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Abstract

Due to the sparse distribution of reflectors in space, wireless channels are commonly sparse. Thus, utilizing the sparsity
of channels in the delay-Doppler domain, a channel estimation method based on compressed sensing (CS) theory
can reduce the number of pilots. However, because of discrete truncation in the time domain and limited bandwidth,
the time delay and frequency shift of non-integer multiple samples can cause energy leakage in the delay and
Doppler domain, which seriously reduce the delay-Doppler sparsity of the equivalent channel, thus affecting the
accuracy of channel estimation. In this paper, we use an over-complete dictionary based on super-resolution to
enhance the sparsity of the equivalent channel and reconstruct a doubly selective channel with greater accuracy.
Simulation results demonstrate that the equivalent channel frequency response in the dictionary is sparser than that
in the delay-Doppler domain. Compared with the traditional algorithm, the method proposed in this paper can
effectively improve the performance of channel estimation.
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1 Introduction
Traditional channel estimation methods on orthogonal
frequency division multiplexing (OFDM) systems com-
monly assume that the channel has rich multipath and
require a large number of pilots to obtain more accu-
rate state information of the channel, which seriously
reduce the utilization efficiency of the channel. Mean-
while, traditional methods of linear channel estimation
already attained optimal estimation performance such as
utilization efficiency, so it is difficult to improve them fur-
ther. To overcome the bottleneck, we need to explore the
own characteristic of the channel. More and more exper-
imental evidences show that the sparse distribution of
reflectors in space makes the transmission channel sparse.
The research on sparse wireless channel has already

begun since the 1990s. Cotter and Rao utilize matching
pursuit (MP) algorithm to estimate a small amount of
non-zero channel taps in a single-carrier selective chan-
nel [1]. MP algorithm on decision feedback equalizer can
effectively improve the performance of channel estima-
tion. Compared withMP algorithm, themethod proposed
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by Raghavendra and Giridhar estimates the tap position
in a frequency-selective channel based on generalized
Akaike information criterion and least squares (LS) algo-
rithm, which greatly reduces the calculation burden of LS
algorithm [2]. However, the above results were basically
obtained by simulation and lacked relating theory anal-
ysis. In recent years, Donoho and Candes et al. propose
a novel theory, i.e., compressed sensing, on the basis of
functional analysis and approximation theory. The theory
suggests that if the signal is sparse in a certain domain, it
can be accurately reconstructed by a small amount sam-
pling signal with high probability [3,4]. Bajwa et al. firstly
applied compressed sensing (CS) theory for channel esti-
mation and proposed the concept of compressive channel
estimation (CCE) [5]. In the literature [5,6], Bajwa made
a feasibility analysis of CCE and extended it to a dou-
bly selective channel. The literature [7] gives a virtual
channel model by Nyquist sampling for physical trans-
mission environment in the angle-delay-Doppler domain
and makes a comparison between CCE and LS. Mean-
while, aiming at acoustic OFDM systems, Berger et al.
proved that CS channel estimation is superior over the
traditional linear channel estimation method, which is
reflected in the experimental data, like root-MUSIC and

© 2014 Zhou et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto: zhoufei@cqupt.edu.cn
http://creativecommons.org/licenses/by/2.0


Zhou et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:29 Page 2 of 11
http://asp.eurasipjournals.com/content/2014/1/29

ESPRIT algorithms [8,9]. Taubock and Hlawatsch trans-
form a doubly selective channel model to a solvable basis
pursuit inequality constraint model, utilize the pilot signal
as the key measurement that CS reconstruction requires,
and analyze the sparsity of the channel parameter in the
delay-Doppler domain [10]. However, it was concluded
from the analysis that the energy leakage problem caused
by discrete truncation of time domain and limited band-
width obviously deteriorates the channel’s sparsity which
limits the performance improvement of CS-based chan-
nel estimation methods. To solve the problem, Taubock
et al. propose an iterative basis optimization procedure
that aims to maximize sparsity [11,12]. Although the
method proposed by Taubock achieves significant perfor-
mance gains, its basis optimization, which adds additional
complexity, has to be performed before data transmis-
sion. Aimed at common problems caused by time delay
and Dopler frequency shift of non-integer multiple sam-
ples, we use a super-resolution over-complete dictionary
to improve the performance of channel estimation. The
dictionary only increases the run time of the sparse recon-
struction procedure with the increase of basis. We find
that the over-complete dictionary representation of the
channel is much sparser than the classical delay-Doppler
representation in most cases, and it can effectively
reduce the usage of pilots and improve the estimation
performance.
The rest of this paper is organized as follows. Section 1

introduces CS theory and Section 2 introduces the OFDM
system model. Section 3 analyzes the energy leakage of
the channel in the delay-Doppler domain firstly, then uses
the super-resolution dictionary instead of Fourier basis to
enhance the sparsity of the channel, and next presents the
CS-based channel estimation method. In Section 4, we
present numerical results. Finally, Section 5 concludes the
paper.

2 Compressed sensing theory
CS is a novel and highly promising theory that com-
bines appliedmathematics and signal processing. It breaks
through the limitation of traditional Nyquist sampling
and greatly reduces sampling frequency, data storage, and
transmission burden. In CS, if a vector x ∈ RN is K-
sparsity, or approximate K-sparsity, it can be represented
by using K(≤ N) non-zero coefficients [3]. Then, a linear
measurement value about x can be obtained by selecting
appropriate measurement matrix � ∈ C

M×N (M < N),
as shown in (1). Only M measurements within y can be
utilized to reconstruct the original signal with very high
probability.

y = �x + z (1)

The dimension number of y is far less than that of x,
so equation array (1) is underdetermined. However, in

view of x which is K-sparse, it is only required to obtain
K non-zero coefficients and their position. Candes et al.
have proved that if the number of measurement M =
O

(
K log (N)

)
, and the measurement matrix satisfies the

constraint of restricted isometry property (RIP), signal x
can be reconstructed by solving the l0-normminimization
in (2) [3].

minx ‖x‖0 subject to y = �x (2)

Tao et al. already proved that Gaussian random mea-
surement matrix, random partly Fourier measurement
matrix, and Toeplize random matrix can satisfy the RIP
criterion with very high probability [4], i.e., any N dimen-
sion K-sparsity vectors a all satisfy the following rule:

(1 − δk) ‖a‖22 ≤ ‖�a‖22 ≤ (1 + δk) ‖a‖22 (3)

where δk ∈ (0, 1) is a constant.
Unfortunately, l0-norm is not convex. Actually, this

problem is NP hard and therefore cannot be solved in a
reasonable amount of time. By now, there are many dif-
ferent algorithms to solve it. Orthogonal matching pursuit
(OMP) becomes a popular way in CS theory because it
is simple for computation and easy for implementation
[13]. OMP algorithm transforms the problem, l0-norm
minimization, to a relative simple problem shown in (4):

x = min
x′∈RN

∥∥x′∥∥
0 subject to

∥∥�x′ − y
∥∥
2 ≤ ε (4)

where ε is the upper bound of the noise level. The basic
idea of OMP algorithm is how to select the column vector
of measurement matrix � by utilizing the greedy iteration
way and reconstruct the signal by computing the support
vector set on iterative algorithm of parameter x [13].

3 OFDM systemmodel
3.1 Systemmodel
We describe a generalized cyclic prefix (CP) OFDM sys-
tem shown in Figure 1. The discrete-time transmission
can be written as

x [n] = 1√
K

L−1∑
l=0

K−1∑
k=0

xl,k e
j2πkn/K g [n − lN] (5)

where K is the number of subcarriers, L is the number
of transmitted symbol periods, and N denotes the symbol
duration. NCP = N − K is the guard interval for the CP
which is used to avoid the intersymbol interference (ISI).
xl,k denotes the lth symbol transmitted at subcarrier k, and
discrete transmit pulse g[ n] is 1 on [ 0,N] and 0 otherwise.
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The baseband-equivalent doubly selective channel
h (t, τ) includes physical channel hch (t, τ), transmitter
filter ftr (t), and received filter frec (t), so we have

h (t, τ) =
∫ ∫

frec (s) ftr (τ − s − θ)hch (t − s, θ) dsdθ

(6)

In the receiver, the received signal after being sampled
with period Ts is given by

r [n] =
∑
θ∈R

h [n, θ] x [n − θ ] + z [n] (7)

where h [n, θ] = h (nTs, θTs) and z [n] = z (nTs) is
discrete-time noise.
Assuming that the receiver is synchronous, if signal r [n]

is demodulated, we can obtain

rl,k = 1√
K

∞∑
n=−∞

r [n] e−j2πk(n−lN)/Kγ [n − lN] (8)

where l = 0, 1, . . . ,L − 1, k = 0, 1, . . . ,K − 1, and γ [n] is
only 1 in [N − K ,N − 1] and 0 otherwise. Combining (5),
(7), and (8), we have

rl.k = Hl,kxl,k + zl,k (9)

where zl,k = 1√
K

∞∑
n=−∞

z [n] e−j2πk(n−lN)/Kγ [n − lN]

denotes the noise or the interference terms. Hl,k is the
system channel coefficients which will be analyzed in the
following sections.

3.2 Doubly selective fading channel
According to the wide-sense stationary uncorrelated
scattering (WSSUS) model, the time-varying multipath
channel is expressed as [14]

hch (t, τ) =
P∑

q=1
ηqδ

(
τ − τq

)
ej2πvqt (10)

where P is the number of multipath components and
ηq,τq, and vq are the attenuation coefficient, the delay,
and the Doppler shift of path qth, respectively. δ denotes
the Dirac delta function. We obtain the delay-Doppler
spreading function S (v, τ) via Fourier transform.

S (v, τ) =
∫

h (t, τ) e−j2πvtdt

=
P∑

q=1
ηqδ

(
τ − τq

)
δ
(
v − vq

) (11)

Assuming that physical channel h (t, τ) does not vary
in the area of received filter frec (t), Equation 12 can be
derived from Equation 6.

h(t, τ) =
∫∫

frec (s) ftr (τ − s − θ) hch (t, θ) dsdθ

=
∫

ψ (τ − θ) hch (t, θ) dθ

=
P∑

q=1
ηqψ

(
τ−τq

)
ej2πvqt

(12)

where ψ (τ−θ) = ftr (t) ⊗ frec (t). After discretizing
Equation 12, we have

h [n, θ ] =
P∑

q=1
ηqψ

(
θTs − τq

)
ej2πvqnTs (13)

Due to the non-linear relation between h [n, θ] and
channel parameters

[
ηq, vq, τq

]
, it is difficult to analyze the

channel by utilizing Equation 13. It caused us to search for
a new model with less parameters.

4 Sparse channel estimation using a dictionary
4.1 The effect of sparsity caused by energy leakage
Because the basis expansion model (BEM) [15] is simple
for calculation and independent on statistical character-
istics of the channel, it is widely used in time-varying
multipath channel estimation. To compute rl,k in (8) for
all l = 0, 1, . . .L− 1, the discrete-time received signal r [n]
has to be known for n = 0, . . .,N0 − 1, where N0 = LN .
The discrete time channel impulse response h [n, θ] in
Equation 13 can be represented by BEM with a period of
N0 [16], so we have

h [n, θ ] =
J∑

i=−J
Sh [i, θ] ej2π in/N0 (14)

where J satisfies J/(N0Ts) ≥ vmax/2 and vmax/2 denotes
the single-sided maximum Doppler shift. Sh [i, θ] is the
discrete delay-Doppler spread function:

Sh [i, θ] = 1
N0

N0−1∑
n=0

h [n, θ ] e−j2π in/N0

=
P∑

q=1
η′

qψ
(
θTs − τq

)
dirN0

(
i − vqTsN0

)
(15)

where dirN (x) = sin (πx)/ (N sin (πx/N)), η′
q =

ηqejπ(vqTs−i/N0)(N0−1), and θ = 0, . . .,D − 1. D ≥
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Figure 1 OFDM systemmodel. The baseband-equivalent doubly selective channel h (t, τ) includes physical channel hch (t, τ), transmitter filter
ftr (t), and received filter frec (t).

τmax/Ts denotes the number of discrete time-delay
sampling points. It is obvious that if the maximum
time-delay satisfies τmax ≤ NCP, the intersymbol interfer-
ence can be eliminated. And if the ideal filter ftr (t) =
frec (t) = √

1/Ts sin c (t/Ts) is applied, where sin c (x) =
sin (πx)/(πx), ψ

(
θTs − τq

) ≈ sin c
(
θ − τq/Ts

)
can be

obtained and applied in Equation 15. So we have

Sh [i, θ] =
P∑

q=1
η′

q�q [i, θ] (16)

where

�q [i, θ] = sin c
(

θ − τq

Ts

)
dirN0

(
i − vqTsN0

)
(17)

Combining (7), (9), and (14), we can derive the channel
coefficient Hl,k

Hl,k =
D−1∑
θ=0

J−1∑
i=−J

Sh [i, θ]e
−j2π

(
kθ
K − il

L

)
Aγ ,g

(
θ ,

i
N0

)
(18)

where Aγ ,g (θ , i/N0) = ∑
n

γ [n] g [n − θ ] ej2π in/N0 is the

cross-ambiguity function. Therefore, we can analyze the
sparsity of �q [i, θ] instead of Sh [i, θ]. From Equation 11,
the delay-Doppler function S (v, τ) consisted of the Dirac
function in delay-Doppler point

(
τq, vq

)
which corre-

sponds to reflecting path q and is supposed to be sparse.
However, the Dirac function is replaced by sin c (x) and
dirN (x) in Sh [i, θ]. Only when τq/Ts and vqTsN0 are all
integers, �q [i, θ] can be simplified to the Dirac func-
tion. The reason is that sin c (x) and dirN (x) are equal
to 1 on x = 0 and 0 otherwise, as shown in Figure 2.
Under any other conditions, �q [i, θ] is not equal to 0
for any i and θ . In other words, the peak energy of the
discrete delay-Doppler function may have leakage to the
near delay-Doppler area. Figure 3 demonstrates the leak-
age effect of Sh [i, θ] where P = 10 , NCP = 16 , K = 25 ,
and L = 16 . ηq, τq/Ts, and vqTsN0 are random variables.

From Figure 3, the peak energy of Sh [i, θ] leaks to
the near delay-Doppler area, and then its value would
fade and approximate to 0 gradually. Therefore, Sh [i, θ]
is approximate sparse, i.e., the channel coefficient Hl,k is
approximate sparse in the delay-Doppler domain. How-
ever, the fading of sin c (x) and dirN (x) is slow, and a
lot of values in Sh [i, θ] cannot be neglected. It seriously
influences the sparsity of the channel and the estimation
performance of the channel.

4.2 Sparsity enhancement using the super-resolution
dictionary

In real wireless channels, the time delay and Doppler fre-
quency shift of non-integer times sampling points exist
generally. They seriously influence the sparsity of channel
coefficient Hl,k in the time delay and Doppler domain and
do not satisfy the prerequisite condition. Hence, how to
avoid the energy leakage is a very important issue in chan-
nel estimation. Essentially, the channel energy leakage is
actually introduced by channel discrete characterization,
and the sparsity of the channel itself does not disappear.

Figure 2 Functions sin c (x) and dirN (x). sin c (x) and dirN (x) are
equal to 1 on x = 0 and 0 otherwise, but their intensity decreases due
to the decay.
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Figure 3Modulus of the expansion coefficients for DFT basis.
Since the fading of sin c (x) and dirN (x) is slow, a lot of coefficients
should not be neglected which decrease the sparsity of the channel.
The parameters are P = 10, NCP = 16, K = 256, and L = 16. ηq , τ/Ts ,
and vqTsN0 are random variables.

Therefore, if we can improve the accuracy of channel dis-
crete characterization, it would greatly reduce the energy
leakage. Therefore, improving the discrete accuracy of the
channel impulse response reduces the energy leakage [17].
Assuming that h [n, θ] can be represented by BEM with

a period of λN0, we have

h [n, θ ] =
J∑

i=−J
S(λ) [i, θ] ej2π in/(λN0) (19)

where J/(λN0Ts) ≥ vmax/2.
Let h(λ)

θ = [h [0, θ] , . . ., h [λN0 − 1, θ]]T and S(λ)
θ =[

S(λ) [−J , θ ] , . . ., S(λ) [J − 1, θ]
]
, we can derive S(λ)

θ based
on LS and obtain

min
S(λ)

θ

∥∥∥∥h(λ)
θ − 1

λN0
F(λ)S(λ)

θ

∥∥∥∥
2

(20)

where F(λ) =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1

e−
j2π J
λN0 · · · e

j2π(J−1)
λN0

... · · · ...

e−
j2π J(λN0−1)

λN0 · · · e
j2π(J−1)(λN0−1)

λN0

⎤
⎥⎥⎥⎥⎥⎦.

Then,

S(λ)
θ =

(
F(λ)

)†
h(λ)

θ = 1
λN0

(
F(λ)

)H
h(λ)

θ (21)

where S(λ)
θ corresponds to 2J + 1 Doppler sample point

under λ times over-sampling.
We may define S(λ)

θ ,m = [
S(λ) [−amλ + m, θ] , . . ., S(λ)

[bmλ + m, θ]] and hθ = [h [0, θ] , . . ., h [N0 − 1, θ]]T ,
where am = (J + m) mod λ and bm = (J − m) mod λ. It
is easy to prove Equation 22:

S(λ)
θ ,m = min

S(λ)
θ ,m

∥∥∥∥D(λ)
m hθ − 1

N0
F(λ)
m S(λ)

θ ,m

∥∥∥∥
2

(22)

whereD(λ)
m = diag

{[
1, e−

j2πm
λN0 , . . ., e−

j2πm(N0−1)
λN0

]T}
and

F(λ)
m =

⎡
⎢⎢⎢⎢⎣

1 · · · 1
e−j2πam/N0 · · · ej2πbm/N0

... · · · ...
e−j2πam(N0−1)/N0 · · · ej2πbm(N0−1)/N0

⎤
⎥⎥⎥⎥⎦.

Then,

S(λ)
θ ,m =

(
F(λ)
m

)†
D(λ)

m h(λ)
θ = 1

N0

(
F(λ)
m

)H
D(λ)

m hθ (23)

Equation 23 corresponds to taking the (am + bm + 1)
samples around zero from the critically sampled Doppler
spectrum of the m/(λN) frequency-shifted version of hθ .
So all samples (m = 0, 1, . . ., λ − 1) can deduce 2J + 1
Doppler frequency shift point. By replacingD(λ)

m , F(λ)
m , and

hθ into Equation 23, we have

S(λ) [i, θ] =
P∑

q=1
ηqψ

(
θTs − τq

)
ejπ

(
vqTs− i

λN0

)
(N0−1)

× dirN0

(
π

(
i − λvqTsN0

))
(24)

From Equations 24 and 16, we find that
dirN0

(
π

(
i − vqTsN0

))
in Equation 16 is replaced

into dirN0

(
π

(
i − λvqTsN0

))
. So if vqTsN0 = n/λ,

dirN0

(
π

(
i − λvqTsN0

))
can be transformed into a Dirac

function. The higher the parameter λ is, the more the
sample of the Doppler spectrum is. And when the posi-
tion of the sample is closer to the real position, the
problem of energy leakage would greatly be reduced.
Admittedly, a part of the Doppler spectrum still results
in a certain energy leakage; however, its value is very
small. Letting I denote all integer set which satisfied∣∣i − λvqTsN0

∣∣ ≤ 
i in the area of i ∈ {−J , . . ., J}, the
energy sum of samples in which the distance vqTsN0 in
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dirN0

(
π

(
i − λvqTsN0

))
is larger than 
i ∈ {2, 3, . . .} can

be given.

∑
i/∈I

∣∣dirN0

(
π

(
i − λvqTsN0

))∣∣2

=
∑
i∈I

∣∣∣∣∣ sin
(
π

(
i − λvqTsN0

))
N0 sin

(
π

(
i − λvqTsN0

)
/N0

)
∣∣∣∣∣
2

≤
∑
i∈I

1∣∣N0 sin
(
π

(
i − λvqTsN0

)
/N0

)∣∣2
≤ 2

N2
0

∫ ∞


i−1

dx
sin2 (πx/N0)

= 2
N0π

cot
(

π

N0
(
i − 1)

)

≤ 1
π (
i − 1)

(25)

Figure 4 shows the leakage effect of
dirN0

(
π

(
i − vqTsN0

))
and dirN0

(
π

(
i − λvqTsN0

))
,

where vqTsN0 = 0.4 and vqTsN0 = 0.5.
Similarly, we can apply the same method to solve the

energy leakage problem in the time-delay domain [18,19].
Lastly, equivalent discrete-time baseband channel fre-
quency response is given by

Hl,k =
D−1∑
θ=0

J−1∑
i=−J

SD [i, θ]e−j2πkθ/λdelayKe j2π il/λDopplerL

× Aγ ,g (θ , i/N0)

(26)

where DTs/λdelay ≥ τmax, λdelay and λDoppler are the over
multiple number of delay and Doppler, respectively, and
Aγ ,g (θ , i/N0) is the same as that in Equation 17.
Redundant dictionary U is defined by

[U]kL+l, (i+J)D+θ = e−j2π(kθ/λK−ni/λN0), [h]kL+l = Hl,k ,
and

[g]
(i+J)D+θ

= SD [i, θ]A′
γ ,g (θ , i/N0). Obviously, g is

sparse according to the above analysis. So we can obtain
the vector form of Equation 26:

h = Ug (27)

Especially, if λ = 1, U is the 2-D Fourier basis as used
in Equation 18. Under the same conditions as those in
Figure 3, Figure 5 shows the distribution of coefficient g in
the dictionary domain.
Obviously, the effective value g in Figure 5 is less than

that in Figure 3. So the channel coefficient corresponding
to λ = 2 has a higher sparsity. To analyze the sparsity in
the dictionary domain better, we utilize OMP algorithm to
solve S-sparse approximation and obtain the most S max-
imum value in g. From Figure 6, with the increase of S, the
mean square error E[ |h − ĥS|2] would decrease gradually
and would be close to 10−1, i.e., we can obtain 90% chan-
nel energy based on S strongest atoms. If λ is higher, the
atoms that satisfy the requiredmean error are fewer. Sowe
can conclude that if λ is higher, the sparsity of frequency
response h is higher in the over-complete dictionary.

4.3 The estimation of the sparse channel based on the
dictionary domain

Assuming that (l, k) ∈ P , where P is the pilot set, the
total number of pilot point is Q = |P |. The number
of pilots must satisfy the lowest demand of compressive
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Figure 4 Comparison between dirN0

(
π

(
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))
and dirN0

(
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)
. dirN0

(
π
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))
has a quicker fade speed of side lobe

and a smaller value of side lobe than dirN0
(
i − vqTsN0

)
. (a) vqTsN0 = 0.4, λ = 2. (b) vqTsN0 = 0.5, λ = 2.
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Figure 5 Sparsity enhancement obtained with the over-complete
dictionary corresponding to λ = 2. The effective value is much less
than that in Figure 3; the parameters are the same as those in Figure 3
except the basis.

sensing theory to represent the measurement signal with-
out distortion. The literature [14] gives the limitation of
the number of measurement samples required by OMP.
Nm ≥ KS ln (Nr/δ), where S denotes sparsity. Commonly,
K ≤ 20 is reasonable. If S is too large, we may also set
K ≈ 4 and δ ∈ (0, 0.36). OMP may reconstruct a sig-
nal with 1 − 2δ probability. So we can select the suitable
number of pilots,Q ≥ Nm.
According to (9), the estimation of the channel coeffi-

cient in the pilot is given by

H̃l,k = rl,k
xl,k

= Hl,k + zl,k (28)

Let h
 = h
∣∣
(l,k)∈P , U
 = U

∣∣
(l,k)∈P be the matrix cor-

responding to the pilot point, and z
 be the set of z̃l,k in
(l, k) ∈ P . We have

h
 = U
g + z
 (29)

According to the above analysis, we can conclude that
g is sparse. So Equation 27 is a standard equation of CS.
Measurement matrix U
 is a structured random matrix
which is formed by selecting a row vector of unitary
matrix corresponding to the pilot point. If we select the
position of the pilot uniformly and randomly and Q is
large enough, the normalized matrix

√
1/QU
 has a small

constraint isometric constant with very high probability.
In other words, we can obtain very good reconstruction

performance. So we can obtain Equation 30 from
Equation 29.

h
 = �x + z
 (30)

where � = √
KL/QU
 and x = √

Q/KLg. Therefore, we
may realize channel equalization based on CS theory. The
following are the detailed steps:

1. Obtain the estimation H̃l,k of the channel
coefficient according to Equation 28, and then
combine all H̃l,k to form h̃
.

2. Utilize OMP to obtain an estimation x̃ of x based
on known h̃
 and � according to Equation 30.
The detail of realization refers to Algorithm 1.
After rescaling x̃, we can obtain estimation value
g̃, as well the spread coefficient SD [i, θ]
corresponding to the dictionary.

3. Compute all channel coefficient h̃ by utilizing
Equation 27 based on known g̃ and U.

The run time of OMP mainly depends on the index set
�k selected in the iteration process. We need to select the
optimal atom O (D (2J + 1)) from D × (2J + 1) atom. So
with the increase of λ, the number of time-delay sample
D and the number of Doppler sample J would increase
exponentially. However, with the increase of λ, the chan-
nel sparsity would be enhanced and the iteration times
required by OMP would reduce. Lastly, it can save a
certain run time.

0 5 10 15 20 25 30
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10
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Figure 6MSE of sparse approximation of h in Equation 27.We
utilize OMP algorithm to solve S-sparse approximation and obtain the
most Smaximum value in g; a redundant basis leads to significantly
fewer terms than Fourier basis.
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Algorithm 1 Steps of reconstitution
Input:

Data vector h̃
, measurement matrix �, noise vari-
ance σ 2

Output:
The proposed solution is x̂k obtained after k itera-
tions.

1: initialize: Residual r0 = h̃
, index set �0 = ∅,
iteration counter k = 0

2: while (‖rk‖2 ≥ σ 2) do
3: k = k + 1
4: Find the index λk : λk = argmax

j

∣∣〈rk−1, ϕj
〉∣∣ , ϕj ∈ �

5: Augment the index set and the matrix of chosen
atoms: �k = �k−1 ∪ {λk} and
�k = [

�k−1, ϕλk

]
6: Solve a least squares problem to obtain a new signal

estimation: x̂k = argmin
χ

∥∥y − ��kχ
∥∥
2

7: Calculate the new residual: rk = y − �x̂k
8: end while

5 Simulation and analysis
In this section, we present numerical results to ana-
lyze the performance of the CS-based channel estimation
algorithm using the over-complete dictionary. The fol-
lowing are the relating simulation parameters: carrier
frequency fc = 2 GHz, bandwidth B = 10.24 MHz, sub-
carrier number K = 1, 024, the length of cyclic prefix
NCP = 128, and sample period Ts = 0.1 ms. We may uti-
lize the channel simulation tool IlmProp [20] based on the
geometrical structure of space to simulate a doubly selec-
tive fading channel. The simulated frame for the OFDM
block has eight symbols, i.e., L = 8. In the simulated envi-
ronment, the distance between the transmitter and the
receiver is 2,000 m, and 10 reflectors, in which 2 reflectors
are distributed within 150 m from the transmitter, form
10 multipath clusters, which satisfy the Gaussian distribu-
tion. The random speed of each path is less than 100 m/s
and the acceleration is less than 20 m/s2. Assume that
the noise z [n] is additive white Gaussian noise (AWGN),
in which the mean is 0 and the variance is σ 2. So the
signal-noise ratio (SNR) of the symbol block is given by

SNR =
N0−1∑
n=0

E
{|r [n] − z[n]|2}

/N0−1∑
n=0

E
{|z[n]|2}

(31)

In addition, simulation tools are MATLAB 2009 and an
Intel Core PC with a 2.8-G processor and 1.5-G RAM.
To begin with, we give the performance compari-

son for a variety of algorithms under different SNR
conditions. The SNR varies within −10 ∼20 dB. For

LS channel estimation, we used two different rectan-
gular pilot constellations, i.e., selected uniformly 6.5%
and 12.5% of all symbols for pilots, respectively. For
CS-based estimation, we select randomly 6.25% of
all symbols for pilots and three different basis, i.e.,
Fourier basis (DFT) (i.e., λ = 1) [10], iterative opti-
mize basis [12], and over-complete dictionary (DIC)
(λdelay = λDoppler = 2, λdelay = λDoppler = 4).
Figure 7 gives theMSE comparison of different algorithms
under SNR. Figure 8 shows the bit error ratio (BER) com-
parison of equalization decoding. Both figures suggest
that when we only apply 6.25% resource as pilots, the per-
formance of LS estimation is much bad; the reason is that
the distribution of the pilot cannot satisfy the Nyquist
sampling criterion. However, when OMP algorithm also
applies 6.25% resource for the pilot, the performance of
the channel estimation proposed in this paper is better
than that of LS estimation that applies 12.5% resource
for the pilot. So the utilization efficiency of the spec-
trum is improved obviously. In addition, OMP algorithm
on the over-complete dictionary domain has a better
performance than the traditional algorithm on the delay-
Doppler domain. When λ = 2, the performance on the
over-complete dictionary domain approaches that on the
iterative optimize basis. And when λ = 4, the perfor-
mance on the over-complete dictionary domain is better
than that on the iterative optimize basis.With the increase
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Figure 7MSE performance in different SNR environments. The
compressed sensing methods can increase their performance
significantly by using dictionaries with a finer resolution (for OMP,
λ = 2, 4 ); OMP_DFT, OMP_OPT, and OMP_DIC represent Fourier
basis, iterative optimize basis, and dictionary used in OMP algorithm,
respectively.
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Figure 8 BER performance in different SNR environments.With
the increase of λ, the bit error rate is gradually reduced and reaches
the ideal channel estimation.

of the λ, the BER performance of OMP algorithm using
over-complete dictionary is close to that of ideal channel
estimation. So the higher is λ, the better is the reconstruc-
tion performance of OMP and the higher is the estimation
accuracy.
Although the performance of the dictionary on λ = 4

is the best, its complexity is also the highest, as shown in
Table 1. Considering the reconstruction time only, itera-
tive optimize basis is the optimal except for LS estimation.
However, the method based on iterative optimize basis
needs extra 163.8541 s to compute the optimal basis.
But, in the channel estimation algorithm proposed in this
paper, we can produce the dictionary by FFT. The method
only enlarges the size of the reconstructed atomic set
and does not need extra computation. By comparing the
required time between λ = 4 and λ = 2, it can be
concluded that the sparsity of the channel coefficient in
the dictionary domain would be sparer with the increase
of parameter λ. Meanwhile, the sparsity of the channel
coefficient can also be influenced by the physical path
and lower than the number of reflectors. Therefore, when

Table 1 The run time of different algorithms

Algorithm Reconstruction (s) Extra time (s)

LS (6.25%) 0.0455 0

LS (12.5%) 0.0372 0

OMP_DFT 0.4282 0

OMP_OPT 0.3017 163.8541

OMP_DIC (λ = 2) 0.9661 0

OMP_DIC (λ = 4) 2.9548 0

λ = 2, the channel estimationmethod based on the super-
resolution dictionary domain has a certain advantage on
the algorithm performance and computation complexity.
Then, we present the performance comparison of dif-

ferent algorithms under the different numbers of pilot
symbols. Here, SNR is assumed to be 0 dB, the num-
ber of pilot symbols varies within 3%∼10%, and the other
parameters are the same as those in the above simula-
tion. Figure 9 shows that the performance is improved
with the increase of the pilot number. Under the same
accuracy condition, the higher the solution in the dic-
tionary domain is, the less the required number of pilot
is. For example, when MSN = −5 dB and λ = 4, the
required resource of pilots is only about 4%. If λ = 2,
the percentage is about 5%. However, the method based
on Fourier basis needs about 7.5% resource. Figure 10
shows the comparison under the different numbers of
pilots. With the increase of pilot number, BER would
be close to the performance of ideal channel estimation.
In other words, under the same performance of MSE
or BER, the pilot number required by DIC is less than
that by DFT and OPT. Hence, the sparse channel esti-
mation based on the dictionary domain can effectively
reduce the number of pilots and improve the spectrum
efficiency.
Lastly, to reduce the computation complexity, we may

apply different over-sampling times in the time-delay
domain or the Doppler domain. In a wireless chan-
nel, we assumed that the random speed of each path
cluster is less than 10 m/s and the acceleration is less
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Figure 9MSE performance under the different numbers of pilot
symbols. Dictionaries on λ = 2, 4 need less pilots than the optimized
basis (OPT) and Fourier basis (DFT) in compressive channel estimation.
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Figure 10 BER performance under the different numbers of pilot
symbols. An increase in either the measure values or lambda can
reduce BER.

than 1 m/s2, so the Doppler influence is not much
serious. The other parameters are the same as those in
the first simulation. Figures 11 and 12 show that when
λdelay= 4, λDoppler= 1, the performance of channel esti-
mation is better than that of others. The accuracy perfor-
mance on λdelay=λDoppler= 2 is almost the same as that
on λdelay= 2, λDoppler= 1; however, the former run time is
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Figure 11MSE performance using different resolution
dictionaries.When λdelay= 4, λDoppler= 1, the performance of
channel estimation is the best, while the accuracy performance on
λdelay=λDoppler= 2 is almost the same as that on
λdelay = 2, λDoppler= 1; the over-sampling in the Doppler domain
cannot improve the performance very much; the channel has a mild
Doppler spread.
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Figure 12 BER performance using different resolution dictionaries.
The more sparse the channel is, the higher the degree of accuracy
and the lower the BER we get.

about twice the latter, as shown in Table 2. Compared with
that of the DFT and OPT, the run time of dictionary basis
on λdelay= 2, λDoppler= 1 is only slightly more than that of
Fourier basis; however, the former performance is obvi-
ously better than the latter. Considering that the Doppler
influence is not much serious, we only over-sample in the
time-delay domain, so we can obtain an optimal selection
in both computation complexity and performance. Simi-
larly, we can also apply the same method in the Doppler
domain.

6 Conclusions
This paper proposes a novel estimationmethod of a sparse
and doubly selective channel based on CS theory. The
method can reduce the problem of energy leakage caused
by discrete truncation and the limited bandwidth by over-
sampling in the delay-Doppler domain, enhance the spar-
sity of the equivalent channel in the dictionary domain,
and then improve the performance of channel estimation.
The results show that although the method based on the
over-complete dictionary needs more computation, the
estimation accuracy is improved obviously and the pilot
resource is reduced very much. Lastly, compared with

Table 2 The required run time about different algorithms

Algorithm Reconstruction (s) Extra time (s)

DFT 0.4543 0

OPT 0.3210 164.4662

DIC (λdelay = 2, λDoppler = 1) 0.5343 0

DIC (λdelay = 2, λDoppler = 2) 0.9310 0

DIC (λdelay = 4, λDoppler = 1) 0.8603 0
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the increase of spectrum utilization, it is worth for more
complexity.
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