the pth input and pth output, respectively.
τg refers to the overall signal delay caused by the filter
bank.

5.3.3 Performance of the proposed BSE scheme
In order to establish a reference for the two-stage BSE
methods, we first consider a 2 × 2-channel time-domain
ICA algorithm as an uninformed BSE system where we
identify the target signal in one of the output channels.
The SIR improvement for the various scenarios is shown
in Figure 17. The SD is not shown as it is meaningless
for BSS due to the known filtering ambiguity of opti-
mum BSS solutions [31]. As a generic ICA algorithm is
designed only for the determined case, the this algorithm
can achieve high separation performance only in scenario
1. For scenario 2, it has no determined solution. The three
sources are separated into two groups but the grouping is
unpredictable, as can be seen by the results, e.g., for the
testing conditions [rooms (A,B), 1 m], the target source
is extracted alone, while for the other testing conditions,
the target source is separated together with one interfer-
ing source as one group. For scenarios such as 3 and 4,
where the diffuse noise is active, generic ICA is usually
not capable to separate the point source from the diffuse
noise. A corresponding analysis can be found in [28].With
these results, it is documented that the generic ICA algo-
rithm cannot be expected to extract the target source for
underdetermined scenarios.
The SIR improvement and speech distortion of the

speech enhancement scheme with two spectral filters g
(31) and g′ (35) are shown in Figure 18a,b, respectively.
The upper plot and the lower plot show the results for
the spectral filter g and the improved spectral filter g′,
respectively. It should be noted that for the four con-
sidered scenarios, the parameters of the spectral filters
are optimized with respect to the best perceptual quality

Sce.1 Sce.2 Sce.3 Sce.4
0

5

10

S
IR

G
ai
n RoomA−1m

RoomA−2m
RoomB−1m
RoomB−2m

Figure 17 SIR improvement obtained by the conventional time-domain BSS algorithm (dmic = 6 cm).
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(a)

(b)
Figure 18 SIR improvement and speech distortion for BSE scheme based on spectral filters g and g′ (dmic = 6 cm). (a) SIR improvement. (b)
Speech distortion.

as judged by informal listening tests. For all scenarios,
the proposed BSE scheme with the two spectral filters
can achieve a good noise reduction performance (above
6 dB) and maintain a very low speech distortion (lower
than −11 dB). For scenarios 1 and 2 where only point

sources are active, the performance of the spectral filter g′
based on the incorrect assumption of ideal diffuse noise
is not improved compared to the scheme without the bias
correction. For scenario 3 and scenario 4 where additional
diffuse background noise is present, i.e., the assumption
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of ideal diffuse noise is matched to a certain degree, a
significant improvement for the spectral filter g′ can be
observed.
For comparison, the performance of the proposed

scheme based on the noise estimate produced by the ideal

RTF-based BM and the DSB is shown in Figure 19a,b.
Note that here the speech enhancement scheme with only
the spectral filter g (31) is evaluated.
Although the ideal RTF-based BM can perfectly sup-

press the target source, the produced noise estimate is still

(a)

(b)
Figure 19 SIR improvement and speech distortion for BSE scheme based on ideal RTF- and DSB-based BM. (No bias correction, dmic =6 cm).
(a) SIR improvement. (b) Speech distortion.
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biased relative to the true noise components contained in
themicrophone signal. Therefore, we cannot expect a per-
fect noise reduction for the speech enhancement scheme
with the biased noise estimate. However, the noise reduc-
tion performance achieved with this noise estimate can be
regarded as the upper limit for the scheme with the noise
estimate produced by Directional BSS without applying a
bias correction. It can be seen that for all scenarios, with
Directional BSS as BM, the noise reduction performance
is almost the same as the performance achieved by the
ideal-RTF (1 dB less), but clearly superior to the perfor-
mance achieved by a DSB. Obviously, for the latter, the
large residual of the target component reduces the SIR
improvement and leads to a significant distortion of the
target source.

6 Conclusions
In our earlier work, Directional BSS was proposed as
a BM for source extraction. The concept combines BSS
with a geometric constraint to cope with the underdeter-
mined scenario such that a meaningful and joint estimate
of all interfering speech signals and diffuse background
noise can be obtained using only two microphones. In
this paper, we show that Directional BSS converges to
an RTF-based ideal BM. Experimental results analyzing
the system behavior and the blocking performance of
Directional BSS under various acoustical conditions were
presented. These results verify that Directional BSS can
successfully estimate the RTF in underdetermined non-
stationary noise scenarios without requiring source activ-
ity information. The target suppression performance of
Directional BSS is clearly superior to a commonDSB. Sim-
ulation results confirm also that Directional BSS is very
robust against localization errors. Additionally, we eval-
uate a source extraction scheme which combines Direc-
tional BSS and Wiener-type spectral enhancement filters.
It is shown that the noise reduction performance achieved
by this scheme using Directional BSS is very close to
the performance achieved by the proposed scheme using
an ideal RTF-based BM. Therefore, for exploiting Direc-
tional BSS as a BM, no source activity information and
no information on the number of active sources is nec-
essary. The only required information for this informed
algorithm is some coarse DoA information of the target
source.
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